xref: /openbmc/linux/net/rds/send.c (revision e6dec923)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42 
43 #include "rds.h"
44 
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46  * time to time and briefly release the CPU. Otherwise the softlock watchdog
47  * will kick our shin.
48  * Also, it seems fairer to not let one busy connection stall all the
49  * others.
50  *
51  * send_batch_count is the number of times we'll loop in send_xmit. Setting
52  * it to 0 will restore the old behavior (where we looped until we had
53  * drained the queue).
54  */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58 
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60 
61 /*
62  * Reset the send state.  Callers must ensure that this doesn't race with
63  * rds_send_xmit().
64  */
65 void rds_send_path_reset(struct rds_conn_path *cp)
66 {
67 	struct rds_message *rm, *tmp;
68 	unsigned long flags;
69 
70 	if (cp->cp_xmit_rm) {
71 		rm = cp->cp_xmit_rm;
72 		cp->cp_xmit_rm = NULL;
73 		/* Tell the user the RDMA op is no longer mapped by the
74 		 * transport. This isn't entirely true (it's flushed out
75 		 * independently) but as the connection is down, there's
76 		 * no ongoing RDMA to/from that memory */
77 		rds_message_unmapped(rm);
78 		rds_message_put(rm);
79 	}
80 
81 	cp->cp_xmit_sg = 0;
82 	cp->cp_xmit_hdr_off = 0;
83 	cp->cp_xmit_data_off = 0;
84 	cp->cp_xmit_atomic_sent = 0;
85 	cp->cp_xmit_rdma_sent = 0;
86 	cp->cp_xmit_data_sent = 0;
87 
88 	cp->cp_conn->c_map_queued = 0;
89 
90 	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 
93 	/* Mark messages as retransmissions, and move them to the send q */
94 	spin_lock_irqsave(&cp->cp_lock, flags);
95 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 	}
99 	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 	spin_unlock_irqrestore(&cp->cp_lock, flags);
101 }
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
103 
104 static int acquire_in_xmit(struct rds_conn_path *cp)
105 {
106 	return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
107 }
108 
109 static void release_in_xmit(struct rds_conn_path *cp)
110 {
111 	clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 	smp_mb__after_atomic();
113 	/*
114 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 	 * hot path and finding waiters is very rare.  We don't want to walk
116 	 * the system-wide hashed waitqueue buckets in the fast path only to
117 	 * almost never find waiters.
118 	 */
119 	if (waitqueue_active(&cp->cp_waitq))
120 		wake_up_all(&cp->cp_waitq);
121 }
122 
123 /*
124  * We're making the conscious trade-off here to only send one message
125  * down the connection at a time.
126  *   Pro:
127  *      - tx queueing is a simple fifo list
128  *   	- reassembly is optional and easily done by transports per conn
129  *      - no per flow rx lookup at all, straight to the socket
130  *   	- less per-frag memory and wire overhead
131  *   Con:
132  *      - queued acks can be delayed behind large messages
133  *   Depends:
134  *      - small message latency is higher behind queued large messages
135  *      - large message latency isn't starved by intervening small sends
136  */
137 int rds_send_xmit(struct rds_conn_path *cp)
138 {
139 	struct rds_connection *conn = cp->cp_conn;
140 	struct rds_message *rm;
141 	unsigned long flags;
142 	unsigned int tmp;
143 	struct scatterlist *sg;
144 	int ret = 0;
145 	LIST_HEAD(to_be_dropped);
146 	int batch_count;
147 	unsigned long send_gen = 0;
148 
149 restart:
150 	batch_count = 0;
151 
152 	/*
153 	 * sendmsg calls here after having queued its message on the send
154 	 * queue.  We only have one task feeding the connection at a time.  If
155 	 * another thread is already feeding the queue then we back off.  This
156 	 * avoids blocking the caller and trading per-connection data between
157 	 * caches per message.
158 	 */
159 	if (!acquire_in_xmit(cp)) {
160 		rds_stats_inc(s_send_lock_contention);
161 		ret = -ENOMEM;
162 		goto out;
163 	}
164 
165 	/*
166 	 * we record the send generation after doing the xmit acquire.
167 	 * if someone else manages to jump in and do some work, we'll use
168 	 * this to avoid a goto restart farther down.
169 	 *
170 	 * The acquire_in_xmit() check above ensures that only one
171 	 * caller can increment c_send_gen at any time.
172 	 */
173 	send_gen = READ_ONCE(cp->cp_send_gen) + 1;
174 	WRITE_ONCE(cp->cp_send_gen, send_gen);
175 
176 	/*
177 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
178 	 * we do the opposite to avoid races.
179 	 */
180 	if (!rds_conn_path_up(cp)) {
181 		release_in_xmit(cp);
182 		ret = 0;
183 		goto out;
184 	}
185 
186 	if (conn->c_trans->xmit_path_prepare)
187 		conn->c_trans->xmit_path_prepare(cp);
188 
189 	/*
190 	 * spin trying to push headers and data down the connection until
191 	 * the connection doesn't make forward progress.
192 	 */
193 	while (1) {
194 
195 		rm = cp->cp_xmit_rm;
196 
197 		/*
198 		 * If between sending messages, we can send a pending congestion
199 		 * map update.
200 		 */
201 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
202 			rm = rds_cong_update_alloc(conn);
203 			if (IS_ERR(rm)) {
204 				ret = PTR_ERR(rm);
205 				break;
206 			}
207 			rm->data.op_active = 1;
208 			rm->m_inc.i_conn_path = cp;
209 			rm->m_inc.i_conn = cp->cp_conn;
210 
211 			cp->cp_xmit_rm = rm;
212 		}
213 
214 		/*
215 		 * If not already working on one, grab the next message.
216 		 *
217 		 * cp_xmit_rm holds a ref while we're sending this message down
218 		 * the connction.  We can use this ref while holding the
219 		 * send_sem.. rds_send_reset() is serialized with it.
220 		 */
221 		if (!rm) {
222 			unsigned int len;
223 
224 			batch_count++;
225 
226 			/* we want to process as big a batch as we can, but
227 			 * we also want to avoid softlockups.  If we've been
228 			 * through a lot of messages, lets back off and see
229 			 * if anyone else jumps in
230 			 */
231 			if (batch_count >= send_batch_count)
232 				goto over_batch;
233 
234 			spin_lock_irqsave(&cp->cp_lock, flags);
235 
236 			if (!list_empty(&cp->cp_send_queue)) {
237 				rm = list_entry(cp->cp_send_queue.next,
238 						struct rds_message,
239 						m_conn_item);
240 				rds_message_addref(rm);
241 
242 				/*
243 				 * Move the message from the send queue to the retransmit
244 				 * list right away.
245 				 */
246 				list_move_tail(&rm->m_conn_item,
247 					       &cp->cp_retrans);
248 			}
249 
250 			spin_unlock_irqrestore(&cp->cp_lock, flags);
251 
252 			if (!rm)
253 				break;
254 
255 			/* Unfortunately, the way Infiniband deals with
256 			 * RDMA to a bad MR key is by moving the entire
257 			 * queue pair to error state. We cold possibly
258 			 * recover from that, but right now we drop the
259 			 * connection.
260 			 * Therefore, we never retransmit messages with RDMA ops.
261 			 */
262 			if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
263 			    (rm->rdma.op_active &&
264 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
265 				spin_lock_irqsave(&cp->cp_lock, flags);
266 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
267 					list_move(&rm->m_conn_item, &to_be_dropped);
268 				spin_unlock_irqrestore(&cp->cp_lock, flags);
269 				continue;
270 			}
271 
272 			/* Require an ACK every once in a while */
273 			len = ntohl(rm->m_inc.i_hdr.h_len);
274 			if (cp->cp_unacked_packets == 0 ||
275 			    cp->cp_unacked_bytes < len) {
276 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
277 
278 				cp->cp_unacked_packets =
279 					rds_sysctl_max_unacked_packets;
280 				cp->cp_unacked_bytes =
281 					rds_sysctl_max_unacked_bytes;
282 				rds_stats_inc(s_send_ack_required);
283 			} else {
284 				cp->cp_unacked_bytes -= len;
285 				cp->cp_unacked_packets--;
286 			}
287 
288 			cp->cp_xmit_rm = rm;
289 		}
290 
291 		/* The transport either sends the whole rdma or none of it */
292 		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
293 			rm->m_final_op = &rm->rdma;
294 			/* The transport owns the mapped memory for now.
295 			 * You can't unmap it while it's on the send queue
296 			 */
297 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
298 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
299 			if (ret) {
300 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
301 				wake_up_interruptible(&rm->m_flush_wait);
302 				break;
303 			}
304 			cp->cp_xmit_rdma_sent = 1;
305 
306 		}
307 
308 		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
309 			rm->m_final_op = &rm->atomic;
310 			/* The transport owns the mapped memory for now.
311 			 * You can't unmap it while it's on the send queue
312 			 */
313 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
314 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
315 			if (ret) {
316 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
317 				wake_up_interruptible(&rm->m_flush_wait);
318 				break;
319 			}
320 			cp->cp_xmit_atomic_sent = 1;
321 
322 		}
323 
324 		/*
325 		 * A number of cases require an RDS header to be sent
326 		 * even if there is no data.
327 		 * We permit 0-byte sends; rds-ping depends on this.
328 		 * However, if there are exclusively attached silent ops,
329 		 * we skip the hdr/data send, to enable silent operation.
330 		 */
331 		if (rm->data.op_nents == 0) {
332 			int ops_present;
333 			int all_ops_are_silent = 1;
334 
335 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
336 			if (rm->atomic.op_active && !rm->atomic.op_silent)
337 				all_ops_are_silent = 0;
338 			if (rm->rdma.op_active && !rm->rdma.op_silent)
339 				all_ops_are_silent = 0;
340 
341 			if (ops_present && all_ops_are_silent
342 			    && !rm->m_rdma_cookie)
343 				rm->data.op_active = 0;
344 		}
345 
346 		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
347 			rm->m_final_op = &rm->data;
348 
349 			ret = conn->c_trans->xmit(conn, rm,
350 						  cp->cp_xmit_hdr_off,
351 						  cp->cp_xmit_sg,
352 						  cp->cp_xmit_data_off);
353 			if (ret <= 0)
354 				break;
355 
356 			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
357 				tmp = min_t(int, ret,
358 					    sizeof(struct rds_header) -
359 					    cp->cp_xmit_hdr_off);
360 				cp->cp_xmit_hdr_off += tmp;
361 				ret -= tmp;
362 			}
363 
364 			sg = &rm->data.op_sg[cp->cp_xmit_sg];
365 			while (ret) {
366 				tmp = min_t(int, ret, sg->length -
367 						      cp->cp_xmit_data_off);
368 				cp->cp_xmit_data_off += tmp;
369 				ret -= tmp;
370 				if (cp->cp_xmit_data_off == sg->length) {
371 					cp->cp_xmit_data_off = 0;
372 					sg++;
373 					cp->cp_xmit_sg++;
374 					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
375 					       rm->data.op_nents);
376 				}
377 			}
378 
379 			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
380 			    (cp->cp_xmit_sg == rm->data.op_nents))
381 				cp->cp_xmit_data_sent = 1;
382 		}
383 
384 		/*
385 		 * A rm will only take multiple times through this loop
386 		 * if there is a data op. Thus, if the data is sent (or there was
387 		 * none), then we're done with the rm.
388 		 */
389 		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
390 			cp->cp_xmit_rm = NULL;
391 			cp->cp_xmit_sg = 0;
392 			cp->cp_xmit_hdr_off = 0;
393 			cp->cp_xmit_data_off = 0;
394 			cp->cp_xmit_rdma_sent = 0;
395 			cp->cp_xmit_atomic_sent = 0;
396 			cp->cp_xmit_data_sent = 0;
397 
398 			rds_message_put(rm);
399 		}
400 	}
401 
402 over_batch:
403 	if (conn->c_trans->xmit_path_complete)
404 		conn->c_trans->xmit_path_complete(cp);
405 	release_in_xmit(cp);
406 
407 	/* Nuke any messages we decided not to retransmit. */
408 	if (!list_empty(&to_be_dropped)) {
409 		/* irqs on here, so we can put(), unlike above */
410 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
411 			rds_message_put(rm);
412 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
413 	}
414 
415 	/*
416 	 * Other senders can queue a message after we last test the send queue
417 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
418 	 * not try and send their newly queued message.  We need to check the
419 	 * send queue after having cleared RDS_IN_XMIT so that their message
420 	 * doesn't get stuck on the send queue.
421 	 *
422 	 * If the transport cannot continue (i.e ret != 0), then it must
423 	 * call us when more room is available, such as from the tx
424 	 * completion handler.
425 	 *
426 	 * We have an extra generation check here so that if someone manages
427 	 * to jump in after our release_in_xmit, we'll see that they have done
428 	 * some work and we will skip our goto
429 	 */
430 	if (ret == 0) {
431 		smp_mb();
432 		if ((test_bit(0, &conn->c_map_queued) ||
433 		     !list_empty(&cp->cp_send_queue)) &&
434 			send_gen == READ_ONCE(cp->cp_send_gen)) {
435 			rds_stats_inc(s_send_lock_queue_raced);
436 			if (batch_count < send_batch_count)
437 				goto restart;
438 			queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
439 		}
440 	}
441 out:
442 	return ret;
443 }
444 EXPORT_SYMBOL_GPL(rds_send_xmit);
445 
446 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
447 {
448 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
449 
450 	assert_spin_locked(&rs->rs_lock);
451 
452 	BUG_ON(rs->rs_snd_bytes < len);
453 	rs->rs_snd_bytes -= len;
454 
455 	if (rs->rs_snd_bytes == 0)
456 		rds_stats_inc(s_send_queue_empty);
457 }
458 
459 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
460 				    is_acked_func is_acked)
461 {
462 	if (is_acked)
463 		return is_acked(rm, ack);
464 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
465 }
466 
467 /*
468  * This is pretty similar to what happens below in the ACK
469  * handling code - except that we call here as soon as we get
470  * the IB send completion on the RDMA op and the accompanying
471  * message.
472  */
473 void rds_rdma_send_complete(struct rds_message *rm, int status)
474 {
475 	struct rds_sock *rs = NULL;
476 	struct rm_rdma_op *ro;
477 	struct rds_notifier *notifier;
478 	unsigned long flags;
479 	unsigned int notify = 0;
480 
481 	spin_lock_irqsave(&rm->m_rs_lock, flags);
482 
483 	notify =  rm->rdma.op_notify | rm->data.op_notify;
484 	ro = &rm->rdma;
485 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
486 	    ro->op_active && notify && ro->op_notifier) {
487 		notifier = ro->op_notifier;
488 		rs = rm->m_rs;
489 		sock_hold(rds_rs_to_sk(rs));
490 
491 		notifier->n_status = status;
492 		spin_lock(&rs->rs_lock);
493 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
494 		spin_unlock(&rs->rs_lock);
495 
496 		ro->op_notifier = NULL;
497 	}
498 
499 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
500 
501 	if (rs) {
502 		rds_wake_sk_sleep(rs);
503 		sock_put(rds_rs_to_sk(rs));
504 	}
505 }
506 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
507 
508 /*
509  * Just like above, except looks at atomic op
510  */
511 void rds_atomic_send_complete(struct rds_message *rm, int status)
512 {
513 	struct rds_sock *rs = NULL;
514 	struct rm_atomic_op *ao;
515 	struct rds_notifier *notifier;
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&rm->m_rs_lock, flags);
519 
520 	ao = &rm->atomic;
521 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
522 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
523 		notifier = ao->op_notifier;
524 		rs = rm->m_rs;
525 		sock_hold(rds_rs_to_sk(rs));
526 
527 		notifier->n_status = status;
528 		spin_lock(&rs->rs_lock);
529 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
530 		spin_unlock(&rs->rs_lock);
531 
532 		ao->op_notifier = NULL;
533 	}
534 
535 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
536 
537 	if (rs) {
538 		rds_wake_sk_sleep(rs);
539 		sock_put(rds_rs_to_sk(rs));
540 	}
541 }
542 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
543 
544 /*
545  * This is the same as rds_rdma_send_complete except we
546  * don't do any locking - we have all the ingredients (message,
547  * socket, socket lock) and can just move the notifier.
548  */
549 static inline void
550 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
551 {
552 	struct rm_rdma_op *ro;
553 	struct rm_atomic_op *ao;
554 
555 	ro = &rm->rdma;
556 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
557 		ro->op_notifier->n_status = status;
558 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
559 		ro->op_notifier = NULL;
560 	}
561 
562 	ao = &rm->atomic;
563 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
564 		ao->op_notifier->n_status = status;
565 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
566 		ao->op_notifier = NULL;
567 	}
568 
569 	/* No need to wake the app - caller does this */
570 }
571 
572 /*
573  * This removes messages from the socket's list if they're on it.  The list
574  * argument must be private to the caller, we must be able to modify it
575  * without locks.  The messages must have a reference held for their
576  * position on the list.  This function will drop that reference after
577  * removing the messages from the 'messages' list regardless of if it found
578  * the messages on the socket list or not.
579  */
580 static void rds_send_remove_from_sock(struct list_head *messages, int status)
581 {
582 	unsigned long flags;
583 	struct rds_sock *rs = NULL;
584 	struct rds_message *rm;
585 
586 	while (!list_empty(messages)) {
587 		int was_on_sock = 0;
588 
589 		rm = list_entry(messages->next, struct rds_message,
590 				m_conn_item);
591 		list_del_init(&rm->m_conn_item);
592 
593 		/*
594 		 * If we see this flag cleared then we're *sure* that someone
595 		 * else beat us to removing it from the sock.  If we race
596 		 * with their flag update we'll get the lock and then really
597 		 * see that the flag has been cleared.
598 		 *
599 		 * The message spinlock makes sure nobody clears rm->m_rs
600 		 * while we're messing with it. It does not prevent the
601 		 * message from being removed from the socket, though.
602 		 */
603 		spin_lock_irqsave(&rm->m_rs_lock, flags);
604 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
605 			goto unlock_and_drop;
606 
607 		if (rs != rm->m_rs) {
608 			if (rs) {
609 				rds_wake_sk_sleep(rs);
610 				sock_put(rds_rs_to_sk(rs));
611 			}
612 			rs = rm->m_rs;
613 			if (rs)
614 				sock_hold(rds_rs_to_sk(rs));
615 		}
616 		if (!rs)
617 			goto unlock_and_drop;
618 		spin_lock(&rs->rs_lock);
619 
620 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
621 			struct rm_rdma_op *ro = &rm->rdma;
622 			struct rds_notifier *notifier;
623 
624 			list_del_init(&rm->m_sock_item);
625 			rds_send_sndbuf_remove(rs, rm);
626 
627 			if (ro->op_active && ro->op_notifier &&
628 			       (ro->op_notify || (ro->op_recverr && status))) {
629 				notifier = ro->op_notifier;
630 				list_add_tail(&notifier->n_list,
631 						&rs->rs_notify_queue);
632 				if (!notifier->n_status)
633 					notifier->n_status = status;
634 				rm->rdma.op_notifier = NULL;
635 			}
636 			was_on_sock = 1;
637 			rm->m_rs = NULL;
638 		}
639 		spin_unlock(&rs->rs_lock);
640 
641 unlock_and_drop:
642 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
643 		rds_message_put(rm);
644 		if (was_on_sock)
645 			rds_message_put(rm);
646 	}
647 
648 	if (rs) {
649 		rds_wake_sk_sleep(rs);
650 		sock_put(rds_rs_to_sk(rs));
651 	}
652 }
653 
654 /*
655  * Transports call here when they've determined that the receiver queued
656  * messages up to, and including, the given sequence number.  Messages are
657  * moved to the retrans queue when rds_send_xmit picks them off the send
658  * queue. This means that in the TCP case, the message may not have been
659  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
660  * checks the RDS_MSG_HAS_ACK_SEQ bit.
661  */
662 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
663 			      is_acked_func is_acked)
664 {
665 	struct rds_message *rm, *tmp;
666 	unsigned long flags;
667 	LIST_HEAD(list);
668 
669 	spin_lock_irqsave(&cp->cp_lock, flags);
670 
671 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
672 		if (!rds_send_is_acked(rm, ack, is_acked))
673 			break;
674 
675 		list_move(&rm->m_conn_item, &list);
676 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
677 	}
678 
679 	/* order flag updates with spin locks */
680 	if (!list_empty(&list))
681 		smp_mb__after_atomic();
682 
683 	spin_unlock_irqrestore(&cp->cp_lock, flags);
684 
685 	/* now remove the messages from the sock list as needed */
686 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
687 }
688 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
689 
690 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
691 			 is_acked_func is_acked)
692 {
693 	WARN_ON(conn->c_trans->t_mp_capable);
694 	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
695 }
696 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
697 
698 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
699 {
700 	struct rds_message *rm, *tmp;
701 	struct rds_connection *conn;
702 	struct rds_conn_path *cp;
703 	unsigned long flags;
704 	LIST_HEAD(list);
705 
706 	/* get all the messages we're dropping under the rs lock */
707 	spin_lock_irqsave(&rs->rs_lock, flags);
708 
709 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
710 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
711 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
712 			continue;
713 
714 		list_move(&rm->m_sock_item, &list);
715 		rds_send_sndbuf_remove(rs, rm);
716 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
717 	}
718 
719 	/* order flag updates with the rs lock */
720 	smp_mb__after_atomic();
721 
722 	spin_unlock_irqrestore(&rs->rs_lock, flags);
723 
724 	if (list_empty(&list))
725 		return;
726 
727 	/* Remove the messages from the conn */
728 	list_for_each_entry(rm, &list, m_sock_item) {
729 
730 		conn = rm->m_inc.i_conn;
731 		if (conn->c_trans->t_mp_capable)
732 			cp = rm->m_inc.i_conn_path;
733 		else
734 			cp = &conn->c_path[0];
735 
736 		spin_lock_irqsave(&cp->cp_lock, flags);
737 		/*
738 		 * Maybe someone else beat us to removing rm from the conn.
739 		 * If we race with their flag update we'll get the lock and
740 		 * then really see that the flag has been cleared.
741 		 */
742 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
743 			spin_unlock_irqrestore(&cp->cp_lock, flags);
744 			spin_lock_irqsave(&rm->m_rs_lock, flags);
745 			rm->m_rs = NULL;
746 			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
747 			continue;
748 		}
749 		list_del_init(&rm->m_conn_item);
750 		spin_unlock_irqrestore(&cp->cp_lock, flags);
751 
752 		/*
753 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
754 		 * but we can now.
755 		 */
756 		spin_lock_irqsave(&rm->m_rs_lock, flags);
757 
758 		spin_lock(&rs->rs_lock);
759 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
760 		spin_unlock(&rs->rs_lock);
761 
762 		rm->m_rs = NULL;
763 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
764 
765 		rds_message_put(rm);
766 	}
767 
768 	rds_wake_sk_sleep(rs);
769 
770 	while (!list_empty(&list)) {
771 		rm = list_entry(list.next, struct rds_message, m_sock_item);
772 		list_del_init(&rm->m_sock_item);
773 		rds_message_wait(rm);
774 
775 		/* just in case the code above skipped this message
776 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
777 		 * taking m_rs_lock is the only thing that keeps us
778 		 * from racing with ack processing.
779 		 */
780 		spin_lock_irqsave(&rm->m_rs_lock, flags);
781 
782 		spin_lock(&rs->rs_lock);
783 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
784 		spin_unlock(&rs->rs_lock);
785 
786 		rm->m_rs = NULL;
787 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
788 
789 		rds_message_put(rm);
790 	}
791 }
792 
793 /*
794  * we only want this to fire once so we use the callers 'queued'.  It's
795  * possible that another thread can race with us and remove the
796  * message from the flow with RDS_CANCEL_SENT_TO.
797  */
798 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
799 			     struct rds_conn_path *cp,
800 			     struct rds_message *rm, __be16 sport,
801 			     __be16 dport, int *queued)
802 {
803 	unsigned long flags;
804 	u32 len;
805 
806 	if (*queued)
807 		goto out;
808 
809 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
810 
811 	/* this is the only place which holds both the socket's rs_lock
812 	 * and the connection's c_lock */
813 	spin_lock_irqsave(&rs->rs_lock, flags);
814 
815 	/*
816 	 * If there is a little space in sndbuf, we don't queue anything,
817 	 * and userspace gets -EAGAIN. But poll() indicates there's send
818 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
819 	 * freed up by incoming acks. So we check the *old* value of
820 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
821 	 * and poll() now knows no more data can be sent.
822 	 */
823 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
824 		rs->rs_snd_bytes += len;
825 
826 		/* let recv side know we are close to send space exhaustion.
827 		 * This is probably not the optimal way to do it, as this
828 		 * means we set the flag on *all* messages as soon as our
829 		 * throughput hits a certain threshold.
830 		 */
831 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
832 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
833 
834 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
835 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
836 		rds_message_addref(rm);
837 		rm->m_rs = rs;
838 
839 		/* The code ordering is a little weird, but we're
840 		   trying to minimize the time we hold c_lock */
841 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
842 		rm->m_inc.i_conn = conn;
843 		rm->m_inc.i_conn_path = cp;
844 		rds_message_addref(rm);
845 
846 		spin_lock(&cp->cp_lock);
847 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
848 		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
849 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
850 		spin_unlock(&cp->cp_lock);
851 
852 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
853 			 rm, len, rs, rs->rs_snd_bytes,
854 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
855 
856 		*queued = 1;
857 	}
858 
859 	spin_unlock_irqrestore(&rs->rs_lock, flags);
860 out:
861 	return *queued;
862 }
863 
864 /*
865  * rds_message is getting to be quite complicated, and we'd like to allocate
866  * it all in one go. This figures out how big it needs to be up front.
867  */
868 static int rds_rm_size(struct msghdr *msg, int data_len)
869 {
870 	struct cmsghdr *cmsg;
871 	int size = 0;
872 	int cmsg_groups = 0;
873 	int retval;
874 
875 	for_each_cmsghdr(cmsg, msg) {
876 		if (!CMSG_OK(msg, cmsg))
877 			return -EINVAL;
878 
879 		if (cmsg->cmsg_level != SOL_RDS)
880 			continue;
881 
882 		switch (cmsg->cmsg_type) {
883 		case RDS_CMSG_RDMA_ARGS:
884 			cmsg_groups |= 1;
885 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
886 			if (retval < 0)
887 				return retval;
888 			size += retval;
889 
890 			break;
891 
892 		case RDS_CMSG_RDMA_DEST:
893 		case RDS_CMSG_RDMA_MAP:
894 			cmsg_groups |= 2;
895 			/* these are valid but do no add any size */
896 			break;
897 
898 		case RDS_CMSG_ATOMIC_CSWP:
899 		case RDS_CMSG_ATOMIC_FADD:
900 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
901 		case RDS_CMSG_MASKED_ATOMIC_FADD:
902 			cmsg_groups |= 1;
903 			size += sizeof(struct scatterlist);
904 			break;
905 
906 		default:
907 			return -EINVAL;
908 		}
909 
910 	}
911 
912 	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
913 
914 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
915 	if (cmsg_groups == 3)
916 		return -EINVAL;
917 
918 	return size;
919 }
920 
921 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
922 			 struct msghdr *msg, int *allocated_mr)
923 {
924 	struct cmsghdr *cmsg;
925 	int ret = 0;
926 
927 	for_each_cmsghdr(cmsg, msg) {
928 		if (!CMSG_OK(msg, cmsg))
929 			return -EINVAL;
930 
931 		if (cmsg->cmsg_level != SOL_RDS)
932 			continue;
933 
934 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
935 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
936 		 */
937 		switch (cmsg->cmsg_type) {
938 		case RDS_CMSG_RDMA_ARGS:
939 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
940 			break;
941 
942 		case RDS_CMSG_RDMA_DEST:
943 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
944 			break;
945 
946 		case RDS_CMSG_RDMA_MAP:
947 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
948 			if (!ret)
949 				*allocated_mr = 1;
950 			else if (ret == -ENODEV)
951 				/* Accommodate the get_mr() case which can fail
952 				 * if connection isn't established yet.
953 				 */
954 				ret = -EAGAIN;
955 			break;
956 		case RDS_CMSG_ATOMIC_CSWP:
957 		case RDS_CMSG_ATOMIC_FADD:
958 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
959 		case RDS_CMSG_MASKED_ATOMIC_FADD:
960 			ret = rds_cmsg_atomic(rs, rm, cmsg);
961 			break;
962 
963 		default:
964 			return -EINVAL;
965 		}
966 
967 		if (ret)
968 			break;
969 	}
970 
971 	return ret;
972 }
973 
974 static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn)
975 {
976 	int hash;
977 
978 	if (conn->c_npaths == 0)
979 		hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
980 	else
981 		hash = RDS_MPATH_HASH(rs, conn->c_npaths);
982 	if (conn->c_npaths == 0 && hash != 0) {
983 		rds_send_ping(conn, 0);
984 
985 		if (conn->c_npaths == 0) {
986 			wait_event_interruptible(conn->c_hs_waitq,
987 						 (conn->c_npaths != 0));
988 		}
989 		if (conn->c_npaths == 1)
990 			hash = 0;
991 	}
992 	return hash;
993 }
994 
995 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
996 {
997 	struct rds_rdma_args *args;
998 	struct cmsghdr *cmsg;
999 
1000 	for_each_cmsghdr(cmsg, msg) {
1001 		if (!CMSG_OK(msg, cmsg))
1002 			return -EINVAL;
1003 
1004 		if (cmsg->cmsg_level != SOL_RDS)
1005 			continue;
1006 
1007 		if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1008 			args = CMSG_DATA(cmsg);
1009 			*rdma_bytes += args->remote_vec.bytes;
1010 		}
1011 	}
1012 	return 0;
1013 }
1014 
1015 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1016 {
1017 	struct sock *sk = sock->sk;
1018 	struct rds_sock *rs = rds_sk_to_rs(sk);
1019 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1020 	__be32 daddr;
1021 	__be16 dport;
1022 	struct rds_message *rm = NULL;
1023 	struct rds_connection *conn;
1024 	int ret = 0;
1025 	int queued = 0, allocated_mr = 0;
1026 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
1027 	long timeo = sock_sndtimeo(sk, nonblock);
1028 	struct rds_conn_path *cpath;
1029 	size_t total_payload_len = payload_len, rdma_payload_len = 0;
1030 
1031 	/* Mirror Linux UDP mirror of BSD error message compatibility */
1032 	/* XXX: Perhaps MSG_MORE someday */
1033 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
1034 		ret = -EOPNOTSUPP;
1035 		goto out;
1036 	}
1037 
1038 	if (msg->msg_namelen) {
1039 		/* XXX fail non-unicast destination IPs? */
1040 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
1041 			ret = -EINVAL;
1042 			goto out;
1043 		}
1044 		daddr = usin->sin_addr.s_addr;
1045 		dport = usin->sin_port;
1046 	} else {
1047 		/* We only care about consistency with ->connect() */
1048 		lock_sock(sk);
1049 		daddr = rs->rs_conn_addr;
1050 		dport = rs->rs_conn_port;
1051 		release_sock(sk);
1052 	}
1053 
1054 	lock_sock(sk);
1055 	if (daddr == 0 || rs->rs_bound_addr == 0) {
1056 		release_sock(sk);
1057 		ret = -ENOTCONN; /* XXX not a great errno */
1058 		goto out;
1059 	}
1060 	release_sock(sk);
1061 
1062 	ret = rds_rdma_bytes(msg, &rdma_payload_len);
1063 	if (ret)
1064 		goto out;
1065 
1066 	total_payload_len += rdma_payload_len;
1067 	if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1068 		ret = -EMSGSIZE;
1069 		goto out;
1070 	}
1071 
1072 	if (payload_len > rds_sk_sndbuf(rs)) {
1073 		ret = -EMSGSIZE;
1074 		goto out;
1075 	}
1076 
1077 	/* size of rm including all sgs */
1078 	ret = rds_rm_size(msg, payload_len);
1079 	if (ret < 0)
1080 		goto out;
1081 
1082 	rm = rds_message_alloc(ret, GFP_KERNEL);
1083 	if (!rm) {
1084 		ret = -ENOMEM;
1085 		goto out;
1086 	}
1087 
1088 	/* Attach data to the rm */
1089 	if (payload_len) {
1090 		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1091 		if (!rm->data.op_sg) {
1092 			ret = -ENOMEM;
1093 			goto out;
1094 		}
1095 		ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1096 		if (ret)
1097 			goto out;
1098 	}
1099 	rm->data.op_active = 1;
1100 
1101 	rm->m_daddr = daddr;
1102 
1103 	/* rds_conn_create has a spinlock that runs with IRQ off.
1104 	 * Caching the conn in the socket helps a lot. */
1105 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1106 		conn = rs->rs_conn;
1107 	else {
1108 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1109 						rs->rs_bound_addr, daddr,
1110 					rs->rs_transport,
1111 					sock->sk->sk_allocation);
1112 		if (IS_ERR(conn)) {
1113 			ret = PTR_ERR(conn);
1114 			goto out;
1115 		}
1116 		rs->rs_conn = conn;
1117 	}
1118 
1119 	/* Parse any control messages the user may have included. */
1120 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1121 	if (ret) {
1122 		/* Trigger connection so that its ready for the next retry */
1123 		if (ret ==  -EAGAIN)
1124 			rds_conn_connect_if_down(conn);
1125 		goto out;
1126 	}
1127 
1128 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1129 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1130 			       &rm->rdma, conn->c_trans->xmit_rdma);
1131 		ret = -EOPNOTSUPP;
1132 		goto out;
1133 	}
1134 
1135 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1136 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1137 			       &rm->atomic, conn->c_trans->xmit_atomic);
1138 		ret = -EOPNOTSUPP;
1139 		goto out;
1140 	}
1141 
1142 	if (conn->c_trans->t_mp_capable)
1143 		cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)];
1144 	else
1145 		cpath = &conn->c_path[0];
1146 
1147 	rds_conn_path_connect_if_down(cpath);
1148 
1149 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1150 	if (ret) {
1151 		rs->rs_seen_congestion = 1;
1152 		goto out;
1153 	}
1154 	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1155 				  dport, &queued)) {
1156 		rds_stats_inc(s_send_queue_full);
1157 
1158 		if (nonblock) {
1159 			ret = -EAGAIN;
1160 			goto out;
1161 		}
1162 
1163 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1164 					rds_send_queue_rm(rs, conn, cpath, rm,
1165 							  rs->rs_bound_port,
1166 							  dport,
1167 							  &queued),
1168 					timeo);
1169 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1170 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1171 			continue;
1172 
1173 		ret = timeo;
1174 		if (ret == 0)
1175 			ret = -ETIMEDOUT;
1176 		goto out;
1177 	}
1178 
1179 	/*
1180 	 * By now we've committed to the send.  We reuse rds_send_worker()
1181 	 * to retry sends in the rds thread if the transport asks us to.
1182 	 */
1183 	rds_stats_inc(s_send_queued);
1184 
1185 	ret = rds_send_xmit(cpath);
1186 	if (ret == -ENOMEM || ret == -EAGAIN)
1187 		queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1188 
1189 	rds_message_put(rm);
1190 	return payload_len;
1191 
1192 out:
1193 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1194 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1195 	 * or in any other way, we need to destroy the MR again */
1196 	if (allocated_mr)
1197 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1198 
1199 	if (rm)
1200 		rds_message_put(rm);
1201 	return ret;
1202 }
1203 
1204 /*
1205  * send out a probe. Can be shared by rds_send_ping,
1206  * rds_send_pong, rds_send_hb.
1207  * rds_send_hb should use h_flags
1208  *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1209  * or
1210  *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1211  */
1212 static int
1213 rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1214 	       __be16 dport, u8 h_flags)
1215 {
1216 	struct rds_message *rm;
1217 	unsigned long flags;
1218 	int ret = 0;
1219 
1220 	rm = rds_message_alloc(0, GFP_ATOMIC);
1221 	if (!rm) {
1222 		ret = -ENOMEM;
1223 		goto out;
1224 	}
1225 
1226 	rm->m_daddr = cp->cp_conn->c_faddr;
1227 	rm->data.op_active = 1;
1228 
1229 	rds_conn_path_connect_if_down(cp);
1230 
1231 	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1232 	if (ret)
1233 		goto out;
1234 
1235 	spin_lock_irqsave(&cp->cp_lock, flags);
1236 	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1237 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1238 	rds_message_addref(rm);
1239 	rm->m_inc.i_conn = cp->cp_conn;
1240 	rm->m_inc.i_conn_path = cp;
1241 
1242 	rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1243 				    cp->cp_next_tx_seq);
1244 	rm->m_inc.i_hdr.h_flags |= h_flags;
1245 	cp->cp_next_tx_seq++;
1246 
1247 	if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1248 	    cp->cp_conn->c_trans->t_mp_capable) {
1249 		u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1250 		u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
1251 
1252 		rds_message_add_extension(&rm->m_inc.i_hdr,
1253 					  RDS_EXTHDR_NPATHS, &npaths,
1254 					  sizeof(npaths));
1255 		rds_message_add_extension(&rm->m_inc.i_hdr,
1256 					  RDS_EXTHDR_GEN_NUM,
1257 					  &my_gen_num,
1258 					  sizeof(u32));
1259 	}
1260 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1261 
1262 	rds_stats_inc(s_send_queued);
1263 	rds_stats_inc(s_send_pong);
1264 
1265 	/* schedule the send work on rds_wq */
1266 	queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1267 
1268 	rds_message_put(rm);
1269 	return 0;
1270 
1271 out:
1272 	if (rm)
1273 		rds_message_put(rm);
1274 	return ret;
1275 }
1276 
1277 int
1278 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1279 {
1280 	return rds_send_probe(cp, 0, dport, 0);
1281 }
1282 
1283 void
1284 rds_send_ping(struct rds_connection *conn, int cp_index)
1285 {
1286 	unsigned long flags;
1287 	struct rds_conn_path *cp = &conn->c_path[cp_index];
1288 
1289 	spin_lock_irqsave(&cp->cp_lock, flags);
1290 	if (conn->c_ping_triggered) {
1291 		spin_unlock_irqrestore(&cp->cp_lock, flags);
1292 		return;
1293 	}
1294 	conn->c_ping_triggered = 1;
1295 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1296 	rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
1297 }
1298 EXPORT_SYMBOL_GPL(rds_send_ping);
1299