xref: /openbmc/linux/net/rds/send.c (revision cd2a9e62c8a3c5cae7691982667d79a0edc65283)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42 
43 #include "rds.h"
44 
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46  * time to time and briefly release the CPU. Otherwise the softlock watchdog
47  * will kick our shin.
48  * Also, it seems fairer to not let one busy connection stall all the
49  * others.
50  *
51  * send_batch_count is the number of times we'll loop in send_xmit. Setting
52  * it to 0 will restore the old behavior (where we looped until we had
53  * drained the queue).
54  */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58 
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60 
61 /*
62  * Reset the send state.  Callers must ensure that this doesn't race with
63  * rds_send_xmit().
64  */
65 void rds_send_path_reset(struct rds_conn_path *cp)
66 {
67 	struct rds_message *rm, *tmp;
68 	unsigned long flags;
69 
70 	if (cp->cp_xmit_rm) {
71 		rm = cp->cp_xmit_rm;
72 		cp->cp_xmit_rm = NULL;
73 		/* Tell the user the RDMA op is no longer mapped by the
74 		 * transport. This isn't entirely true (it's flushed out
75 		 * independently) but as the connection is down, there's
76 		 * no ongoing RDMA to/from that memory */
77 		rds_message_unmapped(rm);
78 		rds_message_put(rm);
79 	}
80 
81 	cp->cp_xmit_sg = 0;
82 	cp->cp_xmit_hdr_off = 0;
83 	cp->cp_xmit_data_off = 0;
84 	cp->cp_xmit_atomic_sent = 0;
85 	cp->cp_xmit_rdma_sent = 0;
86 	cp->cp_xmit_data_sent = 0;
87 
88 	cp->cp_conn->c_map_queued = 0;
89 
90 	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 
93 	/* Mark messages as retransmissions, and move them to the send q */
94 	spin_lock_irqsave(&cp->cp_lock, flags);
95 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 	}
99 	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 	spin_unlock_irqrestore(&cp->cp_lock, flags);
101 }
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
103 
104 static int acquire_in_xmit(struct rds_conn_path *cp)
105 {
106 	return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
107 }
108 
109 static void release_in_xmit(struct rds_conn_path *cp)
110 {
111 	clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 	smp_mb__after_atomic();
113 	/*
114 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 	 * hot path and finding waiters is very rare.  We don't want to walk
116 	 * the system-wide hashed waitqueue buckets in the fast path only to
117 	 * almost never find waiters.
118 	 */
119 	if (waitqueue_active(&cp->cp_waitq))
120 		wake_up_all(&cp->cp_waitq);
121 }
122 
123 /*
124  * We're making the conscious trade-off here to only send one message
125  * down the connection at a time.
126  *   Pro:
127  *      - tx queueing is a simple fifo list
128  *   	- reassembly is optional and easily done by transports per conn
129  *      - no per flow rx lookup at all, straight to the socket
130  *   	- less per-frag memory and wire overhead
131  *   Con:
132  *      - queued acks can be delayed behind large messages
133  *   Depends:
134  *      - small message latency is higher behind queued large messages
135  *      - large message latency isn't starved by intervening small sends
136  */
137 int rds_send_xmit(struct rds_conn_path *cp)
138 {
139 	struct rds_connection *conn = cp->cp_conn;
140 	struct rds_message *rm;
141 	unsigned long flags;
142 	unsigned int tmp;
143 	struct scatterlist *sg;
144 	int ret = 0;
145 	LIST_HEAD(to_be_dropped);
146 	int batch_count;
147 	unsigned long send_gen = 0;
148 
149 restart:
150 	batch_count = 0;
151 
152 	/*
153 	 * sendmsg calls here after having queued its message on the send
154 	 * queue.  We only have one task feeding the connection at a time.  If
155 	 * another thread is already feeding the queue then we back off.  This
156 	 * avoids blocking the caller and trading per-connection data between
157 	 * caches per message.
158 	 */
159 	if (!acquire_in_xmit(cp)) {
160 		rds_stats_inc(s_send_lock_contention);
161 		ret = -ENOMEM;
162 		goto out;
163 	}
164 
165 	/*
166 	 * we record the send generation after doing the xmit acquire.
167 	 * if someone else manages to jump in and do some work, we'll use
168 	 * this to avoid a goto restart farther down.
169 	 *
170 	 * The acquire_in_xmit() check above ensures that only one
171 	 * caller can increment c_send_gen at any time.
172 	 */
173 	cp->cp_send_gen++;
174 	send_gen = cp->cp_send_gen;
175 
176 	/*
177 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
178 	 * we do the opposite to avoid races.
179 	 */
180 	if (!rds_conn_path_up(cp)) {
181 		release_in_xmit(cp);
182 		ret = 0;
183 		goto out;
184 	}
185 
186 	if (conn->c_trans->t_mp_capable) {
187 		if (conn->c_trans->xmit_path_prepare)
188 			conn->c_trans->xmit_path_prepare(cp);
189 	} else if (conn->c_trans->xmit_prepare) {
190 		conn->c_trans->xmit_prepare(conn);
191 	}
192 
193 	/*
194 	 * spin trying to push headers and data down the connection until
195 	 * the connection doesn't make forward progress.
196 	 */
197 	while (1) {
198 
199 		rm = cp->cp_xmit_rm;
200 
201 		/*
202 		 * If between sending messages, we can send a pending congestion
203 		 * map update.
204 		 */
205 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
206 			rm = rds_cong_update_alloc(conn);
207 			if (IS_ERR(rm)) {
208 				ret = PTR_ERR(rm);
209 				break;
210 			}
211 			rm->data.op_active = 1;
212 			rm->m_inc.i_conn_path = cp;
213 			rm->m_inc.i_conn = cp->cp_conn;
214 
215 			cp->cp_xmit_rm = rm;
216 		}
217 
218 		/*
219 		 * If not already working on one, grab the next message.
220 		 *
221 		 * cp_xmit_rm holds a ref while we're sending this message down
222 		 * the connction.  We can use this ref while holding the
223 		 * send_sem.. rds_send_reset() is serialized with it.
224 		 */
225 		if (!rm) {
226 			unsigned int len;
227 
228 			batch_count++;
229 
230 			/* we want to process as big a batch as we can, but
231 			 * we also want to avoid softlockups.  If we've been
232 			 * through a lot of messages, lets back off and see
233 			 * if anyone else jumps in
234 			 */
235 			if (batch_count >= send_batch_count)
236 				goto over_batch;
237 
238 			spin_lock_irqsave(&cp->cp_lock, flags);
239 
240 			if (!list_empty(&cp->cp_send_queue)) {
241 				rm = list_entry(cp->cp_send_queue.next,
242 						struct rds_message,
243 						m_conn_item);
244 				rds_message_addref(rm);
245 
246 				/*
247 				 * Move the message from the send queue to the retransmit
248 				 * list right away.
249 				 */
250 				list_move_tail(&rm->m_conn_item,
251 					       &cp->cp_retrans);
252 			}
253 
254 			spin_unlock_irqrestore(&cp->cp_lock, flags);
255 
256 			if (!rm)
257 				break;
258 
259 			/* Unfortunately, the way Infiniband deals with
260 			 * RDMA to a bad MR key is by moving the entire
261 			 * queue pair to error state. We cold possibly
262 			 * recover from that, but right now we drop the
263 			 * connection.
264 			 * Therefore, we never retransmit messages with RDMA ops.
265 			 */
266 			if (rm->rdma.op_active &&
267 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
268 				spin_lock_irqsave(&cp->cp_lock, flags);
269 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
270 					list_move(&rm->m_conn_item, &to_be_dropped);
271 				spin_unlock_irqrestore(&cp->cp_lock, flags);
272 				continue;
273 			}
274 
275 			/* Require an ACK every once in a while */
276 			len = ntohl(rm->m_inc.i_hdr.h_len);
277 			if (cp->cp_unacked_packets == 0 ||
278 			    cp->cp_unacked_bytes < len) {
279 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
280 
281 				cp->cp_unacked_packets =
282 					rds_sysctl_max_unacked_packets;
283 				cp->cp_unacked_bytes =
284 					rds_sysctl_max_unacked_bytes;
285 				rds_stats_inc(s_send_ack_required);
286 			} else {
287 				cp->cp_unacked_bytes -= len;
288 				cp->cp_unacked_packets--;
289 			}
290 
291 			cp->cp_xmit_rm = rm;
292 		}
293 
294 		/* The transport either sends the whole rdma or none of it */
295 		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
296 			rm->m_final_op = &rm->rdma;
297 			/* The transport owns the mapped memory for now.
298 			 * You can't unmap it while it's on the send queue
299 			 */
300 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
301 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
302 			if (ret) {
303 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
304 				wake_up_interruptible(&rm->m_flush_wait);
305 				break;
306 			}
307 			cp->cp_xmit_rdma_sent = 1;
308 
309 		}
310 
311 		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
312 			rm->m_final_op = &rm->atomic;
313 			/* The transport owns the mapped memory for now.
314 			 * You can't unmap it while it's on the send queue
315 			 */
316 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
317 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
318 			if (ret) {
319 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
320 				wake_up_interruptible(&rm->m_flush_wait);
321 				break;
322 			}
323 			cp->cp_xmit_atomic_sent = 1;
324 
325 		}
326 
327 		/*
328 		 * A number of cases require an RDS header to be sent
329 		 * even if there is no data.
330 		 * We permit 0-byte sends; rds-ping depends on this.
331 		 * However, if there are exclusively attached silent ops,
332 		 * we skip the hdr/data send, to enable silent operation.
333 		 */
334 		if (rm->data.op_nents == 0) {
335 			int ops_present;
336 			int all_ops_are_silent = 1;
337 
338 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
339 			if (rm->atomic.op_active && !rm->atomic.op_silent)
340 				all_ops_are_silent = 0;
341 			if (rm->rdma.op_active && !rm->rdma.op_silent)
342 				all_ops_are_silent = 0;
343 
344 			if (ops_present && all_ops_are_silent
345 			    && !rm->m_rdma_cookie)
346 				rm->data.op_active = 0;
347 		}
348 
349 		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
350 			rm->m_final_op = &rm->data;
351 
352 			ret = conn->c_trans->xmit(conn, rm,
353 						  cp->cp_xmit_hdr_off,
354 						  cp->cp_xmit_sg,
355 						  cp->cp_xmit_data_off);
356 			if (ret <= 0)
357 				break;
358 
359 			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
360 				tmp = min_t(int, ret,
361 					    sizeof(struct rds_header) -
362 					    cp->cp_xmit_hdr_off);
363 				cp->cp_xmit_hdr_off += tmp;
364 				ret -= tmp;
365 			}
366 
367 			sg = &rm->data.op_sg[cp->cp_xmit_sg];
368 			while (ret) {
369 				tmp = min_t(int, ret, sg->length -
370 						      cp->cp_xmit_data_off);
371 				cp->cp_xmit_data_off += tmp;
372 				ret -= tmp;
373 				if (cp->cp_xmit_data_off == sg->length) {
374 					cp->cp_xmit_data_off = 0;
375 					sg++;
376 					cp->cp_xmit_sg++;
377 					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
378 					       rm->data.op_nents);
379 				}
380 			}
381 
382 			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
383 			    (cp->cp_xmit_sg == rm->data.op_nents))
384 				cp->cp_xmit_data_sent = 1;
385 		}
386 
387 		/*
388 		 * A rm will only take multiple times through this loop
389 		 * if there is a data op. Thus, if the data is sent (or there was
390 		 * none), then we're done with the rm.
391 		 */
392 		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
393 			cp->cp_xmit_rm = NULL;
394 			cp->cp_xmit_sg = 0;
395 			cp->cp_xmit_hdr_off = 0;
396 			cp->cp_xmit_data_off = 0;
397 			cp->cp_xmit_rdma_sent = 0;
398 			cp->cp_xmit_atomic_sent = 0;
399 			cp->cp_xmit_data_sent = 0;
400 
401 			rds_message_put(rm);
402 		}
403 	}
404 
405 over_batch:
406 	if (conn->c_trans->t_mp_capable) {
407 		if (conn->c_trans->xmit_path_complete)
408 			conn->c_trans->xmit_path_complete(cp);
409 	} else if (conn->c_trans->xmit_complete) {
410 		conn->c_trans->xmit_complete(conn);
411 	}
412 	release_in_xmit(cp);
413 
414 	/* Nuke any messages we decided not to retransmit. */
415 	if (!list_empty(&to_be_dropped)) {
416 		/* irqs on here, so we can put(), unlike above */
417 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
418 			rds_message_put(rm);
419 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
420 	}
421 
422 	/*
423 	 * Other senders can queue a message after we last test the send queue
424 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
425 	 * not try and send their newly queued message.  We need to check the
426 	 * send queue after having cleared RDS_IN_XMIT so that their message
427 	 * doesn't get stuck on the send queue.
428 	 *
429 	 * If the transport cannot continue (i.e ret != 0), then it must
430 	 * call us when more room is available, such as from the tx
431 	 * completion handler.
432 	 *
433 	 * We have an extra generation check here so that if someone manages
434 	 * to jump in after our release_in_xmit, we'll see that they have done
435 	 * some work and we will skip our goto
436 	 */
437 	if (ret == 0) {
438 		smp_mb();
439 		if ((test_bit(0, &conn->c_map_queued) ||
440 		     !list_empty(&cp->cp_send_queue)) &&
441 		    send_gen == cp->cp_send_gen) {
442 			rds_stats_inc(s_send_lock_queue_raced);
443 			if (batch_count < send_batch_count)
444 				goto restart;
445 			queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
446 		}
447 	}
448 out:
449 	return ret;
450 }
451 EXPORT_SYMBOL_GPL(rds_send_xmit);
452 
453 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
454 {
455 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
456 
457 	assert_spin_locked(&rs->rs_lock);
458 
459 	BUG_ON(rs->rs_snd_bytes < len);
460 	rs->rs_snd_bytes -= len;
461 
462 	if (rs->rs_snd_bytes == 0)
463 		rds_stats_inc(s_send_queue_empty);
464 }
465 
466 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
467 				    is_acked_func is_acked)
468 {
469 	if (is_acked)
470 		return is_acked(rm, ack);
471 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
472 }
473 
474 /*
475  * This is pretty similar to what happens below in the ACK
476  * handling code - except that we call here as soon as we get
477  * the IB send completion on the RDMA op and the accompanying
478  * message.
479  */
480 void rds_rdma_send_complete(struct rds_message *rm, int status)
481 {
482 	struct rds_sock *rs = NULL;
483 	struct rm_rdma_op *ro;
484 	struct rds_notifier *notifier;
485 	unsigned long flags;
486 
487 	spin_lock_irqsave(&rm->m_rs_lock, flags);
488 
489 	ro = &rm->rdma;
490 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
491 	    ro->op_active && ro->op_notify && ro->op_notifier) {
492 		notifier = ro->op_notifier;
493 		rs = rm->m_rs;
494 		sock_hold(rds_rs_to_sk(rs));
495 
496 		notifier->n_status = status;
497 		spin_lock(&rs->rs_lock);
498 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
499 		spin_unlock(&rs->rs_lock);
500 
501 		ro->op_notifier = NULL;
502 	}
503 
504 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
505 
506 	if (rs) {
507 		rds_wake_sk_sleep(rs);
508 		sock_put(rds_rs_to_sk(rs));
509 	}
510 }
511 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
512 
513 /*
514  * Just like above, except looks at atomic op
515  */
516 void rds_atomic_send_complete(struct rds_message *rm, int status)
517 {
518 	struct rds_sock *rs = NULL;
519 	struct rm_atomic_op *ao;
520 	struct rds_notifier *notifier;
521 	unsigned long flags;
522 
523 	spin_lock_irqsave(&rm->m_rs_lock, flags);
524 
525 	ao = &rm->atomic;
526 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
527 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
528 		notifier = ao->op_notifier;
529 		rs = rm->m_rs;
530 		sock_hold(rds_rs_to_sk(rs));
531 
532 		notifier->n_status = status;
533 		spin_lock(&rs->rs_lock);
534 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
535 		spin_unlock(&rs->rs_lock);
536 
537 		ao->op_notifier = NULL;
538 	}
539 
540 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
541 
542 	if (rs) {
543 		rds_wake_sk_sleep(rs);
544 		sock_put(rds_rs_to_sk(rs));
545 	}
546 }
547 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
548 
549 /*
550  * This is the same as rds_rdma_send_complete except we
551  * don't do any locking - we have all the ingredients (message,
552  * socket, socket lock) and can just move the notifier.
553  */
554 static inline void
555 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
556 {
557 	struct rm_rdma_op *ro;
558 	struct rm_atomic_op *ao;
559 
560 	ro = &rm->rdma;
561 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
562 		ro->op_notifier->n_status = status;
563 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
564 		ro->op_notifier = NULL;
565 	}
566 
567 	ao = &rm->atomic;
568 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
569 		ao->op_notifier->n_status = status;
570 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
571 		ao->op_notifier = NULL;
572 	}
573 
574 	/* No need to wake the app - caller does this */
575 }
576 
577 /*
578  * This removes messages from the socket's list if they're on it.  The list
579  * argument must be private to the caller, we must be able to modify it
580  * without locks.  The messages must have a reference held for their
581  * position on the list.  This function will drop that reference after
582  * removing the messages from the 'messages' list regardless of if it found
583  * the messages on the socket list or not.
584  */
585 static void rds_send_remove_from_sock(struct list_head *messages, int status)
586 {
587 	unsigned long flags;
588 	struct rds_sock *rs = NULL;
589 	struct rds_message *rm;
590 
591 	while (!list_empty(messages)) {
592 		int was_on_sock = 0;
593 
594 		rm = list_entry(messages->next, struct rds_message,
595 				m_conn_item);
596 		list_del_init(&rm->m_conn_item);
597 
598 		/*
599 		 * If we see this flag cleared then we're *sure* that someone
600 		 * else beat us to removing it from the sock.  If we race
601 		 * with their flag update we'll get the lock and then really
602 		 * see that the flag has been cleared.
603 		 *
604 		 * The message spinlock makes sure nobody clears rm->m_rs
605 		 * while we're messing with it. It does not prevent the
606 		 * message from being removed from the socket, though.
607 		 */
608 		spin_lock_irqsave(&rm->m_rs_lock, flags);
609 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
610 			goto unlock_and_drop;
611 
612 		if (rs != rm->m_rs) {
613 			if (rs) {
614 				rds_wake_sk_sleep(rs);
615 				sock_put(rds_rs_to_sk(rs));
616 			}
617 			rs = rm->m_rs;
618 			if (rs)
619 				sock_hold(rds_rs_to_sk(rs));
620 		}
621 		if (!rs)
622 			goto unlock_and_drop;
623 		spin_lock(&rs->rs_lock);
624 
625 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
626 			struct rm_rdma_op *ro = &rm->rdma;
627 			struct rds_notifier *notifier;
628 
629 			list_del_init(&rm->m_sock_item);
630 			rds_send_sndbuf_remove(rs, rm);
631 
632 			if (ro->op_active && ro->op_notifier &&
633 			       (ro->op_notify || (ro->op_recverr && status))) {
634 				notifier = ro->op_notifier;
635 				list_add_tail(&notifier->n_list,
636 						&rs->rs_notify_queue);
637 				if (!notifier->n_status)
638 					notifier->n_status = status;
639 				rm->rdma.op_notifier = NULL;
640 			}
641 			was_on_sock = 1;
642 			rm->m_rs = NULL;
643 		}
644 		spin_unlock(&rs->rs_lock);
645 
646 unlock_and_drop:
647 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
648 		rds_message_put(rm);
649 		if (was_on_sock)
650 			rds_message_put(rm);
651 	}
652 
653 	if (rs) {
654 		rds_wake_sk_sleep(rs);
655 		sock_put(rds_rs_to_sk(rs));
656 	}
657 }
658 
659 /*
660  * Transports call here when they've determined that the receiver queued
661  * messages up to, and including, the given sequence number.  Messages are
662  * moved to the retrans queue when rds_send_xmit picks them off the send
663  * queue. This means that in the TCP case, the message may not have been
664  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
665  * checks the RDS_MSG_HAS_ACK_SEQ bit.
666  */
667 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
668 			      is_acked_func is_acked)
669 {
670 	struct rds_message *rm, *tmp;
671 	unsigned long flags;
672 	LIST_HEAD(list);
673 
674 	spin_lock_irqsave(&cp->cp_lock, flags);
675 
676 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
677 		if (!rds_send_is_acked(rm, ack, is_acked))
678 			break;
679 
680 		list_move(&rm->m_conn_item, &list);
681 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
682 	}
683 
684 	/* order flag updates with spin locks */
685 	if (!list_empty(&list))
686 		smp_mb__after_atomic();
687 
688 	spin_unlock_irqrestore(&cp->cp_lock, flags);
689 
690 	/* now remove the messages from the sock list as needed */
691 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
692 }
693 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
694 
695 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
696 			 is_acked_func is_acked)
697 {
698 	WARN_ON(conn->c_trans->t_mp_capable);
699 	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
700 }
701 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
702 
703 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
704 {
705 	struct rds_message *rm, *tmp;
706 	struct rds_connection *conn;
707 	struct rds_conn_path *cp;
708 	unsigned long flags;
709 	LIST_HEAD(list);
710 
711 	/* get all the messages we're dropping under the rs lock */
712 	spin_lock_irqsave(&rs->rs_lock, flags);
713 
714 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
715 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
716 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
717 			continue;
718 
719 		list_move(&rm->m_sock_item, &list);
720 		rds_send_sndbuf_remove(rs, rm);
721 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
722 	}
723 
724 	/* order flag updates with the rs lock */
725 	smp_mb__after_atomic();
726 
727 	spin_unlock_irqrestore(&rs->rs_lock, flags);
728 
729 	if (list_empty(&list))
730 		return;
731 
732 	/* Remove the messages from the conn */
733 	list_for_each_entry(rm, &list, m_sock_item) {
734 
735 		conn = rm->m_inc.i_conn;
736 		if (conn->c_trans->t_mp_capable)
737 			cp = rm->m_inc.i_conn_path;
738 		else
739 			cp = &conn->c_path[0];
740 
741 		spin_lock_irqsave(&cp->cp_lock, flags);
742 		/*
743 		 * Maybe someone else beat us to removing rm from the conn.
744 		 * If we race with their flag update we'll get the lock and
745 		 * then really see that the flag has been cleared.
746 		 */
747 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
748 			spin_unlock_irqrestore(&cp->cp_lock, flags);
749 			spin_lock_irqsave(&rm->m_rs_lock, flags);
750 			rm->m_rs = NULL;
751 			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
752 			continue;
753 		}
754 		list_del_init(&rm->m_conn_item);
755 		spin_unlock_irqrestore(&cp->cp_lock, flags);
756 
757 		/*
758 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
759 		 * but we can now.
760 		 */
761 		spin_lock_irqsave(&rm->m_rs_lock, flags);
762 
763 		spin_lock(&rs->rs_lock);
764 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
765 		spin_unlock(&rs->rs_lock);
766 
767 		rm->m_rs = NULL;
768 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
769 
770 		rds_message_put(rm);
771 	}
772 
773 	rds_wake_sk_sleep(rs);
774 
775 	while (!list_empty(&list)) {
776 		rm = list_entry(list.next, struct rds_message, m_sock_item);
777 		list_del_init(&rm->m_sock_item);
778 		rds_message_wait(rm);
779 
780 		/* just in case the code above skipped this message
781 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
782 		 * taking m_rs_lock is the only thing that keeps us
783 		 * from racing with ack processing.
784 		 */
785 		spin_lock_irqsave(&rm->m_rs_lock, flags);
786 
787 		spin_lock(&rs->rs_lock);
788 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
789 		spin_unlock(&rs->rs_lock);
790 
791 		rm->m_rs = NULL;
792 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
793 
794 		rds_message_put(rm);
795 	}
796 }
797 
798 /*
799  * we only want this to fire once so we use the callers 'queued'.  It's
800  * possible that another thread can race with us and remove the
801  * message from the flow with RDS_CANCEL_SENT_TO.
802  */
803 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
804 			     struct rds_conn_path *cp,
805 			     struct rds_message *rm, __be16 sport,
806 			     __be16 dport, int *queued)
807 {
808 	unsigned long flags;
809 	u32 len;
810 
811 	if (*queued)
812 		goto out;
813 
814 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
815 
816 	/* this is the only place which holds both the socket's rs_lock
817 	 * and the connection's c_lock */
818 	spin_lock_irqsave(&rs->rs_lock, flags);
819 
820 	/*
821 	 * If there is a little space in sndbuf, we don't queue anything,
822 	 * and userspace gets -EAGAIN. But poll() indicates there's send
823 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
824 	 * freed up by incoming acks. So we check the *old* value of
825 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
826 	 * and poll() now knows no more data can be sent.
827 	 */
828 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
829 		rs->rs_snd_bytes += len;
830 
831 		/* let recv side know we are close to send space exhaustion.
832 		 * This is probably not the optimal way to do it, as this
833 		 * means we set the flag on *all* messages as soon as our
834 		 * throughput hits a certain threshold.
835 		 */
836 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
837 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
838 
839 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
840 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
841 		rds_message_addref(rm);
842 		rm->m_rs = rs;
843 
844 		/* The code ordering is a little weird, but we're
845 		   trying to minimize the time we hold c_lock */
846 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
847 		rm->m_inc.i_conn = conn;
848 		rm->m_inc.i_conn_path = cp;
849 		rds_message_addref(rm);
850 
851 		spin_lock(&cp->cp_lock);
852 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
853 		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
854 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
855 		spin_unlock(&cp->cp_lock);
856 
857 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
858 			 rm, len, rs, rs->rs_snd_bytes,
859 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
860 
861 		*queued = 1;
862 	}
863 
864 	spin_unlock_irqrestore(&rs->rs_lock, flags);
865 out:
866 	return *queued;
867 }
868 
869 /*
870  * rds_message is getting to be quite complicated, and we'd like to allocate
871  * it all in one go. This figures out how big it needs to be up front.
872  */
873 static int rds_rm_size(struct msghdr *msg, int data_len)
874 {
875 	struct cmsghdr *cmsg;
876 	int size = 0;
877 	int cmsg_groups = 0;
878 	int retval;
879 
880 	for_each_cmsghdr(cmsg, msg) {
881 		if (!CMSG_OK(msg, cmsg))
882 			return -EINVAL;
883 
884 		if (cmsg->cmsg_level != SOL_RDS)
885 			continue;
886 
887 		switch (cmsg->cmsg_type) {
888 		case RDS_CMSG_RDMA_ARGS:
889 			cmsg_groups |= 1;
890 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
891 			if (retval < 0)
892 				return retval;
893 			size += retval;
894 
895 			break;
896 
897 		case RDS_CMSG_RDMA_DEST:
898 		case RDS_CMSG_RDMA_MAP:
899 			cmsg_groups |= 2;
900 			/* these are valid but do no add any size */
901 			break;
902 
903 		case RDS_CMSG_ATOMIC_CSWP:
904 		case RDS_CMSG_ATOMIC_FADD:
905 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
906 		case RDS_CMSG_MASKED_ATOMIC_FADD:
907 			cmsg_groups |= 1;
908 			size += sizeof(struct scatterlist);
909 			break;
910 
911 		default:
912 			return -EINVAL;
913 		}
914 
915 	}
916 
917 	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
918 
919 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
920 	if (cmsg_groups == 3)
921 		return -EINVAL;
922 
923 	return size;
924 }
925 
926 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
927 			 struct msghdr *msg, int *allocated_mr)
928 {
929 	struct cmsghdr *cmsg;
930 	int ret = 0;
931 
932 	for_each_cmsghdr(cmsg, msg) {
933 		if (!CMSG_OK(msg, cmsg))
934 			return -EINVAL;
935 
936 		if (cmsg->cmsg_level != SOL_RDS)
937 			continue;
938 
939 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
940 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
941 		 */
942 		switch (cmsg->cmsg_type) {
943 		case RDS_CMSG_RDMA_ARGS:
944 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
945 			break;
946 
947 		case RDS_CMSG_RDMA_DEST:
948 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
949 			break;
950 
951 		case RDS_CMSG_RDMA_MAP:
952 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
953 			if (!ret)
954 				*allocated_mr = 1;
955 			break;
956 		case RDS_CMSG_ATOMIC_CSWP:
957 		case RDS_CMSG_ATOMIC_FADD:
958 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
959 		case RDS_CMSG_MASKED_ATOMIC_FADD:
960 			ret = rds_cmsg_atomic(rs, rm, cmsg);
961 			break;
962 
963 		default:
964 			return -EINVAL;
965 		}
966 
967 		if (ret)
968 			break;
969 	}
970 
971 	return ret;
972 }
973 
974 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
975 {
976 	struct sock *sk = sock->sk;
977 	struct rds_sock *rs = rds_sk_to_rs(sk);
978 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
979 	__be32 daddr;
980 	__be16 dport;
981 	struct rds_message *rm = NULL;
982 	struct rds_connection *conn;
983 	int ret = 0;
984 	int queued = 0, allocated_mr = 0;
985 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
986 	long timeo = sock_sndtimeo(sk, nonblock);
987 	struct rds_conn_path *cpath;
988 
989 	/* Mirror Linux UDP mirror of BSD error message compatibility */
990 	/* XXX: Perhaps MSG_MORE someday */
991 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
992 		ret = -EOPNOTSUPP;
993 		goto out;
994 	}
995 
996 	if (msg->msg_namelen) {
997 		/* XXX fail non-unicast destination IPs? */
998 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
999 			ret = -EINVAL;
1000 			goto out;
1001 		}
1002 		daddr = usin->sin_addr.s_addr;
1003 		dport = usin->sin_port;
1004 	} else {
1005 		/* We only care about consistency with ->connect() */
1006 		lock_sock(sk);
1007 		daddr = rs->rs_conn_addr;
1008 		dport = rs->rs_conn_port;
1009 		release_sock(sk);
1010 	}
1011 
1012 	lock_sock(sk);
1013 	if (daddr == 0 || rs->rs_bound_addr == 0) {
1014 		release_sock(sk);
1015 		ret = -ENOTCONN; /* XXX not a great errno */
1016 		goto out;
1017 	}
1018 	release_sock(sk);
1019 
1020 	if (payload_len > rds_sk_sndbuf(rs)) {
1021 		ret = -EMSGSIZE;
1022 		goto out;
1023 	}
1024 
1025 	/* size of rm including all sgs */
1026 	ret = rds_rm_size(msg, payload_len);
1027 	if (ret < 0)
1028 		goto out;
1029 
1030 	rm = rds_message_alloc(ret, GFP_KERNEL);
1031 	if (!rm) {
1032 		ret = -ENOMEM;
1033 		goto out;
1034 	}
1035 
1036 	/* Attach data to the rm */
1037 	if (payload_len) {
1038 		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1039 		if (!rm->data.op_sg) {
1040 			ret = -ENOMEM;
1041 			goto out;
1042 		}
1043 		ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1044 		if (ret)
1045 			goto out;
1046 	}
1047 	rm->data.op_active = 1;
1048 
1049 	rm->m_daddr = daddr;
1050 
1051 	/* rds_conn_create has a spinlock that runs with IRQ off.
1052 	 * Caching the conn in the socket helps a lot. */
1053 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1054 		conn = rs->rs_conn;
1055 	else {
1056 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1057 						rs->rs_bound_addr, daddr,
1058 					rs->rs_transport,
1059 					sock->sk->sk_allocation);
1060 		if (IS_ERR(conn)) {
1061 			ret = PTR_ERR(conn);
1062 			goto out;
1063 		}
1064 		rs->rs_conn = conn;
1065 	}
1066 
1067 	/* Parse any control messages the user may have included. */
1068 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1069 	if (ret)
1070 		goto out;
1071 
1072 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1073 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1074 			       &rm->rdma, conn->c_trans->xmit_rdma);
1075 		ret = -EOPNOTSUPP;
1076 		goto out;
1077 	}
1078 
1079 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1080 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1081 			       &rm->atomic, conn->c_trans->xmit_atomic);
1082 		ret = -EOPNOTSUPP;
1083 		goto out;
1084 	}
1085 
1086 	cpath = &conn->c_path[0];
1087 
1088 	rds_conn_path_connect_if_down(cpath);
1089 
1090 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1091 	if (ret) {
1092 		rs->rs_seen_congestion = 1;
1093 		goto out;
1094 	}
1095 	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1096 				  dport, &queued)) {
1097 		rds_stats_inc(s_send_queue_full);
1098 
1099 		if (nonblock) {
1100 			ret = -EAGAIN;
1101 			goto out;
1102 		}
1103 
1104 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1105 					rds_send_queue_rm(rs, conn, cpath, rm,
1106 							  rs->rs_bound_port,
1107 							  dport,
1108 							  &queued),
1109 					timeo);
1110 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1111 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1112 			continue;
1113 
1114 		ret = timeo;
1115 		if (ret == 0)
1116 			ret = -ETIMEDOUT;
1117 		goto out;
1118 	}
1119 
1120 	/*
1121 	 * By now we've committed to the send.  We reuse rds_send_worker()
1122 	 * to retry sends in the rds thread if the transport asks us to.
1123 	 */
1124 	rds_stats_inc(s_send_queued);
1125 
1126 	ret = rds_send_xmit(cpath);
1127 	if (ret == -ENOMEM || ret == -EAGAIN)
1128 		queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1129 
1130 	rds_message_put(rm);
1131 	return payload_len;
1132 
1133 out:
1134 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1135 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1136 	 * or in any other way, we need to destroy the MR again */
1137 	if (allocated_mr)
1138 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1139 
1140 	if (rm)
1141 		rds_message_put(rm);
1142 	return ret;
1143 }
1144 
1145 /*
1146  * Reply to a ping packet.
1147  */
1148 int
1149 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1150 {
1151 	struct rds_message *rm;
1152 	unsigned long flags;
1153 	int ret = 0;
1154 
1155 	rm = rds_message_alloc(0, GFP_ATOMIC);
1156 	if (!rm) {
1157 		ret = -ENOMEM;
1158 		goto out;
1159 	}
1160 
1161 	rm->m_daddr = cp->cp_conn->c_faddr;
1162 	rm->data.op_active = 1;
1163 
1164 	rds_conn_path_connect_if_down(cp);
1165 
1166 	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1167 	if (ret)
1168 		goto out;
1169 
1170 	spin_lock_irqsave(&cp->cp_lock, flags);
1171 	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1172 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1173 	rds_message_addref(rm);
1174 	rm->m_inc.i_conn = cp->cp_conn;
1175 	rm->m_inc.i_conn_path = cp;
1176 
1177 	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1178 				    cp->cp_next_tx_seq);
1179 	cp->cp_next_tx_seq++;
1180 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1181 
1182 	rds_stats_inc(s_send_queued);
1183 	rds_stats_inc(s_send_pong);
1184 
1185 	/* schedule the send work on rds_wq */
1186 	queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1187 
1188 	rds_message_put(rm);
1189 	return 0;
1190 
1191 out:
1192 	if (rm)
1193 		rds_message_put(rm);
1194 	return ret;
1195 }
1196