xref: /openbmc/linux/net/rds/send.c (revision b868a02e)
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42 
43 #include "rds.h"
44 
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46  * time to time and briefly release the CPU. Otherwise the softlock watchdog
47  * will kick our shin.
48  * Also, it seems fairer to not let one busy connection stall all the
49  * others.
50  *
51  * send_batch_count is the number of times we'll loop in send_xmit. Setting
52  * it to 0 will restore the old behavior (where we looped until we had
53  * drained the queue).
54  */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58 
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60 
61 /*
62  * Reset the send state.  Callers must ensure that this doesn't race with
63  * rds_send_xmit().
64  */
65 void rds_send_path_reset(struct rds_conn_path *cp)
66 {
67 	struct rds_message *rm, *tmp;
68 	unsigned long flags;
69 
70 	if (cp->cp_xmit_rm) {
71 		rm = cp->cp_xmit_rm;
72 		cp->cp_xmit_rm = NULL;
73 		/* Tell the user the RDMA op is no longer mapped by the
74 		 * transport. This isn't entirely true (it's flushed out
75 		 * independently) but as the connection is down, there's
76 		 * no ongoing RDMA to/from that memory */
77 		rds_message_unmapped(rm);
78 		rds_message_put(rm);
79 	}
80 
81 	cp->cp_xmit_sg = 0;
82 	cp->cp_xmit_hdr_off = 0;
83 	cp->cp_xmit_data_off = 0;
84 	cp->cp_xmit_atomic_sent = 0;
85 	cp->cp_xmit_rdma_sent = 0;
86 	cp->cp_xmit_data_sent = 0;
87 
88 	cp->cp_conn->c_map_queued = 0;
89 
90 	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 
93 	/* Mark messages as retransmissions, and move them to the send q */
94 	spin_lock_irqsave(&cp->cp_lock, flags);
95 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 	}
99 	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 	spin_unlock_irqrestore(&cp->cp_lock, flags);
101 }
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
103 
104 static int acquire_in_xmit(struct rds_conn_path *cp)
105 {
106 	return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
107 }
108 
109 static void release_in_xmit(struct rds_conn_path *cp)
110 {
111 	clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 	smp_mb__after_atomic();
113 	/*
114 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 	 * hot path and finding waiters is very rare.  We don't want to walk
116 	 * the system-wide hashed waitqueue buckets in the fast path only to
117 	 * almost never find waiters.
118 	 */
119 	if (waitqueue_active(&cp->cp_waitq))
120 		wake_up_all(&cp->cp_waitq);
121 }
122 
123 /*
124  * We're making the conscious trade-off here to only send one message
125  * down the connection at a time.
126  *   Pro:
127  *      - tx queueing is a simple fifo list
128  *   	- reassembly is optional and easily done by transports per conn
129  *      - no per flow rx lookup at all, straight to the socket
130  *   	- less per-frag memory and wire overhead
131  *   Con:
132  *      - queued acks can be delayed behind large messages
133  *   Depends:
134  *      - small message latency is higher behind queued large messages
135  *      - large message latency isn't starved by intervening small sends
136  */
137 int rds_send_xmit(struct rds_conn_path *cp)
138 {
139 	struct rds_connection *conn = cp->cp_conn;
140 	struct rds_message *rm;
141 	unsigned long flags;
142 	unsigned int tmp;
143 	struct scatterlist *sg;
144 	int ret = 0;
145 	LIST_HEAD(to_be_dropped);
146 	int batch_count;
147 	unsigned long send_gen = 0;
148 	int same_rm = 0;
149 
150 restart:
151 	batch_count = 0;
152 
153 	/*
154 	 * sendmsg calls here after having queued its message on the send
155 	 * queue.  We only have one task feeding the connection at a time.  If
156 	 * another thread is already feeding the queue then we back off.  This
157 	 * avoids blocking the caller and trading per-connection data between
158 	 * caches per message.
159 	 */
160 	if (!acquire_in_xmit(cp)) {
161 		rds_stats_inc(s_send_lock_contention);
162 		ret = -ENOMEM;
163 		goto out;
164 	}
165 
166 	if (rds_destroy_pending(cp->cp_conn)) {
167 		release_in_xmit(cp);
168 		ret = -ENETUNREACH; /* dont requeue send work */
169 		goto out;
170 	}
171 
172 	/*
173 	 * we record the send generation after doing the xmit acquire.
174 	 * if someone else manages to jump in and do some work, we'll use
175 	 * this to avoid a goto restart farther down.
176 	 *
177 	 * The acquire_in_xmit() check above ensures that only one
178 	 * caller can increment c_send_gen at any time.
179 	 */
180 	send_gen = READ_ONCE(cp->cp_send_gen) + 1;
181 	WRITE_ONCE(cp->cp_send_gen, send_gen);
182 
183 	/*
184 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
185 	 * we do the opposite to avoid races.
186 	 */
187 	if (!rds_conn_path_up(cp)) {
188 		release_in_xmit(cp);
189 		ret = 0;
190 		goto out;
191 	}
192 
193 	if (conn->c_trans->xmit_path_prepare)
194 		conn->c_trans->xmit_path_prepare(cp);
195 
196 	/*
197 	 * spin trying to push headers and data down the connection until
198 	 * the connection doesn't make forward progress.
199 	 */
200 	while (1) {
201 
202 		rm = cp->cp_xmit_rm;
203 
204 		if (!rm) {
205 			same_rm = 0;
206 		} else {
207 			same_rm++;
208 			if (same_rm >= 4096) {
209 				rds_stats_inc(s_send_stuck_rm);
210 				ret = -EAGAIN;
211 				break;
212 			}
213 		}
214 
215 		/*
216 		 * If between sending messages, we can send a pending congestion
217 		 * map update.
218 		 */
219 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
220 			rm = rds_cong_update_alloc(conn);
221 			if (IS_ERR(rm)) {
222 				ret = PTR_ERR(rm);
223 				break;
224 			}
225 			rm->data.op_active = 1;
226 			rm->m_inc.i_conn_path = cp;
227 			rm->m_inc.i_conn = cp->cp_conn;
228 
229 			cp->cp_xmit_rm = rm;
230 		}
231 
232 		/*
233 		 * If not already working on one, grab the next message.
234 		 *
235 		 * cp_xmit_rm holds a ref while we're sending this message down
236 		 * the connction.  We can use this ref while holding the
237 		 * send_sem.. rds_send_reset() is serialized with it.
238 		 */
239 		if (!rm) {
240 			unsigned int len;
241 
242 			batch_count++;
243 
244 			/* we want to process as big a batch as we can, but
245 			 * we also want to avoid softlockups.  If we've been
246 			 * through a lot of messages, lets back off and see
247 			 * if anyone else jumps in
248 			 */
249 			if (batch_count >= send_batch_count)
250 				goto over_batch;
251 
252 			spin_lock_irqsave(&cp->cp_lock, flags);
253 
254 			if (!list_empty(&cp->cp_send_queue)) {
255 				rm = list_entry(cp->cp_send_queue.next,
256 						struct rds_message,
257 						m_conn_item);
258 				rds_message_addref(rm);
259 
260 				/*
261 				 * Move the message from the send queue to the retransmit
262 				 * list right away.
263 				 */
264 				list_move_tail(&rm->m_conn_item,
265 					       &cp->cp_retrans);
266 			}
267 
268 			spin_unlock_irqrestore(&cp->cp_lock, flags);
269 
270 			if (!rm)
271 				break;
272 
273 			/* Unfortunately, the way Infiniband deals with
274 			 * RDMA to a bad MR key is by moving the entire
275 			 * queue pair to error state. We could possibly
276 			 * recover from that, but right now we drop the
277 			 * connection.
278 			 * Therefore, we never retransmit messages with RDMA ops.
279 			 */
280 			if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
281 			    (rm->rdma.op_active &&
282 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
283 				spin_lock_irqsave(&cp->cp_lock, flags);
284 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
285 					list_move(&rm->m_conn_item, &to_be_dropped);
286 				spin_unlock_irqrestore(&cp->cp_lock, flags);
287 				continue;
288 			}
289 
290 			/* Require an ACK every once in a while */
291 			len = ntohl(rm->m_inc.i_hdr.h_len);
292 			if (cp->cp_unacked_packets == 0 ||
293 			    cp->cp_unacked_bytes < len) {
294 				set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
295 
296 				cp->cp_unacked_packets =
297 					rds_sysctl_max_unacked_packets;
298 				cp->cp_unacked_bytes =
299 					rds_sysctl_max_unacked_bytes;
300 				rds_stats_inc(s_send_ack_required);
301 			} else {
302 				cp->cp_unacked_bytes -= len;
303 				cp->cp_unacked_packets--;
304 			}
305 
306 			cp->cp_xmit_rm = rm;
307 		}
308 
309 		/* The transport either sends the whole rdma or none of it */
310 		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
311 			rm->m_final_op = &rm->rdma;
312 			/* The transport owns the mapped memory for now.
313 			 * You can't unmap it while it's on the send queue
314 			 */
315 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
316 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
317 			if (ret) {
318 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
319 				wake_up_interruptible(&rm->m_flush_wait);
320 				break;
321 			}
322 			cp->cp_xmit_rdma_sent = 1;
323 
324 		}
325 
326 		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
327 			rm->m_final_op = &rm->atomic;
328 			/* The transport owns the mapped memory for now.
329 			 * You can't unmap it while it's on the send queue
330 			 */
331 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
332 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
333 			if (ret) {
334 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
335 				wake_up_interruptible(&rm->m_flush_wait);
336 				break;
337 			}
338 			cp->cp_xmit_atomic_sent = 1;
339 
340 		}
341 
342 		/*
343 		 * A number of cases require an RDS header to be sent
344 		 * even if there is no data.
345 		 * We permit 0-byte sends; rds-ping depends on this.
346 		 * However, if there are exclusively attached silent ops,
347 		 * we skip the hdr/data send, to enable silent operation.
348 		 */
349 		if (rm->data.op_nents == 0) {
350 			int ops_present;
351 			int all_ops_are_silent = 1;
352 
353 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
354 			if (rm->atomic.op_active && !rm->atomic.op_silent)
355 				all_ops_are_silent = 0;
356 			if (rm->rdma.op_active && !rm->rdma.op_silent)
357 				all_ops_are_silent = 0;
358 
359 			if (ops_present && all_ops_are_silent
360 			    && !rm->m_rdma_cookie)
361 				rm->data.op_active = 0;
362 		}
363 
364 		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
365 			rm->m_final_op = &rm->data;
366 
367 			ret = conn->c_trans->xmit(conn, rm,
368 						  cp->cp_xmit_hdr_off,
369 						  cp->cp_xmit_sg,
370 						  cp->cp_xmit_data_off);
371 			if (ret <= 0)
372 				break;
373 
374 			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
375 				tmp = min_t(int, ret,
376 					    sizeof(struct rds_header) -
377 					    cp->cp_xmit_hdr_off);
378 				cp->cp_xmit_hdr_off += tmp;
379 				ret -= tmp;
380 			}
381 
382 			sg = &rm->data.op_sg[cp->cp_xmit_sg];
383 			while (ret) {
384 				tmp = min_t(int, ret, sg->length -
385 						      cp->cp_xmit_data_off);
386 				cp->cp_xmit_data_off += tmp;
387 				ret -= tmp;
388 				if (cp->cp_xmit_data_off == sg->length) {
389 					cp->cp_xmit_data_off = 0;
390 					sg++;
391 					cp->cp_xmit_sg++;
392 					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
393 					       rm->data.op_nents);
394 				}
395 			}
396 
397 			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
398 			    (cp->cp_xmit_sg == rm->data.op_nents))
399 				cp->cp_xmit_data_sent = 1;
400 		}
401 
402 		/*
403 		 * A rm will only take multiple times through this loop
404 		 * if there is a data op. Thus, if the data is sent (or there was
405 		 * none), then we're done with the rm.
406 		 */
407 		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
408 			cp->cp_xmit_rm = NULL;
409 			cp->cp_xmit_sg = 0;
410 			cp->cp_xmit_hdr_off = 0;
411 			cp->cp_xmit_data_off = 0;
412 			cp->cp_xmit_rdma_sent = 0;
413 			cp->cp_xmit_atomic_sent = 0;
414 			cp->cp_xmit_data_sent = 0;
415 
416 			rds_message_put(rm);
417 		}
418 	}
419 
420 over_batch:
421 	if (conn->c_trans->xmit_path_complete)
422 		conn->c_trans->xmit_path_complete(cp);
423 	release_in_xmit(cp);
424 
425 	/* Nuke any messages we decided not to retransmit. */
426 	if (!list_empty(&to_be_dropped)) {
427 		/* irqs on here, so we can put(), unlike above */
428 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
429 			rds_message_put(rm);
430 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
431 	}
432 
433 	/*
434 	 * Other senders can queue a message after we last test the send queue
435 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
436 	 * not try and send their newly queued message.  We need to check the
437 	 * send queue after having cleared RDS_IN_XMIT so that their message
438 	 * doesn't get stuck on the send queue.
439 	 *
440 	 * If the transport cannot continue (i.e ret != 0), then it must
441 	 * call us when more room is available, such as from the tx
442 	 * completion handler.
443 	 *
444 	 * We have an extra generation check here so that if someone manages
445 	 * to jump in after our release_in_xmit, we'll see that they have done
446 	 * some work and we will skip our goto
447 	 */
448 	if (ret == 0) {
449 		bool raced;
450 
451 		smp_mb();
452 		raced = send_gen != READ_ONCE(cp->cp_send_gen);
453 
454 		if ((test_bit(0, &conn->c_map_queued) ||
455 		    !list_empty(&cp->cp_send_queue)) && !raced) {
456 			if (batch_count < send_batch_count)
457 				goto restart;
458 			rcu_read_lock();
459 			if (rds_destroy_pending(cp->cp_conn))
460 				ret = -ENETUNREACH;
461 			else
462 				queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
463 			rcu_read_unlock();
464 		} else if (raced) {
465 			rds_stats_inc(s_send_lock_queue_raced);
466 		}
467 	}
468 out:
469 	return ret;
470 }
471 EXPORT_SYMBOL_GPL(rds_send_xmit);
472 
473 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
474 {
475 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
476 
477 	assert_spin_locked(&rs->rs_lock);
478 
479 	BUG_ON(rs->rs_snd_bytes < len);
480 	rs->rs_snd_bytes -= len;
481 
482 	if (rs->rs_snd_bytes == 0)
483 		rds_stats_inc(s_send_queue_empty);
484 }
485 
486 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
487 				    is_acked_func is_acked)
488 {
489 	if (is_acked)
490 		return is_acked(rm, ack);
491 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
492 }
493 
494 /*
495  * This is pretty similar to what happens below in the ACK
496  * handling code - except that we call here as soon as we get
497  * the IB send completion on the RDMA op and the accompanying
498  * message.
499  */
500 void rds_rdma_send_complete(struct rds_message *rm, int status)
501 {
502 	struct rds_sock *rs = NULL;
503 	struct rm_rdma_op *ro;
504 	struct rds_notifier *notifier;
505 	unsigned long flags;
506 
507 	spin_lock_irqsave(&rm->m_rs_lock, flags);
508 
509 	ro = &rm->rdma;
510 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
511 	    ro->op_active && ro->op_notify && ro->op_notifier) {
512 		notifier = ro->op_notifier;
513 		rs = rm->m_rs;
514 		sock_hold(rds_rs_to_sk(rs));
515 
516 		notifier->n_status = status;
517 		spin_lock(&rs->rs_lock);
518 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
519 		spin_unlock(&rs->rs_lock);
520 
521 		ro->op_notifier = NULL;
522 	}
523 
524 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
525 
526 	if (rs) {
527 		rds_wake_sk_sleep(rs);
528 		sock_put(rds_rs_to_sk(rs));
529 	}
530 }
531 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
532 
533 /*
534  * Just like above, except looks at atomic op
535  */
536 void rds_atomic_send_complete(struct rds_message *rm, int status)
537 {
538 	struct rds_sock *rs = NULL;
539 	struct rm_atomic_op *ao;
540 	struct rds_notifier *notifier;
541 	unsigned long flags;
542 
543 	spin_lock_irqsave(&rm->m_rs_lock, flags);
544 
545 	ao = &rm->atomic;
546 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
547 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
548 		notifier = ao->op_notifier;
549 		rs = rm->m_rs;
550 		sock_hold(rds_rs_to_sk(rs));
551 
552 		notifier->n_status = status;
553 		spin_lock(&rs->rs_lock);
554 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
555 		spin_unlock(&rs->rs_lock);
556 
557 		ao->op_notifier = NULL;
558 	}
559 
560 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
561 
562 	if (rs) {
563 		rds_wake_sk_sleep(rs);
564 		sock_put(rds_rs_to_sk(rs));
565 	}
566 }
567 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
568 
569 /*
570  * This is the same as rds_rdma_send_complete except we
571  * don't do any locking - we have all the ingredients (message,
572  * socket, socket lock) and can just move the notifier.
573  */
574 static inline void
575 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
576 {
577 	struct rm_rdma_op *ro;
578 	struct rm_atomic_op *ao;
579 
580 	ro = &rm->rdma;
581 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
582 		ro->op_notifier->n_status = status;
583 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
584 		ro->op_notifier = NULL;
585 	}
586 
587 	ao = &rm->atomic;
588 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
589 		ao->op_notifier->n_status = status;
590 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
591 		ao->op_notifier = NULL;
592 	}
593 
594 	/* No need to wake the app - caller does this */
595 }
596 
597 /*
598  * This removes messages from the socket's list if they're on it.  The list
599  * argument must be private to the caller, we must be able to modify it
600  * without locks.  The messages must have a reference held for their
601  * position on the list.  This function will drop that reference after
602  * removing the messages from the 'messages' list regardless of if it found
603  * the messages on the socket list or not.
604  */
605 static void rds_send_remove_from_sock(struct list_head *messages, int status)
606 {
607 	unsigned long flags;
608 	struct rds_sock *rs = NULL;
609 	struct rds_message *rm;
610 
611 	while (!list_empty(messages)) {
612 		int was_on_sock = 0;
613 
614 		rm = list_entry(messages->next, struct rds_message,
615 				m_conn_item);
616 		list_del_init(&rm->m_conn_item);
617 
618 		/*
619 		 * If we see this flag cleared then we're *sure* that someone
620 		 * else beat us to removing it from the sock.  If we race
621 		 * with their flag update we'll get the lock and then really
622 		 * see that the flag has been cleared.
623 		 *
624 		 * The message spinlock makes sure nobody clears rm->m_rs
625 		 * while we're messing with it. It does not prevent the
626 		 * message from being removed from the socket, though.
627 		 */
628 		spin_lock_irqsave(&rm->m_rs_lock, flags);
629 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
630 			goto unlock_and_drop;
631 
632 		if (rs != rm->m_rs) {
633 			if (rs) {
634 				rds_wake_sk_sleep(rs);
635 				sock_put(rds_rs_to_sk(rs));
636 			}
637 			rs = rm->m_rs;
638 			if (rs)
639 				sock_hold(rds_rs_to_sk(rs));
640 		}
641 		if (!rs)
642 			goto unlock_and_drop;
643 		spin_lock(&rs->rs_lock);
644 
645 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
646 			struct rm_rdma_op *ro = &rm->rdma;
647 			struct rds_notifier *notifier;
648 
649 			list_del_init(&rm->m_sock_item);
650 			rds_send_sndbuf_remove(rs, rm);
651 
652 			if (ro->op_active && ro->op_notifier &&
653 			       (ro->op_notify || (ro->op_recverr && status))) {
654 				notifier = ro->op_notifier;
655 				list_add_tail(&notifier->n_list,
656 						&rs->rs_notify_queue);
657 				if (!notifier->n_status)
658 					notifier->n_status = status;
659 				rm->rdma.op_notifier = NULL;
660 			}
661 			was_on_sock = 1;
662 		}
663 		spin_unlock(&rs->rs_lock);
664 
665 unlock_and_drop:
666 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
667 		rds_message_put(rm);
668 		if (was_on_sock)
669 			rds_message_put(rm);
670 	}
671 
672 	if (rs) {
673 		rds_wake_sk_sleep(rs);
674 		sock_put(rds_rs_to_sk(rs));
675 	}
676 }
677 
678 /*
679  * Transports call here when they've determined that the receiver queued
680  * messages up to, and including, the given sequence number.  Messages are
681  * moved to the retrans queue when rds_send_xmit picks them off the send
682  * queue. This means that in the TCP case, the message may not have been
683  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
684  * checks the RDS_MSG_HAS_ACK_SEQ bit.
685  */
686 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
687 			      is_acked_func is_acked)
688 {
689 	struct rds_message *rm, *tmp;
690 	unsigned long flags;
691 	LIST_HEAD(list);
692 
693 	spin_lock_irqsave(&cp->cp_lock, flags);
694 
695 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
696 		if (!rds_send_is_acked(rm, ack, is_acked))
697 			break;
698 
699 		list_move(&rm->m_conn_item, &list);
700 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
701 	}
702 
703 	/* order flag updates with spin locks */
704 	if (!list_empty(&list))
705 		smp_mb__after_atomic();
706 
707 	spin_unlock_irqrestore(&cp->cp_lock, flags);
708 
709 	/* now remove the messages from the sock list as needed */
710 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
711 }
712 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
713 
714 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
715 			 is_acked_func is_acked)
716 {
717 	WARN_ON(conn->c_trans->t_mp_capable);
718 	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
719 }
720 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
721 
722 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
723 {
724 	struct rds_message *rm, *tmp;
725 	struct rds_connection *conn;
726 	struct rds_conn_path *cp;
727 	unsigned long flags;
728 	LIST_HEAD(list);
729 
730 	/* get all the messages we're dropping under the rs lock */
731 	spin_lock_irqsave(&rs->rs_lock, flags);
732 
733 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
734 		if (dest &&
735 		    (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
736 		     dest->sin6_port != rm->m_inc.i_hdr.h_dport))
737 			continue;
738 
739 		list_move(&rm->m_sock_item, &list);
740 		rds_send_sndbuf_remove(rs, rm);
741 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
742 	}
743 
744 	/* order flag updates with the rs lock */
745 	smp_mb__after_atomic();
746 
747 	spin_unlock_irqrestore(&rs->rs_lock, flags);
748 
749 	if (list_empty(&list))
750 		return;
751 
752 	/* Remove the messages from the conn */
753 	list_for_each_entry(rm, &list, m_sock_item) {
754 
755 		conn = rm->m_inc.i_conn;
756 		if (conn->c_trans->t_mp_capable)
757 			cp = rm->m_inc.i_conn_path;
758 		else
759 			cp = &conn->c_path[0];
760 
761 		spin_lock_irqsave(&cp->cp_lock, flags);
762 		/*
763 		 * Maybe someone else beat us to removing rm from the conn.
764 		 * If we race with their flag update we'll get the lock and
765 		 * then really see that the flag has been cleared.
766 		 */
767 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
768 			spin_unlock_irqrestore(&cp->cp_lock, flags);
769 			continue;
770 		}
771 		list_del_init(&rm->m_conn_item);
772 		spin_unlock_irqrestore(&cp->cp_lock, flags);
773 
774 		/*
775 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
776 		 * but we can now.
777 		 */
778 		spin_lock_irqsave(&rm->m_rs_lock, flags);
779 
780 		spin_lock(&rs->rs_lock);
781 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
782 		spin_unlock(&rs->rs_lock);
783 
784 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
785 
786 		rds_message_put(rm);
787 	}
788 
789 	rds_wake_sk_sleep(rs);
790 
791 	while (!list_empty(&list)) {
792 		rm = list_entry(list.next, struct rds_message, m_sock_item);
793 		list_del_init(&rm->m_sock_item);
794 		rds_message_wait(rm);
795 
796 		/* just in case the code above skipped this message
797 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
798 		 * taking m_rs_lock is the only thing that keeps us
799 		 * from racing with ack processing.
800 		 */
801 		spin_lock_irqsave(&rm->m_rs_lock, flags);
802 
803 		spin_lock(&rs->rs_lock);
804 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
805 		spin_unlock(&rs->rs_lock);
806 
807 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
808 
809 		rds_message_put(rm);
810 	}
811 }
812 
813 /*
814  * we only want this to fire once so we use the callers 'queued'.  It's
815  * possible that another thread can race with us and remove the
816  * message from the flow with RDS_CANCEL_SENT_TO.
817  */
818 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
819 			     struct rds_conn_path *cp,
820 			     struct rds_message *rm, __be16 sport,
821 			     __be16 dport, int *queued)
822 {
823 	unsigned long flags;
824 	u32 len;
825 
826 	if (*queued)
827 		goto out;
828 
829 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
830 
831 	/* this is the only place which holds both the socket's rs_lock
832 	 * and the connection's c_lock */
833 	spin_lock_irqsave(&rs->rs_lock, flags);
834 
835 	/*
836 	 * If there is a little space in sndbuf, we don't queue anything,
837 	 * and userspace gets -EAGAIN. But poll() indicates there's send
838 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
839 	 * freed up by incoming acks. So we check the *old* value of
840 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
841 	 * and poll() now knows no more data can be sent.
842 	 */
843 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
844 		rs->rs_snd_bytes += len;
845 
846 		/* let recv side know we are close to send space exhaustion.
847 		 * This is probably not the optimal way to do it, as this
848 		 * means we set the flag on *all* messages as soon as our
849 		 * throughput hits a certain threshold.
850 		 */
851 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
852 			set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
853 
854 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
855 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
856 		rds_message_addref(rm);
857 		sock_hold(rds_rs_to_sk(rs));
858 		rm->m_rs = rs;
859 
860 		/* The code ordering is a little weird, but we're
861 		   trying to minimize the time we hold c_lock */
862 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
863 		rm->m_inc.i_conn = conn;
864 		rm->m_inc.i_conn_path = cp;
865 		rds_message_addref(rm);
866 
867 		spin_lock(&cp->cp_lock);
868 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
869 		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
870 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
871 		spin_unlock(&cp->cp_lock);
872 
873 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
874 			 rm, len, rs, rs->rs_snd_bytes,
875 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
876 
877 		*queued = 1;
878 	}
879 
880 	spin_unlock_irqrestore(&rs->rs_lock, flags);
881 out:
882 	return *queued;
883 }
884 
885 /*
886  * rds_message is getting to be quite complicated, and we'd like to allocate
887  * it all in one go. This figures out how big it needs to be up front.
888  */
889 static int rds_rm_size(struct msghdr *msg, int num_sgs,
890 		       struct rds_iov_vector_arr *vct)
891 {
892 	struct cmsghdr *cmsg;
893 	int size = 0;
894 	int cmsg_groups = 0;
895 	int retval;
896 	bool zcopy_cookie = false;
897 	struct rds_iov_vector *iov, *tmp_iov;
898 
899 	if (num_sgs < 0)
900 		return -EINVAL;
901 
902 	for_each_cmsghdr(cmsg, msg) {
903 		if (!CMSG_OK(msg, cmsg))
904 			return -EINVAL;
905 
906 		if (cmsg->cmsg_level != SOL_RDS)
907 			continue;
908 
909 		switch (cmsg->cmsg_type) {
910 		case RDS_CMSG_RDMA_ARGS:
911 			if (vct->indx >= vct->len) {
912 				vct->len += vct->incr;
913 				tmp_iov =
914 					krealloc(vct->vec,
915 						 vct->len *
916 						 sizeof(struct rds_iov_vector),
917 						 GFP_KERNEL);
918 				if (!tmp_iov) {
919 					vct->len -= vct->incr;
920 					return -ENOMEM;
921 				}
922 				vct->vec = tmp_iov;
923 			}
924 			iov = &vct->vec[vct->indx];
925 			memset(iov, 0, sizeof(struct rds_iov_vector));
926 			vct->indx++;
927 			cmsg_groups |= 1;
928 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov);
929 			if (retval < 0)
930 				return retval;
931 			size += retval;
932 
933 			break;
934 
935 		case RDS_CMSG_ZCOPY_COOKIE:
936 			zcopy_cookie = true;
937 			fallthrough;
938 
939 		case RDS_CMSG_RDMA_DEST:
940 		case RDS_CMSG_RDMA_MAP:
941 			cmsg_groups |= 2;
942 			/* these are valid but do no add any size */
943 			break;
944 
945 		case RDS_CMSG_ATOMIC_CSWP:
946 		case RDS_CMSG_ATOMIC_FADD:
947 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
948 		case RDS_CMSG_MASKED_ATOMIC_FADD:
949 			cmsg_groups |= 1;
950 			size += sizeof(struct scatterlist);
951 			break;
952 
953 		default:
954 			return -EINVAL;
955 		}
956 
957 	}
958 
959 	if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
960 		return -EINVAL;
961 
962 	size += num_sgs * sizeof(struct scatterlist);
963 
964 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
965 	if (cmsg_groups == 3)
966 		return -EINVAL;
967 
968 	return size;
969 }
970 
971 static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
972 			  struct cmsghdr *cmsg)
973 {
974 	u32 *cookie;
975 
976 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
977 	    !rm->data.op_mmp_znotifier)
978 		return -EINVAL;
979 	cookie = CMSG_DATA(cmsg);
980 	rm->data.op_mmp_znotifier->z_cookie = *cookie;
981 	return 0;
982 }
983 
984 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
985 			 struct msghdr *msg, int *allocated_mr,
986 			 struct rds_iov_vector_arr *vct)
987 {
988 	struct cmsghdr *cmsg;
989 	int ret = 0, ind = 0;
990 
991 	for_each_cmsghdr(cmsg, msg) {
992 		if (!CMSG_OK(msg, cmsg))
993 			return -EINVAL;
994 
995 		if (cmsg->cmsg_level != SOL_RDS)
996 			continue;
997 
998 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
999 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
1000 		 */
1001 		switch (cmsg->cmsg_type) {
1002 		case RDS_CMSG_RDMA_ARGS:
1003 			if (ind >= vct->indx)
1004 				return -ENOMEM;
1005 			ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]);
1006 			ind++;
1007 			break;
1008 
1009 		case RDS_CMSG_RDMA_DEST:
1010 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
1011 			break;
1012 
1013 		case RDS_CMSG_RDMA_MAP:
1014 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
1015 			if (!ret)
1016 				*allocated_mr = 1;
1017 			else if (ret == -ENODEV)
1018 				/* Accommodate the get_mr() case which can fail
1019 				 * if connection isn't established yet.
1020 				 */
1021 				ret = -EAGAIN;
1022 			break;
1023 		case RDS_CMSG_ATOMIC_CSWP:
1024 		case RDS_CMSG_ATOMIC_FADD:
1025 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
1026 		case RDS_CMSG_MASKED_ATOMIC_FADD:
1027 			ret = rds_cmsg_atomic(rs, rm, cmsg);
1028 			break;
1029 
1030 		case RDS_CMSG_ZCOPY_COOKIE:
1031 			ret = rds_cmsg_zcopy(rs, rm, cmsg);
1032 			break;
1033 
1034 		default:
1035 			return -EINVAL;
1036 		}
1037 
1038 		if (ret)
1039 			break;
1040 	}
1041 
1042 	return ret;
1043 }
1044 
1045 static int rds_send_mprds_hash(struct rds_sock *rs,
1046 			       struct rds_connection *conn, int nonblock)
1047 {
1048 	int hash;
1049 
1050 	if (conn->c_npaths == 0)
1051 		hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
1052 	else
1053 		hash = RDS_MPATH_HASH(rs, conn->c_npaths);
1054 	if (conn->c_npaths == 0 && hash != 0) {
1055 		rds_send_ping(conn, 0);
1056 
1057 		/* The underlying connection is not up yet.  Need to wait
1058 		 * until it is up to be sure that the non-zero c_path can be
1059 		 * used.  But if we are interrupted, we have to use the zero
1060 		 * c_path in case the connection ends up being non-MP capable.
1061 		 */
1062 		if (conn->c_npaths == 0) {
1063 			/* Cannot wait for the connection be made, so just use
1064 			 * the base c_path.
1065 			 */
1066 			if (nonblock)
1067 				return 0;
1068 			if (wait_event_interruptible(conn->c_hs_waitq,
1069 						     conn->c_npaths != 0))
1070 				hash = 0;
1071 		}
1072 		if (conn->c_npaths == 1)
1073 			hash = 0;
1074 	}
1075 	return hash;
1076 }
1077 
1078 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
1079 {
1080 	struct rds_rdma_args *args;
1081 	struct cmsghdr *cmsg;
1082 
1083 	for_each_cmsghdr(cmsg, msg) {
1084 		if (!CMSG_OK(msg, cmsg))
1085 			return -EINVAL;
1086 
1087 		if (cmsg->cmsg_level != SOL_RDS)
1088 			continue;
1089 
1090 		if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1091 			if (cmsg->cmsg_len <
1092 			    CMSG_LEN(sizeof(struct rds_rdma_args)))
1093 				return -EINVAL;
1094 			args = CMSG_DATA(cmsg);
1095 			*rdma_bytes += args->remote_vec.bytes;
1096 		}
1097 	}
1098 	return 0;
1099 }
1100 
1101 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1102 {
1103 	struct sock *sk = sock->sk;
1104 	struct rds_sock *rs = rds_sk_to_rs(sk);
1105 	DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
1106 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1107 	__be16 dport;
1108 	struct rds_message *rm = NULL;
1109 	struct rds_connection *conn;
1110 	int ret = 0;
1111 	int queued = 0, allocated_mr = 0;
1112 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
1113 	long timeo = sock_sndtimeo(sk, nonblock);
1114 	struct rds_conn_path *cpath;
1115 	struct in6_addr daddr;
1116 	__u32 scope_id = 0;
1117 	size_t total_payload_len = payload_len, rdma_payload_len = 0;
1118 	bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
1119 		      sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
1120 	int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE);
1121 	int namelen;
1122 	struct rds_iov_vector_arr vct;
1123 	int ind;
1124 
1125 	memset(&vct, 0, sizeof(vct));
1126 
1127 	/* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
1128 	vct.incr = 1;
1129 
1130 	/* Mirror Linux UDP mirror of BSD error message compatibility */
1131 	/* XXX: Perhaps MSG_MORE someday */
1132 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
1133 		ret = -EOPNOTSUPP;
1134 		goto out;
1135 	}
1136 
1137 	namelen = msg->msg_namelen;
1138 	if (namelen != 0) {
1139 		if (namelen < sizeof(*usin)) {
1140 			ret = -EINVAL;
1141 			goto out;
1142 		}
1143 		switch (usin->sin_family) {
1144 		case AF_INET:
1145 			if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
1146 			    usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
1147 			    ipv4_is_multicast(usin->sin_addr.s_addr)) {
1148 				ret = -EINVAL;
1149 				goto out;
1150 			}
1151 			ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
1152 			dport = usin->sin_port;
1153 			break;
1154 
1155 #if IS_ENABLED(CONFIG_IPV6)
1156 		case AF_INET6: {
1157 			int addr_type;
1158 
1159 			if (namelen < sizeof(*sin6)) {
1160 				ret = -EINVAL;
1161 				goto out;
1162 			}
1163 			addr_type = ipv6_addr_type(&sin6->sin6_addr);
1164 			if (!(addr_type & IPV6_ADDR_UNICAST)) {
1165 				__be32 addr4;
1166 
1167 				if (!(addr_type & IPV6_ADDR_MAPPED)) {
1168 					ret = -EINVAL;
1169 					goto out;
1170 				}
1171 
1172 				/* It is a mapped address.  Need to do some
1173 				 * sanity checks.
1174 				 */
1175 				addr4 = sin6->sin6_addr.s6_addr32[3];
1176 				if (addr4 == htonl(INADDR_ANY) ||
1177 				    addr4 == htonl(INADDR_BROADCAST) ||
1178 				    ipv4_is_multicast(addr4)) {
1179 					ret = -EINVAL;
1180 					goto out;
1181 				}
1182 			}
1183 			if (addr_type & IPV6_ADDR_LINKLOCAL) {
1184 				if (sin6->sin6_scope_id == 0) {
1185 					ret = -EINVAL;
1186 					goto out;
1187 				}
1188 				scope_id = sin6->sin6_scope_id;
1189 			}
1190 
1191 			daddr = sin6->sin6_addr;
1192 			dport = sin6->sin6_port;
1193 			break;
1194 		}
1195 #endif
1196 
1197 		default:
1198 			ret = -EINVAL;
1199 			goto out;
1200 		}
1201 	} else {
1202 		/* We only care about consistency with ->connect() */
1203 		lock_sock(sk);
1204 		daddr = rs->rs_conn_addr;
1205 		dport = rs->rs_conn_port;
1206 		scope_id = rs->rs_bound_scope_id;
1207 		release_sock(sk);
1208 	}
1209 
1210 	lock_sock(sk);
1211 	if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
1212 		release_sock(sk);
1213 		ret = -ENOTCONN;
1214 		goto out;
1215 	} else if (namelen != 0) {
1216 		/* Cannot send to an IPv4 address using an IPv6 source
1217 		 * address and cannot send to an IPv6 address using an
1218 		 * IPv4 source address.
1219 		 */
1220 		if (ipv6_addr_v4mapped(&daddr) ^
1221 		    ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
1222 			release_sock(sk);
1223 			ret = -EOPNOTSUPP;
1224 			goto out;
1225 		}
1226 		/* If the socket is already bound to a link local address,
1227 		 * it can only send to peers on the same link.  But allow
1228 		 * communicating between link local and non-link local address.
1229 		 */
1230 		if (scope_id != rs->rs_bound_scope_id) {
1231 			if (!scope_id) {
1232 				scope_id = rs->rs_bound_scope_id;
1233 			} else if (rs->rs_bound_scope_id) {
1234 				release_sock(sk);
1235 				ret = -EINVAL;
1236 				goto out;
1237 			}
1238 		}
1239 	}
1240 	release_sock(sk);
1241 
1242 	ret = rds_rdma_bytes(msg, &rdma_payload_len);
1243 	if (ret)
1244 		goto out;
1245 
1246 	total_payload_len += rdma_payload_len;
1247 	if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1248 		ret = -EMSGSIZE;
1249 		goto out;
1250 	}
1251 
1252 	if (payload_len > rds_sk_sndbuf(rs)) {
1253 		ret = -EMSGSIZE;
1254 		goto out;
1255 	}
1256 
1257 	if (zcopy) {
1258 		if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
1259 			ret = -EOPNOTSUPP;
1260 			goto out;
1261 		}
1262 		num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
1263 	}
1264 	/* size of rm including all sgs */
1265 	ret = rds_rm_size(msg, num_sgs, &vct);
1266 	if (ret < 0)
1267 		goto out;
1268 
1269 	rm = rds_message_alloc(ret, GFP_KERNEL);
1270 	if (!rm) {
1271 		ret = -ENOMEM;
1272 		goto out;
1273 	}
1274 
1275 	/* Attach data to the rm */
1276 	if (payload_len) {
1277 		rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs);
1278 		if (IS_ERR(rm->data.op_sg)) {
1279 			ret = PTR_ERR(rm->data.op_sg);
1280 			goto out;
1281 		}
1282 		ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
1283 		if (ret)
1284 			goto out;
1285 	}
1286 	rm->data.op_active = 1;
1287 
1288 	rm->m_daddr = daddr;
1289 
1290 	/* rds_conn_create has a spinlock that runs with IRQ off.
1291 	 * Caching the conn in the socket helps a lot. */
1292 	if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr) &&
1293 	    rs->rs_tos == rs->rs_conn->c_tos) {
1294 		conn = rs->rs_conn;
1295 	} else {
1296 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1297 						&rs->rs_bound_addr, &daddr,
1298 						rs->rs_transport, rs->rs_tos,
1299 						sock->sk->sk_allocation,
1300 						scope_id);
1301 		if (IS_ERR(conn)) {
1302 			ret = PTR_ERR(conn);
1303 			goto out;
1304 		}
1305 		rs->rs_conn = conn;
1306 	}
1307 
1308 	if (conn->c_trans->t_mp_capable)
1309 		cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)];
1310 	else
1311 		cpath = &conn->c_path[0];
1312 
1313 	rm->m_conn_path = cpath;
1314 
1315 	/* Parse any control messages the user may have included. */
1316 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct);
1317 	if (ret) {
1318 		/* Trigger connection so that its ready for the next retry */
1319 		if (ret ==  -EAGAIN)
1320 			rds_conn_connect_if_down(conn);
1321 		goto out;
1322 	}
1323 
1324 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1325 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1326 			       &rm->rdma, conn->c_trans->xmit_rdma);
1327 		ret = -EOPNOTSUPP;
1328 		goto out;
1329 	}
1330 
1331 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1332 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1333 			       &rm->atomic, conn->c_trans->xmit_atomic);
1334 		ret = -EOPNOTSUPP;
1335 		goto out;
1336 	}
1337 
1338 	if (rds_destroy_pending(conn)) {
1339 		ret = -EAGAIN;
1340 		goto out;
1341 	}
1342 
1343 	if (rds_conn_path_down(cpath))
1344 		rds_check_all_paths(conn);
1345 
1346 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1347 	if (ret) {
1348 		rs->rs_seen_congestion = 1;
1349 		goto out;
1350 	}
1351 	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1352 				  dport, &queued)) {
1353 		rds_stats_inc(s_send_queue_full);
1354 
1355 		if (nonblock) {
1356 			ret = -EAGAIN;
1357 			goto out;
1358 		}
1359 
1360 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1361 					rds_send_queue_rm(rs, conn, cpath, rm,
1362 							  rs->rs_bound_port,
1363 							  dport,
1364 							  &queued),
1365 					timeo);
1366 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1367 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1368 			continue;
1369 
1370 		ret = timeo;
1371 		if (ret == 0)
1372 			ret = -ETIMEDOUT;
1373 		goto out;
1374 	}
1375 
1376 	/*
1377 	 * By now we've committed to the send.  We reuse rds_send_worker()
1378 	 * to retry sends in the rds thread if the transport asks us to.
1379 	 */
1380 	rds_stats_inc(s_send_queued);
1381 
1382 	ret = rds_send_xmit(cpath);
1383 	if (ret == -ENOMEM || ret == -EAGAIN) {
1384 		ret = 0;
1385 		rcu_read_lock();
1386 		if (rds_destroy_pending(cpath->cp_conn))
1387 			ret = -ENETUNREACH;
1388 		else
1389 			queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1390 		rcu_read_unlock();
1391 	}
1392 	if (ret)
1393 		goto out;
1394 	rds_message_put(rm);
1395 
1396 	for (ind = 0; ind < vct.indx; ind++)
1397 		kfree(vct.vec[ind].iov);
1398 	kfree(vct.vec);
1399 
1400 	return payload_len;
1401 
1402 out:
1403 	for (ind = 0; ind < vct.indx; ind++)
1404 		kfree(vct.vec[ind].iov);
1405 	kfree(vct.vec);
1406 
1407 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1408 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1409 	 * or in any other way, we need to destroy the MR again */
1410 	if (allocated_mr)
1411 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1412 
1413 	if (rm)
1414 		rds_message_put(rm);
1415 	return ret;
1416 }
1417 
1418 /*
1419  * send out a probe. Can be shared by rds_send_ping,
1420  * rds_send_pong, rds_send_hb.
1421  * rds_send_hb should use h_flags
1422  *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1423  * or
1424  *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1425  */
1426 static int
1427 rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1428 	       __be16 dport, u8 h_flags)
1429 {
1430 	struct rds_message *rm;
1431 	unsigned long flags;
1432 	int ret = 0;
1433 
1434 	rm = rds_message_alloc(0, GFP_ATOMIC);
1435 	if (!rm) {
1436 		ret = -ENOMEM;
1437 		goto out;
1438 	}
1439 
1440 	rm->m_daddr = cp->cp_conn->c_faddr;
1441 	rm->data.op_active = 1;
1442 
1443 	rds_conn_path_connect_if_down(cp);
1444 
1445 	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1446 	if (ret)
1447 		goto out;
1448 
1449 	spin_lock_irqsave(&cp->cp_lock, flags);
1450 	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1451 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1452 	rds_message_addref(rm);
1453 	rm->m_inc.i_conn = cp->cp_conn;
1454 	rm->m_inc.i_conn_path = cp;
1455 
1456 	rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1457 				    cp->cp_next_tx_seq);
1458 	rm->m_inc.i_hdr.h_flags |= h_flags;
1459 	cp->cp_next_tx_seq++;
1460 
1461 	if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1462 	    cp->cp_conn->c_trans->t_mp_capable) {
1463 		u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1464 		u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
1465 
1466 		rds_message_add_extension(&rm->m_inc.i_hdr,
1467 					  RDS_EXTHDR_NPATHS, &npaths,
1468 					  sizeof(npaths));
1469 		rds_message_add_extension(&rm->m_inc.i_hdr,
1470 					  RDS_EXTHDR_GEN_NUM,
1471 					  &my_gen_num,
1472 					  sizeof(u32));
1473 	}
1474 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1475 
1476 	rds_stats_inc(s_send_queued);
1477 	rds_stats_inc(s_send_pong);
1478 
1479 	/* schedule the send work on rds_wq */
1480 	rcu_read_lock();
1481 	if (!rds_destroy_pending(cp->cp_conn))
1482 		queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1483 	rcu_read_unlock();
1484 
1485 	rds_message_put(rm);
1486 	return 0;
1487 
1488 out:
1489 	if (rm)
1490 		rds_message_put(rm);
1491 	return ret;
1492 }
1493 
1494 int
1495 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1496 {
1497 	return rds_send_probe(cp, 0, dport, 0);
1498 }
1499 
1500 void
1501 rds_send_ping(struct rds_connection *conn, int cp_index)
1502 {
1503 	unsigned long flags;
1504 	struct rds_conn_path *cp = &conn->c_path[cp_index];
1505 
1506 	spin_lock_irqsave(&cp->cp_lock, flags);
1507 	if (conn->c_ping_triggered) {
1508 		spin_unlock_irqrestore(&cp->cp_lock, flags);
1509 		return;
1510 	}
1511 	conn->c_ping_triggered = 1;
1512 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1513 	rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
1514 }
1515 EXPORT_SYMBOL_GPL(rds_send_ping);
1516