xref: /openbmc/linux/net/rds/send.c (revision a20eefae)
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42 
43 #include "rds.h"
44 
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46  * time to time and briefly release the CPU. Otherwise the softlock watchdog
47  * will kick our shin.
48  * Also, it seems fairer to not let one busy connection stall all the
49  * others.
50  *
51  * send_batch_count is the number of times we'll loop in send_xmit. Setting
52  * it to 0 will restore the old behavior (where we looped until we had
53  * drained the queue).
54  */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58 
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60 
61 /*
62  * Reset the send state.  Callers must ensure that this doesn't race with
63  * rds_send_xmit().
64  */
65 void rds_send_path_reset(struct rds_conn_path *cp)
66 {
67 	struct rds_message *rm, *tmp;
68 	unsigned long flags;
69 
70 	if (cp->cp_xmit_rm) {
71 		rm = cp->cp_xmit_rm;
72 		cp->cp_xmit_rm = NULL;
73 		/* Tell the user the RDMA op is no longer mapped by the
74 		 * transport. This isn't entirely true (it's flushed out
75 		 * independently) but as the connection is down, there's
76 		 * no ongoing RDMA to/from that memory */
77 		rds_message_unmapped(rm);
78 		rds_message_put(rm);
79 	}
80 
81 	cp->cp_xmit_sg = 0;
82 	cp->cp_xmit_hdr_off = 0;
83 	cp->cp_xmit_data_off = 0;
84 	cp->cp_xmit_atomic_sent = 0;
85 	cp->cp_xmit_rdma_sent = 0;
86 	cp->cp_xmit_data_sent = 0;
87 
88 	cp->cp_conn->c_map_queued = 0;
89 
90 	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 
93 	/* Mark messages as retransmissions, and move them to the send q */
94 	spin_lock_irqsave(&cp->cp_lock, flags);
95 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 	}
99 	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 	spin_unlock_irqrestore(&cp->cp_lock, flags);
101 }
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
103 
104 static int acquire_in_xmit(struct rds_conn_path *cp)
105 {
106 	return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
107 }
108 
109 static void release_in_xmit(struct rds_conn_path *cp)
110 {
111 	clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 	smp_mb__after_atomic();
113 	/*
114 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 	 * hot path and finding waiters is very rare.  We don't want to walk
116 	 * the system-wide hashed waitqueue buckets in the fast path only to
117 	 * almost never find waiters.
118 	 */
119 	if (waitqueue_active(&cp->cp_waitq))
120 		wake_up_all(&cp->cp_waitq);
121 }
122 
123 /*
124  * We're making the conscious trade-off here to only send one message
125  * down the connection at a time.
126  *   Pro:
127  *      - tx queueing is a simple fifo list
128  *   	- reassembly is optional and easily done by transports per conn
129  *      - no per flow rx lookup at all, straight to the socket
130  *   	- less per-frag memory and wire overhead
131  *   Con:
132  *      - queued acks can be delayed behind large messages
133  *   Depends:
134  *      - small message latency is higher behind queued large messages
135  *      - large message latency isn't starved by intervening small sends
136  */
137 int rds_send_xmit(struct rds_conn_path *cp)
138 {
139 	struct rds_connection *conn = cp->cp_conn;
140 	struct rds_message *rm;
141 	unsigned long flags;
142 	unsigned int tmp;
143 	struct scatterlist *sg;
144 	int ret = 0;
145 	LIST_HEAD(to_be_dropped);
146 	int batch_count;
147 	unsigned long send_gen = 0;
148 
149 restart:
150 	batch_count = 0;
151 
152 	/*
153 	 * sendmsg calls here after having queued its message on the send
154 	 * queue.  We only have one task feeding the connection at a time.  If
155 	 * another thread is already feeding the queue then we back off.  This
156 	 * avoids blocking the caller and trading per-connection data between
157 	 * caches per message.
158 	 */
159 	if (!acquire_in_xmit(cp)) {
160 		rds_stats_inc(s_send_lock_contention);
161 		ret = -ENOMEM;
162 		goto out;
163 	}
164 
165 	if (rds_destroy_pending(cp->cp_conn)) {
166 		release_in_xmit(cp);
167 		ret = -ENETUNREACH; /* dont requeue send work */
168 		goto out;
169 	}
170 
171 	/*
172 	 * we record the send generation after doing the xmit acquire.
173 	 * if someone else manages to jump in and do some work, we'll use
174 	 * this to avoid a goto restart farther down.
175 	 *
176 	 * The acquire_in_xmit() check above ensures that only one
177 	 * caller can increment c_send_gen at any time.
178 	 */
179 	send_gen = READ_ONCE(cp->cp_send_gen) + 1;
180 	WRITE_ONCE(cp->cp_send_gen, send_gen);
181 
182 	/*
183 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
184 	 * we do the opposite to avoid races.
185 	 */
186 	if (!rds_conn_path_up(cp)) {
187 		release_in_xmit(cp);
188 		ret = 0;
189 		goto out;
190 	}
191 
192 	if (conn->c_trans->xmit_path_prepare)
193 		conn->c_trans->xmit_path_prepare(cp);
194 
195 	/*
196 	 * spin trying to push headers and data down the connection until
197 	 * the connection doesn't make forward progress.
198 	 */
199 	while (1) {
200 
201 		rm = cp->cp_xmit_rm;
202 
203 		/*
204 		 * If between sending messages, we can send a pending congestion
205 		 * map update.
206 		 */
207 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
208 			rm = rds_cong_update_alloc(conn);
209 			if (IS_ERR(rm)) {
210 				ret = PTR_ERR(rm);
211 				break;
212 			}
213 			rm->data.op_active = 1;
214 			rm->m_inc.i_conn_path = cp;
215 			rm->m_inc.i_conn = cp->cp_conn;
216 
217 			cp->cp_xmit_rm = rm;
218 		}
219 
220 		/*
221 		 * If not already working on one, grab the next message.
222 		 *
223 		 * cp_xmit_rm holds a ref while we're sending this message down
224 		 * the connction.  We can use this ref while holding the
225 		 * send_sem.. rds_send_reset() is serialized with it.
226 		 */
227 		if (!rm) {
228 			unsigned int len;
229 
230 			batch_count++;
231 
232 			/* we want to process as big a batch as we can, but
233 			 * we also want to avoid softlockups.  If we've been
234 			 * through a lot of messages, lets back off and see
235 			 * if anyone else jumps in
236 			 */
237 			if (batch_count >= send_batch_count)
238 				goto over_batch;
239 
240 			spin_lock_irqsave(&cp->cp_lock, flags);
241 
242 			if (!list_empty(&cp->cp_send_queue)) {
243 				rm = list_entry(cp->cp_send_queue.next,
244 						struct rds_message,
245 						m_conn_item);
246 				rds_message_addref(rm);
247 
248 				/*
249 				 * Move the message from the send queue to the retransmit
250 				 * list right away.
251 				 */
252 				list_move_tail(&rm->m_conn_item,
253 					       &cp->cp_retrans);
254 			}
255 
256 			spin_unlock_irqrestore(&cp->cp_lock, flags);
257 
258 			if (!rm)
259 				break;
260 
261 			/* Unfortunately, the way Infiniband deals with
262 			 * RDMA to a bad MR key is by moving the entire
263 			 * queue pair to error state. We cold possibly
264 			 * recover from that, but right now we drop the
265 			 * connection.
266 			 * Therefore, we never retransmit messages with RDMA ops.
267 			 */
268 			if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
269 			    (rm->rdma.op_active &&
270 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
271 				spin_lock_irqsave(&cp->cp_lock, flags);
272 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
273 					list_move(&rm->m_conn_item, &to_be_dropped);
274 				spin_unlock_irqrestore(&cp->cp_lock, flags);
275 				continue;
276 			}
277 
278 			/* Require an ACK every once in a while */
279 			len = ntohl(rm->m_inc.i_hdr.h_len);
280 			if (cp->cp_unacked_packets == 0 ||
281 			    cp->cp_unacked_bytes < len) {
282 				set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
283 
284 				cp->cp_unacked_packets =
285 					rds_sysctl_max_unacked_packets;
286 				cp->cp_unacked_bytes =
287 					rds_sysctl_max_unacked_bytes;
288 				rds_stats_inc(s_send_ack_required);
289 			} else {
290 				cp->cp_unacked_bytes -= len;
291 				cp->cp_unacked_packets--;
292 			}
293 
294 			cp->cp_xmit_rm = rm;
295 		}
296 
297 		/* The transport either sends the whole rdma or none of it */
298 		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
299 			rm->m_final_op = &rm->rdma;
300 			/* The transport owns the mapped memory for now.
301 			 * You can't unmap it while it's on the send queue
302 			 */
303 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
304 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
305 			if (ret) {
306 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
307 				wake_up_interruptible(&rm->m_flush_wait);
308 				break;
309 			}
310 			cp->cp_xmit_rdma_sent = 1;
311 
312 		}
313 
314 		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
315 			rm->m_final_op = &rm->atomic;
316 			/* The transport owns the mapped memory for now.
317 			 * You can't unmap it while it's on the send queue
318 			 */
319 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
320 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
321 			if (ret) {
322 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
323 				wake_up_interruptible(&rm->m_flush_wait);
324 				break;
325 			}
326 			cp->cp_xmit_atomic_sent = 1;
327 
328 		}
329 
330 		/*
331 		 * A number of cases require an RDS header to be sent
332 		 * even if there is no data.
333 		 * We permit 0-byte sends; rds-ping depends on this.
334 		 * However, if there are exclusively attached silent ops,
335 		 * we skip the hdr/data send, to enable silent operation.
336 		 */
337 		if (rm->data.op_nents == 0) {
338 			int ops_present;
339 			int all_ops_are_silent = 1;
340 
341 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
342 			if (rm->atomic.op_active && !rm->atomic.op_silent)
343 				all_ops_are_silent = 0;
344 			if (rm->rdma.op_active && !rm->rdma.op_silent)
345 				all_ops_are_silent = 0;
346 
347 			if (ops_present && all_ops_are_silent
348 			    && !rm->m_rdma_cookie)
349 				rm->data.op_active = 0;
350 		}
351 
352 		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
353 			rm->m_final_op = &rm->data;
354 
355 			ret = conn->c_trans->xmit(conn, rm,
356 						  cp->cp_xmit_hdr_off,
357 						  cp->cp_xmit_sg,
358 						  cp->cp_xmit_data_off);
359 			if (ret <= 0)
360 				break;
361 
362 			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
363 				tmp = min_t(int, ret,
364 					    sizeof(struct rds_header) -
365 					    cp->cp_xmit_hdr_off);
366 				cp->cp_xmit_hdr_off += tmp;
367 				ret -= tmp;
368 			}
369 
370 			sg = &rm->data.op_sg[cp->cp_xmit_sg];
371 			while (ret) {
372 				tmp = min_t(int, ret, sg->length -
373 						      cp->cp_xmit_data_off);
374 				cp->cp_xmit_data_off += tmp;
375 				ret -= tmp;
376 				if (cp->cp_xmit_data_off == sg->length) {
377 					cp->cp_xmit_data_off = 0;
378 					sg++;
379 					cp->cp_xmit_sg++;
380 					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
381 					       rm->data.op_nents);
382 				}
383 			}
384 
385 			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
386 			    (cp->cp_xmit_sg == rm->data.op_nents))
387 				cp->cp_xmit_data_sent = 1;
388 		}
389 
390 		/*
391 		 * A rm will only take multiple times through this loop
392 		 * if there is a data op. Thus, if the data is sent (or there was
393 		 * none), then we're done with the rm.
394 		 */
395 		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
396 			cp->cp_xmit_rm = NULL;
397 			cp->cp_xmit_sg = 0;
398 			cp->cp_xmit_hdr_off = 0;
399 			cp->cp_xmit_data_off = 0;
400 			cp->cp_xmit_rdma_sent = 0;
401 			cp->cp_xmit_atomic_sent = 0;
402 			cp->cp_xmit_data_sent = 0;
403 
404 			rds_message_put(rm);
405 		}
406 	}
407 
408 over_batch:
409 	if (conn->c_trans->xmit_path_complete)
410 		conn->c_trans->xmit_path_complete(cp);
411 	release_in_xmit(cp);
412 
413 	/* Nuke any messages we decided not to retransmit. */
414 	if (!list_empty(&to_be_dropped)) {
415 		/* irqs on here, so we can put(), unlike above */
416 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
417 			rds_message_put(rm);
418 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
419 	}
420 
421 	/*
422 	 * Other senders can queue a message after we last test the send queue
423 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
424 	 * not try and send their newly queued message.  We need to check the
425 	 * send queue after having cleared RDS_IN_XMIT so that their message
426 	 * doesn't get stuck on the send queue.
427 	 *
428 	 * If the transport cannot continue (i.e ret != 0), then it must
429 	 * call us when more room is available, such as from the tx
430 	 * completion handler.
431 	 *
432 	 * We have an extra generation check here so that if someone manages
433 	 * to jump in after our release_in_xmit, we'll see that they have done
434 	 * some work and we will skip our goto
435 	 */
436 	if (ret == 0) {
437 		bool raced;
438 
439 		smp_mb();
440 		raced = send_gen != READ_ONCE(cp->cp_send_gen);
441 
442 		if ((test_bit(0, &conn->c_map_queued) ||
443 		    !list_empty(&cp->cp_send_queue)) && !raced) {
444 			if (batch_count < send_batch_count)
445 				goto restart;
446 			rcu_read_lock();
447 			if (rds_destroy_pending(cp->cp_conn))
448 				ret = -ENETUNREACH;
449 			else
450 				queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
451 			rcu_read_unlock();
452 		} else if (raced) {
453 			rds_stats_inc(s_send_lock_queue_raced);
454 		}
455 	}
456 out:
457 	return ret;
458 }
459 EXPORT_SYMBOL_GPL(rds_send_xmit);
460 
461 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
462 {
463 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
464 
465 	assert_spin_locked(&rs->rs_lock);
466 
467 	BUG_ON(rs->rs_snd_bytes < len);
468 	rs->rs_snd_bytes -= len;
469 
470 	if (rs->rs_snd_bytes == 0)
471 		rds_stats_inc(s_send_queue_empty);
472 }
473 
474 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
475 				    is_acked_func is_acked)
476 {
477 	if (is_acked)
478 		return is_acked(rm, ack);
479 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
480 }
481 
482 /*
483  * This is pretty similar to what happens below in the ACK
484  * handling code - except that we call here as soon as we get
485  * the IB send completion on the RDMA op and the accompanying
486  * message.
487  */
488 void rds_rdma_send_complete(struct rds_message *rm, int status)
489 {
490 	struct rds_sock *rs = NULL;
491 	struct rm_rdma_op *ro;
492 	struct rds_notifier *notifier;
493 	unsigned long flags;
494 
495 	spin_lock_irqsave(&rm->m_rs_lock, flags);
496 
497 	ro = &rm->rdma;
498 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
499 	    ro->op_active && ro->op_notify && ro->op_notifier) {
500 		notifier = ro->op_notifier;
501 		rs = rm->m_rs;
502 		sock_hold(rds_rs_to_sk(rs));
503 
504 		notifier->n_status = status;
505 		spin_lock(&rs->rs_lock);
506 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
507 		spin_unlock(&rs->rs_lock);
508 
509 		ro->op_notifier = NULL;
510 	}
511 
512 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
513 
514 	if (rs) {
515 		rds_wake_sk_sleep(rs);
516 		sock_put(rds_rs_to_sk(rs));
517 	}
518 }
519 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
520 
521 /*
522  * Just like above, except looks at atomic op
523  */
524 void rds_atomic_send_complete(struct rds_message *rm, int status)
525 {
526 	struct rds_sock *rs = NULL;
527 	struct rm_atomic_op *ao;
528 	struct rds_notifier *notifier;
529 	unsigned long flags;
530 
531 	spin_lock_irqsave(&rm->m_rs_lock, flags);
532 
533 	ao = &rm->atomic;
534 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
535 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
536 		notifier = ao->op_notifier;
537 		rs = rm->m_rs;
538 		sock_hold(rds_rs_to_sk(rs));
539 
540 		notifier->n_status = status;
541 		spin_lock(&rs->rs_lock);
542 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
543 		spin_unlock(&rs->rs_lock);
544 
545 		ao->op_notifier = NULL;
546 	}
547 
548 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
549 
550 	if (rs) {
551 		rds_wake_sk_sleep(rs);
552 		sock_put(rds_rs_to_sk(rs));
553 	}
554 }
555 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
556 
557 /*
558  * This is the same as rds_rdma_send_complete except we
559  * don't do any locking - we have all the ingredients (message,
560  * socket, socket lock) and can just move the notifier.
561  */
562 static inline void
563 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
564 {
565 	struct rm_rdma_op *ro;
566 	struct rm_atomic_op *ao;
567 
568 	ro = &rm->rdma;
569 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
570 		ro->op_notifier->n_status = status;
571 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
572 		ro->op_notifier = NULL;
573 	}
574 
575 	ao = &rm->atomic;
576 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
577 		ao->op_notifier->n_status = status;
578 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
579 		ao->op_notifier = NULL;
580 	}
581 
582 	/* No need to wake the app - caller does this */
583 }
584 
585 /*
586  * This removes messages from the socket's list if they're on it.  The list
587  * argument must be private to the caller, we must be able to modify it
588  * without locks.  The messages must have a reference held for their
589  * position on the list.  This function will drop that reference after
590  * removing the messages from the 'messages' list regardless of if it found
591  * the messages on the socket list or not.
592  */
593 static void rds_send_remove_from_sock(struct list_head *messages, int status)
594 {
595 	unsigned long flags;
596 	struct rds_sock *rs = NULL;
597 	struct rds_message *rm;
598 
599 	while (!list_empty(messages)) {
600 		int was_on_sock = 0;
601 
602 		rm = list_entry(messages->next, struct rds_message,
603 				m_conn_item);
604 		list_del_init(&rm->m_conn_item);
605 
606 		/*
607 		 * If we see this flag cleared then we're *sure* that someone
608 		 * else beat us to removing it from the sock.  If we race
609 		 * with their flag update we'll get the lock and then really
610 		 * see that the flag has been cleared.
611 		 *
612 		 * The message spinlock makes sure nobody clears rm->m_rs
613 		 * while we're messing with it. It does not prevent the
614 		 * message from being removed from the socket, though.
615 		 */
616 		spin_lock_irqsave(&rm->m_rs_lock, flags);
617 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
618 			goto unlock_and_drop;
619 
620 		if (rs != rm->m_rs) {
621 			if (rs) {
622 				rds_wake_sk_sleep(rs);
623 				sock_put(rds_rs_to_sk(rs));
624 			}
625 			rs = rm->m_rs;
626 			if (rs)
627 				sock_hold(rds_rs_to_sk(rs));
628 		}
629 		if (!rs)
630 			goto unlock_and_drop;
631 		spin_lock(&rs->rs_lock);
632 
633 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
634 			struct rm_rdma_op *ro = &rm->rdma;
635 			struct rds_notifier *notifier;
636 
637 			list_del_init(&rm->m_sock_item);
638 			rds_send_sndbuf_remove(rs, rm);
639 
640 			if (ro->op_active && ro->op_notifier &&
641 			       (ro->op_notify || (ro->op_recverr && status))) {
642 				notifier = ro->op_notifier;
643 				list_add_tail(&notifier->n_list,
644 						&rs->rs_notify_queue);
645 				if (!notifier->n_status)
646 					notifier->n_status = status;
647 				rm->rdma.op_notifier = NULL;
648 			}
649 			was_on_sock = 1;
650 		}
651 		spin_unlock(&rs->rs_lock);
652 
653 unlock_and_drop:
654 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
655 		rds_message_put(rm);
656 		if (was_on_sock)
657 			rds_message_put(rm);
658 	}
659 
660 	if (rs) {
661 		rds_wake_sk_sleep(rs);
662 		sock_put(rds_rs_to_sk(rs));
663 	}
664 }
665 
666 /*
667  * Transports call here when they've determined that the receiver queued
668  * messages up to, and including, the given sequence number.  Messages are
669  * moved to the retrans queue when rds_send_xmit picks them off the send
670  * queue. This means that in the TCP case, the message may not have been
671  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
672  * checks the RDS_MSG_HAS_ACK_SEQ bit.
673  */
674 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
675 			      is_acked_func is_acked)
676 {
677 	struct rds_message *rm, *tmp;
678 	unsigned long flags;
679 	LIST_HEAD(list);
680 
681 	spin_lock_irqsave(&cp->cp_lock, flags);
682 
683 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
684 		if (!rds_send_is_acked(rm, ack, is_acked))
685 			break;
686 
687 		list_move(&rm->m_conn_item, &list);
688 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
689 	}
690 
691 	/* order flag updates with spin locks */
692 	if (!list_empty(&list))
693 		smp_mb__after_atomic();
694 
695 	spin_unlock_irqrestore(&cp->cp_lock, flags);
696 
697 	/* now remove the messages from the sock list as needed */
698 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
699 }
700 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
701 
702 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
703 			 is_acked_func is_acked)
704 {
705 	WARN_ON(conn->c_trans->t_mp_capable);
706 	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
707 }
708 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
709 
710 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
711 {
712 	struct rds_message *rm, *tmp;
713 	struct rds_connection *conn;
714 	struct rds_conn_path *cp;
715 	unsigned long flags;
716 	LIST_HEAD(list);
717 
718 	/* get all the messages we're dropping under the rs lock */
719 	spin_lock_irqsave(&rs->rs_lock, flags);
720 
721 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
722 		if (dest &&
723 		    (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
724 		     dest->sin6_port != rm->m_inc.i_hdr.h_dport))
725 			continue;
726 
727 		list_move(&rm->m_sock_item, &list);
728 		rds_send_sndbuf_remove(rs, rm);
729 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
730 	}
731 
732 	/* order flag updates with the rs lock */
733 	smp_mb__after_atomic();
734 
735 	spin_unlock_irqrestore(&rs->rs_lock, flags);
736 
737 	if (list_empty(&list))
738 		return;
739 
740 	/* Remove the messages from the conn */
741 	list_for_each_entry(rm, &list, m_sock_item) {
742 
743 		conn = rm->m_inc.i_conn;
744 		if (conn->c_trans->t_mp_capable)
745 			cp = rm->m_inc.i_conn_path;
746 		else
747 			cp = &conn->c_path[0];
748 
749 		spin_lock_irqsave(&cp->cp_lock, flags);
750 		/*
751 		 * Maybe someone else beat us to removing rm from the conn.
752 		 * If we race with their flag update we'll get the lock and
753 		 * then really see that the flag has been cleared.
754 		 */
755 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
756 			spin_unlock_irqrestore(&cp->cp_lock, flags);
757 			continue;
758 		}
759 		list_del_init(&rm->m_conn_item);
760 		spin_unlock_irqrestore(&cp->cp_lock, flags);
761 
762 		/*
763 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
764 		 * but we can now.
765 		 */
766 		spin_lock_irqsave(&rm->m_rs_lock, flags);
767 
768 		spin_lock(&rs->rs_lock);
769 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
770 		spin_unlock(&rs->rs_lock);
771 
772 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
773 
774 		rds_message_put(rm);
775 	}
776 
777 	rds_wake_sk_sleep(rs);
778 
779 	while (!list_empty(&list)) {
780 		rm = list_entry(list.next, struct rds_message, m_sock_item);
781 		list_del_init(&rm->m_sock_item);
782 		rds_message_wait(rm);
783 
784 		/* just in case the code above skipped this message
785 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
786 		 * taking m_rs_lock is the only thing that keeps us
787 		 * from racing with ack processing.
788 		 */
789 		spin_lock_irqsave(&rm->m_rs_lock, flags);
790 
791 		spin_lock(&rs->rs_lock);
792 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
793 		spin_unlock(&rs->rs_lock);
794 
795 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
796 
797 		rds_message_put(rm);
798 	}
799 }
800 
801 /*
802  * we only want this to fire once so we use the callers 'queued'.  It's
803  * possible that another thread can race with us and remove the
804  * message from the flow with RDS_CANCEL_SENT_TO.
805  */
806 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
807 			     struct rds_conn_path *cp,
808 			     struct rds_message *rm, __be16 sport,
809 			     __be16 dport, int *queued)
810 {
811 	unsigned long flags;
812 	u32 len;
813 
814 	if (*queued)
815 		goto out;
816 
817 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
818 
819 	/* this is the only place which holds both the socket's rs_lock
820 	 * and the connection's c_lock */
821 	spin_lock_irqsave(&rs->rs_lock, flags);
822 
823 	/*
824 	 * If there is a little space in sndbuf, we don't queue anything,
825 	 * and userspace gets -EAGAIN. But poll() indicates there's send
826 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
827 	 * freed up by incoming acks. So we check the *old* value of
828 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
829 	 * and poll() now knows no more data can be sent.
830 	 */
831 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
832 		rs->rs_snd_bytes += len;
833 
834 		/* let recv side know we are close to send space exhaustion.
835 		 * This is probably not the optimal way to do it, as this
836 		 * means we set the flag on *all* messages as soon as our
837 		 * throughput hits a certain threshold.
838 		 */
839 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
840 			set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
841 
842 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
843 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
844 		rds_message_addref(rm);
845 		sock_hold(rds_rs_to_sk(rs));
846 		rm->m_rs = rs;
847 
848 		/* The code ordering is a little weird, but we're
849 		   trying to minimize the time we hold c_lock */
850 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
851 		rm->m_inc.i_conn = conn;
852 		rm->m_inc.i_conn_path = cp;
853 		rds_message_addref(rm);
854 
855 		spin_lock(&cp->cp_lock);
856 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
857 		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
858 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
859 		spin_unlock(&cp->cp_lock);
860 
861 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
862 			 rm, len, rs, rs->rs_snd_bytes,
863 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
864 
865 		*queued = 1;
866 	}
867 
868 	spin_unlock_irqrestore(&rs->rs_lock, flags);
869 out:
870 	return *queued;
871 }
872 
873 /*
874  * rds_message is getting to be quite complicated, and we'd like to allocate
875  * it all in one go. This figures out how big it needs to be up front.
876  */
877 static int rds_rm_size(struct msghdr *msg, int num_sgs,
878 		       struct rds_iov_vector_arr *vct)
879 {
880 	struct cmsghdr *cmsg;
881 	int size = 0;
882 	int cmsg_groups = 0;
883 	int retval;
884 	bool zcopy_cookie = false;
885 	struct rds_iov_vector *iov, *tmp_iov;
886 
887 	if (num_sgs < 0)
888 		return -EINVAL;
889 
890 	for_each_cmsghdr(cmsg, msg) {
891 		if (!CMSG_OK(msg, cmsg))
892 			return -EINVAL;
893 
894 		if (cmsg->cmsg_level != SOL_RDS)
895 			continue;
896 
897 		switch (cmsg->cmsg_type) {
898 		case RDS_CMSG_RDMA_ARGS:
899 			if (vct->indx >= vct->len) {
900 				vct->len += vct->incr;
901 				tmp_iov =
902 					krealloc(vct->vec,
903 						 vct->len *
904 						 sizeof(struct rds_iov_vector),
905 						 GFP_KERNEL);
906 				if (!tmp_iov) {
907 					vct->len -= vct->incr;
908 					return -ENOMEM;
909 				}
910 				vct->vec = tmp_iov;
911 			}
912 			iov = &vct->vec[vct->indx];
913 			memset(iov, 0, sizeof(struct rds_iov_vector));
914 			vct->indx++;
915 			cmsg_groups |= 1;
916 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov);
917 			if (retval < 0)
918 				return retval;
919 			size += retval;
920 
921 			break;
922 
923 		case RDS_CMSG_ZCOPY_COOKIE:
924 			zcopy_cookie = true;
925 			/* fall through */
926 
927 		case RDS_CMSG_RDMA_DEST:
928 		case RDS_CMSG_RDMA_MAP:
929 			cmsg_groups |= 2;
930 			/* these are valid but do no add any size */
931 			break;
932 
933 		case RDS_CMSG_ATOMIC_CSWP:
934 		case RDS_CMSG_ATOMIC_FADD:
935 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
936 		case RDS_CMSG_MASKED_ATOMIC_FADD:
937 			cmsg_groups |= 1;
938 			size += sizeof(struct scatterlist);
939 			break;
940 
941 		default:
942 			return -EINVAL;
943 		}
944 
945 	}
946 
947 	if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
948 		return -EINVAL;
949 
950 	size += num_sgs * sizeof(struct scatterlist);
951 
952 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
953 	if (cmsg_groups == 3)
954 		return -EINVAL;
955 
956 	return size;
957 }
958 
959 static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
960 			  struct cmsghdr *cmsg)
961 {
962 	u32 *cookie;
963 
964 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
965 	    !rm->data.op_mmp_znotifier)
966 		return -EINVAL;
967 	cookie = CMSG_DATA(cmsg);
968 	rm->data.op_mmp_znotifier->z_cookie = *cookie;
969 	return 0;
970 }
971 
972 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
973 			 struct msghdr *msg, int *allocated_mr,
974 			 struct rds_iov_vector_arr *vct)
975 {
976 	struct cmsghdr *cmsg;
977 	int ret = 0, ind = 0;
978 
979 	for_each_cmsghdr(cmsg, msg) {
980 		if (!CMSG_OK(msg, cmsg))
981 			return -EINVAL;
982 
983 		if (cmsg->cmsg_level != SOL_RDS)
984 			continue;
985 
986 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
987 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
988 		 */
989 		switch (cmsg->cmsg_type) {
990 		case RDS_CMSG_RDMA_ARGS:
991 			if (ind >= vct->indx)
992 				return -ENOMEM;
993 			ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]);
994 			ind++;
995 			break;
996 
997 		case RDS_CMSG_RDMA_DEST:
998 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
999 			break;
1000 
1001 		case RDS_CMSG_RDMA_MAP:
1002 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
1003 			if (!ret)
1004 				*allocated_mr = 1;
1005 			else if (ret == -ENODEV)
1006 				/* Accommodate the get_mr() case which can fail
1007 				 * if connection isn't established yet.
1008 				 */
1009 				ret = -EAGAIN;
1010 			break;
1011 		case RDS_CMSG_ATOMIC_CSWP:
1012 		case RDS_CMSG_ATOMIC_FADD:
1013 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
1014 		case RDS_CMSG_MASKED_ATOMIC_FADD:
1015 			ret = rds_cmsg_atomic(rs, rm, cmsg);
1016 			break;
1017 
1018 		case RDS_CMSG_ZCOPY_COOKIE:
1019 			ret = rds_cmsg_zcopy(rs, rm, cmsg);
1020 			break;
1021 
1022 		default:
1023 			return -EINVAL;
1024 		}
1025 
1026 		if (ret)
1027 			break;
1028 	}
1029 
1030 	return ret;
1031 }
1032 
1033 static int rds_send_mprds_hash(struct rds_sock *rs,
1034 			       struct rds_connection *conn, int nonblock)
1035 {
1036 	int hash;
1037 
1038 	if (conn->c_npaths == 0)
1039 		hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
1040 	else
1041 		hash = RDS_MPATH_HASH(rs, conn->c_npaths);
1042 	if (conn->c_npaths == 0 && hash != 0) {
1043 		rds_send_ping(conn, 0);
1044 
1045 		/* The underlying connection is not up yet.  Need to wait
1046 		 * until it is up to be sure that the non-zero c_path can be
1047 		 * used.  But if we are interrupted, we have to use the zero
1048 		 * c_path in case the connection ends up being non-MP capable.
1049 		 */
1050 		if (conn->c_npaths == 0) {
1051 			/* Cannot wait for the connection be made, so just use
1052 			 * the base c_path.
1053 			 */
1054 			if (nonblock)
1055 				return 0;
1056 			if (wait_event_interruptible(conn->c_hs_waitq,
1057 						     conn->c_npaths != 0))
1058 				hash = 0;
1059 		}
1060 		if (conn->c_npaths == 1)
1061 			hash = 0;
1062 	}
1063 	return hash;
1064 }
1065 
1066 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
1067 {
1068 	struct rds_rdma_args *args;
1069 	struct cmsghdr *cmsg;
1070 
1071 	for_each_cmsghdr(cmsg, msg) {
1072 		if (!CMSG_OK(msg, cmsg))
1073 			return -EINVAL;
1074 
1075 		if (cmsg->cmsg_level != SOL_RDS)
1076 			continue;
1077 
1078 		if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1079 			if (cmsg->cmsg_len <
1080 			    CMSG_LEN(sizeof(struct rds_rdma_args)))
1081 				return -EINVAL;
1082 			args = CMSG_DATA(cmsg);
1083 			*rdma_bytes += args->remote_vec.bytes;
1084 		}
1085 	}
1086 	return 0;
1087 }
1088 
1089 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1090 {
1091 	struct sock *sk = sock->sk;
1092 	struct rds_sock *rs = rds_sk_to_rs(sk);
1093 	DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
1094 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1095 	__be16 dport;
1096 	struct rds_message *rm = NULL;
1097 	struct rds_connection *conn;
1098 	int ret = 0;
1099 	int queued = 0, allocated_mr = 0;
1100 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
1101 	long timeo = sock_sndtimeo(sk, nonblock);
1102 	struct rds_conn_path *cpath;
1103 	struct in6_addr daddr;
1104 	__u32 scope_id = 0;
1105 	size_t total_payload_len = payload_len, rdma_payload_len = 0;
1106 	bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
1107 		      sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
1108 	int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE);
1109 	int namelen;
1110 	struct rds_iov_vector_arr vct;
1111 	int ind;
1112 
1113 	memset(&vct, 0, sizeof(vct));
1114 
1115 	/* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
1116 	vct.incr = 1;
1117 
1118 	/* Mirror Linux UDP mirror of BSD error message compatibility */
1119 	/* XXX: Perhaps MSG_MORE someday */
1120 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
1121 		ret = -EOPNOTSUPP;
1122 		goto out;
1123 	}
1124 
1125 	namelen = msg->msg_namelen;
1126 	if (namelen != 0) {
1127 		if (namelen < sizeof(*usin)) {
1128 			ret = -EINVAL;
1129 			goto out;
1130 		}
1131 		switch (usin->sin_family) {
1132 		case AF_INET:
1133 			if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
1134 			    usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
1135 			    IN_MULTICAST(ntohl(usin->sin_addr.s_addr))) {
1136 				ret = -EINVAL;
1137 				goto out;
1138 			}
1139 			ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
1140 			dport = usin->sin_port;
1141 			break;
1142 
1143 #if IS_ENABLED(CONFIG_IPV6)
1144 		case AF_INET6: {
1145 			int addr_type;
1146 
1147 			if (namelen < sizeof(*sin6)) {
1148 				ret = -EINVAL;
1149 				goto out;
1150 			}
1151 			addr_type = ipv6_addr_type(&sin6->sin6_addr);
1152 			if (!(addr_type & IPV6_ADDR_UNICAST)) {
1153 				__be32 addr4;
1154 
1155 				if (!(addr_type & IPV6_ADDR_MAPPED)) {
1156 					ret = -EINVAL;
1157 					goto out;
1158 				}
1159 
1160 				/* It is a mapped address.  Need to do some
1161 				 * sanity checks.
1162 				 */
1163 				addr4 = sin6->sin6_addr.s6_addr32[3];
1164 				if (addr4 == htonl(INADDR_ANY) ||
1165 				    addr4 == htonl(INADDR_BROADCAST) ||
1166 				    IN_MULTICAST(ntohl(addr4))) {
1167 					ret = -EINVAL;
1168 					goto out;
1169 				}
1170 			}
1171 			if (addr_type & IPV6_ADDR_LINKLOCAL) {
1172 				if (sin6->sin6_scope_id == 0) {
1173 					ret = -EINVAL;
1174 					goto out;
1175 				}
1176 				scope_id = sin6->sin6_scope_id;
1177 			}
1178 
1179 			daddr = sin6->sin6_addr;
1180 			dport = sin6->sin6_port;
1181 			break;
1182 		}
1183 #endif
1184 
1185 		default:
1186 			ret = -EINVAL;
1187 			goto out;
1188 		}
1189 	} else {
1190 		/* We only care about consistency with ->connect() */
1191 		lock_sock(sk);
1192 		daddr = rs->rs_conn_addr;
1193 		dport = rs->rs_conn_port;
1194 		scope_id = rs->rs_bound_scope_id;
1195 		release_sock(sk);
1196 	}
1197 
1198 	lock_sock(sk);
1199 	if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
1200 		release_sock(sk);
1201 		ret = -ENOTCONN;
1202 		goto out;
1203 	} else if (namelen != 0) {
1204 		/* Cannot send to an IPv4 address using an IPv6 source
1205 		 * address and cannot send to an IPv6 address using an
1206 		 * IPv4 source address.
1207 		 */
1208 		if (ipv6_addr_v4mapped(&daddr) ^
1209 		    ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
1210 			release_sock(sk);
1211 			ret = -EOPNOTSUPP;
1212 			goto out;
1213 		}
1214 		/* If the socket is already bound to a link local address,
1215 		 * it can only send to peers on the same link.  But allow
1216 		 * communicating beween link local and non-link local address.
1217 		 */
1218 		if (scope_id != rs->rs_bound_scope_id) {
1219 			if (!scope_id) {
1220 				scope_id = rs->rs_bound_scope_id;
1221 			} else if (rs->rs_bound_scope_id) {
1222 				release_sock(sk);
1223 				ret = -EINVAL;
1224 				goto out;
1225 			}
1226 		}
1227 	}
1228 	release_sock(sk);
1229 
1230 	ret = rds_rdma_bytes(msg, &rdma_payload_len);
1231 	if (ret)
1232 		goto out;
1233 
1234 	total_payload_len += rdma_payload_len;
1235 	if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1236 		ret = -EMSGSIZE;
1237 		goto out;
1238 	}
1239 
1240 	if (payload_len > rds_sk_sndbuf(rs)) {
1241 		ret = -EMSGSIZE;
1242 		goto out;
1243 	}
1244 
1245 	if (zcopy) {
1246 		if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
1247 			ret = -EOPNOTSUPP;
1248 			goto out;
1249 		}
1250 		num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
1251 	}
1252 	/* size of rm including all sgs */
1253 	ret = rds_rm_size(msg, num_sgs, &vct);
1254 	if (ret < 0)
1255 		goto out;
1256 
1257 	rm = rds_message_alloc(ret, GFP_KERNEL);
1258 	if (!rm) {
1259 		ret = -ENOMEM;
1260 		goto out;
1261 	}
1262 
1263 	/* Attach data to the rm */
1264 	if (payload_len) {
1265 		rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs, &ret);
1266 		if (!rm->data.op_sg)
1267 			goto out;
1268 		ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
1269 		if (ret)
1270 			goto out;
1271 	}
1272 	rm->data.op_active = 1;
1273 
1274 	rm->m_daddr = daddr;
1275 
1276 	/* rds_conn_create has a spinlock that runs with IRQ off.
1277 	 * Caching the conn in the socket helps a lot. */
1278 	if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr) &&
1279 	    rs->rs_tos == rs->rs_conn->c_tos) {
1280 		conn = rs->rs_conn;
1281 	} else {
1282 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1283 						&rs->rs_bound_addr, &daddr,
1284 						rs->rs_transport, rs->rs_tos,
1285 						sock->sk->sk_allocation,
1286 						scope_id);
1287 		if (IS_ERR(conn)) {
1288 			ret = PTR_ERR(conn);
1289 			goto out;
1290 		}
1291 		rs->rs_conn = conn;
1292 	}
1293 
1294 	if (conn->c_trans->t_mp_capable)
1295 		cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)];
1296 	else
1297 		cpath = &conn->c_path[0];
1298 
1299 	rm->m_conn_path = cpath;
1300 
1301 	/* Parse any control messages the user may have included. */
1302 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct);
1303 	if (ret) {
1304 		/* Trigger connection so that its ready for the next retry */
1305 		if (ret ==  -EAGAIN)
1306 			rds_conn_connect_if_down(conn);
1307 		goto out;
1308 	}
1309 
1310 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1311 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1312 			       &rm->rdma, conn->c_trans->xmit_rdma);
1313 		ret = -EOPNOTSUPP;
1314 		goto out;
1315 	}
1316 
1317 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1318 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1319 			       &rm->atomic, conn->c_trans->xmit_atomic);
1320 		ret = -EOPNOTSUPP;
1321 		goto out;
1322 	}
1323 
1324 	if (rds_destroy_pending(conn)) {
1325 		ret = -EAGAIN;
1326 		goto out;
1327 	}
1328 
1329 	rds_conn_path_connect_if_down(cpath);
1330 
1331 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1332 	if (ret) {
1333 		rs->rs_seen_congestion = 1;
1334 		goto out;
1335 	}
1336 	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1337 				  dport, &queued)) {
1338 		rds_stats_inc(s_send_queue_full);
1339 
1340 		if (nonblock) {
1341 			ret = -EAGAIN;
1342 			goto out;
1343 		}
1344 
1345 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1346 					rds_send_queue_rm(rs, conn, cpath, rm,
1347 							  rs->rs_bound_port,
1348 							  dport,
1349 							  &queued),
1350 					timeo);
1351 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1352 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1353 			continue;
1354 
1355 		ret = timeo;
1356 		if (ret == 0)
1357 			ret = -ETIMEDOUT;
1358 		goto out;
1359 	}
1360 
1361 	/*
1362 	 * By now we've committed to the send.  We reuse rds_send_worker()
1363 	 * to retry sends in the rds thread if the transport asks us to.
1364 	 */
1365 	rds_stats_inc(s_send_queued);
1366 
1367 	ret = rds_send_xmit(cpath);
1368 	if (ret == -ENOMEM || ret == -EAGAIN) {
1369 		ret = 0;
1370 		rcu_read_lock();
1371 		if (rds_destroy_pending(cpath->cp_conn))
1372 			ret = -ENETUNREACH;
1373 		else
1374 			queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1375 		rcu_read_unlock();
1376 	}
1377 	if (ret)
1378 		goto out;
1379 	rds_message_put(rm);
1380 
1381 	for (ind = 0; ind < vct.indx; ind++)
1382 		kfree(vct.vec[ind].iov);
1383 	kfree(vct.vec);
1384 
1385 	return payload_len;
1386 
1387 out:
1388 	for (ind = 0; ind < vct.indx; ind++)
1389 		kfree(vct.vec[ind].iov);
1390 	kfree(vct.vec);
1391 
1392 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1393 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1394 	 * or in any other way, we need to destroy the MR again */
1395 	if (allocated_mr)
1396 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1397 
1398 	if (rm)
1399 		rds_message_put(rm);
1400 	return ret;
1401 }
1402 
1403 /*
1404  * send out a probe. Can be shared by rds_send_ping,
1405  * rds_send_pong, rds_send_hb.
1406  * rds_send_hb should use h_flags
1407  *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1408  * or
1409  *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1410  */
1411 static int
1412 rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1413 	       __be16 dport, u8 h_flags)
1414 {
1415 	struct rds_message *rm;
1416 	unsigned long flags;
1417 	int ret = 0;
1418 
1419 	rm = rds_message_alloc(0, GFP_ATOMIC);
1420 	if (!rm) {
1421 		ret = -ENOMEM;
1422 		goto out;
1423 	}
1424 
1425 	rm->m_daddr = cp->cp_conn->c_faddr;
1426 	rm->data.op_active = 1;
1427 
1428 	rds_conn_path_connect_if_down(cp);
1429 
1430 	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1431 	if (ret)
1432 		goto out;
1433 
1434 	spin_lock_irqsave(&cp->cp_lock, flags);
1435 	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1436 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1437 	rds_message_addref(rm);
1438 	rm->m_inc.i_conn = cp->cp_conn;
1439 	rm->m_inc.i_conn_path = cp;
1440 
1441 	rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1442 				    cp->cp_next_tx_seq);
1443 	rm->m_inc.i_hdr.h_flags |= h_flags;
1444 	cp->cp_next_tx_seq++;
1445 
1446 	if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1447 	    cp->cp_conn->c_trans->t_mp_capable) {
1448 		u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1449 		u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
1450 
1451 		rds_message_add_extension(&rm->m_inc.i_hdr,
1452 					  RDS_EXTHDR_NPATHS, &npaths,
1453 					  sizeof(npaths));
1454 		rds_message_add_extension(&rm->m_inc.i_hdr,
1455 					  RDS_EXTHDR_GEN_NUM,
1456 					  &my_gen_num,
1457 					  sizeof(u32));
1458 	}
1459 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1460 
1461 	rds_stats_inc(s_send_queued);
1462 	rds_stats_inc(s_send_pong);
1463 
1464 	/* schedule the send work on rds_wq */
1465 	rcu_read_lock();
1466 	if (!rds_destroy_pending(cp->cp_conn))
1467 		queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1468 	rcu_read_unlock();
1469 
1470 	rds_message_put(rm);
1471 	return 0;
1472 
1473 out:
1474 	if (rm)
1475 		rds_message_put(rm);
1476 	return ret;
1477 }
1478 
1479 int
1480 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1481 {
1482 	return rds_send_probe(cp, 0, dport, 0);
1483 }
1484 
1485 void
1486 rds_send_ping(struct rds_connection *conn, int cp_index)
1487 {
1488 	unsigned long flags;
1489 	struct rds_conn_path *cp = &conn->c_path[cp_index];
1490 
1491 	spin_lock_irqsave(&cp->cp_lock, flags);
1492 	if (conn->c_ping_triggered) {
1493 		spin_unlock_irqrestore(&cp->cp_lock, flags);
1494 		return;
1495 	}
1496 	conn->c_ping_triggered = 1;
1497 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1498 	rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
1499 }
1500 EXPORT_SYMBOL_GPL(rds_send_ping);
1501