1 /* 2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/moduleparam.h> 35 #include <linux/gfp.h> 36 #include <net/sock.h> 37 #include <linux/in.h> 38 #include <linux/list.h> 39 #include <linux/ratelimit.h> 40 #include <linux/export.h> 41 #include <linux/sizes.h> 42 43 #include "rds.h" 44 45 /* When transmitting messages in rds_send_xmit, we need to emerge from 46 * time to time and briefly release the CPU. Otherwise the softlock watchdog 47 * will kick our shin. 48 * Also, it seems fairer to not let one busy connection stall all the 49 * others. 50 * 51 * send_batch_count is the number of times we'll loop in send_xmit. Setting 52 * it to 0 will restore the old behavior (where we looped until we had 53 * drained the queue). 54 */ 55 static int send_batch_count = SZ_1K; 56 module_param(send_batch_count, int, 0444); 57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); 58 59 static void rds_send_remove_from_sock(struct list_head *messages, int status); 60 61 /* 62 * Reset the send state. Callers must ensure that this doesn't race with 63 * rds_send_xmit(). 64 */ 65 void rds_send_path_reset(struct rds_conn_path *cp) 66 { 67 struct rds_message *rm, *tmp; 68 unsigned long flags; 69 70 if (cp->cp_xmit_rm) { 71 rm = cp->cp_xmit_rm; 72 cp->cp_xmit_rm = NULL; 73 /* Tell the user the RDMA op is no longer mapped by the 74 * transport. This isn't entirely true (it's flushed out 75 * independently) but as the connection is down, there's 76 * no ongoing RDMA to/from that memory */ 77 rds_message_unmapped(rm); 78 rds_message_put(rm); 79 } 80 81 cp->cp_xmit_sg = 0; 82 cp->cp_xmit_hdr_off = 0; 83 cp->cp_xmit_data_off = 0; 84 cp->cp_xmit_atomic_sent = 0; 85 cp->cp_xmit_rdma_sent = 0; 86 cp->cp_xmit_data_sent = 0; 87 88 cp->cp_conn->c_map_queued = 0; 89 90 cp->cp_unacked_packets = rds_sysctl_max_unacked_packets; 91 cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes; 92 93 /* Mark messages as retransmissions, and move them to the send q */ 94 spin_lock_irqsave(&cp->cp_lock, flags); 95 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { 96 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 97 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); 98 } 99 list_splice_init(&cp->cp_retrans, &cp->cp_send_queue); 100 spin_unlock_irqrestore(&cp->cp_lock, flags); 101 } 102 EXPORT_SYMBOL_GPL(rds_send_path_reset); 103 104 static int acquire_in_xmit(struct rds_conn_path *cp) 105 { 106 return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0; 107 } 108 109 static void release_in_xmit(struct rds_conn_path *cp) 110 { 111 clear_bit(RDS_IN_XMIT, &cp->cp_flags); 112 smp_mb__after_atomic(); 113 /* 114 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a 115 * hot path and finding waiters is very rare. We don't want to walk 116 * the system-wide hashed waitqueue buckets in the fast path only to 117 * almost never find waiters. 118 */ 119 if (waitqueue_active(&cp->cp_waitq)) 120 wake_up_all(&cp->cp_waitq); 121 } 122 123 /* 124 * We're making the conscious trade-off here to only send one message 125 * down the connection at a time. 126 * Pro: 127 * - tx queueing is a simple fifo list 128 * - reassembly is optional and easily done by transports per conn 129 * - no per flow rx lookup at all, straight to the socket 130 * - less per-frag memory and wire overhead 131 * Con: 132 * - queued acks can be delayed behind large messages 133 * Depends: 134 * - small message latency is higher behind queued large messages 135 * - large message latency isn't starved by intervening small sends 136 */ 137 int rds_send_xmit(struct rds_conn_path *cp) 138 { 139 struct rds_connection *conn = cp->cp_conn; 140 struct rds_message *rm; 141 unsigned long flags; 142 unsigned int tmp; 143 struct scatterlist *sg; 144 int ret = 0; 145 LIST_HEAD(to_be_dropped); 146 int batch_count; 147 unsigned long send_gen = 0; 148 149 restart: 150 batch_count = 0; 151 152 /* 153 * sendmsg calls here after having queued its message on the send 154 * queue. We only have one task feeding the connection at a time. If 155 * another thread is already feeding the queue then we back off. This 156 * avoids blocking the caller and trading per-connection data between 157 * caches per message. 158 */ 159 if (!acquire_in_xmit(cp)) { 160 rds_stats_inc(s_send_lock_contention); 161 ret = -ENOMEM; 162 goto out; 163 } 164 165 if (rds_destroy_pending(cp->cp_conn)) { 166 release_in_xmit(cp); 167 ret = -ENETUNREACH; /* dont requeue send work */ 168 goto out; 169 } 170 171 /* 172 * we record the send generation after doing the xmit acquire. 173 * if someone else manages to jump in and do some work, we'll use 174 * this to avoid a goto restart farther down. 175 * 176 * The acquire_in_xmit() check above ensures that only one 177 * caller can increment c_send_gen at any time. 178 */ 179 send_gen = READ_ONCE(cp->cp_send_gen) + 1; 180 WRITE_ONCE(cp->cp_send_gen, send_gen); 181 182 /* 183 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT, 184 * we do the opposite to avoid races. 185 */ 186 if (!rds_conn_path_up(cp)) { 187 release_in_xmit(cp); 188 ret = 0; 189 goto out; 190 } 191 192 if (conn->c_trans->xmit_path_prepare) 193 conn->c_trans->xmit_path_prepare(cp); 194 195 /* 196 * spin trying to push headers and data down the connection until 197 * the connection doesn't make forward progress. 198 */ 199 while (1) { 200 201 rm = cp->cp_xmit_rm; 202 203 /* 204 * If between sending messages, we can send a pending congestion 205 * map update. 206 */ 207 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { 208 rm = rds_cong_update_alloc(conn); 209 if (IS_ERR(rm)) { 210 ret = PTR_ERR(rm); 211 break; 212 } 213 rm->data.op_active = 1; 214 rm->m_inc.i_conn_path = cp; 215 rm->m_inc.i_conn = cp->cp_conn; 216 217 cp->cp_xmit_rm = rm; 218 } 219 220 /* 221 * If not already working on one, grab the next message. 222 * 223 * cp_xmit_rm holds a ref while we're sending this message down 224 * the connction. We can use this ref while holding the 225 * send_sem.. rds_send_reset() is serialized with it. 226 */ 227 if (!rm) { 228 unsigned int len; 229 230 batch_count++; 231 232 /* we want to process as big a batch as we can, but 233 * we also want to avoid softlockups. If we've been 234 * through a lot of messages, lets back off and see 235 * if anyone else jumps in 236 */ 237 if (batch_count >= send_batch_count) 238 goto over_batch; 239 240 spin_lock_irqsave(&cp->cp_lock, flags); 241 242 if (!list_empty(&cp->cp_send_queue)) { 243 rm = list_entry(cp->cp_send_queue.next, 244 struct rds_message, 245 m_conn_item); 246 rds_message_addref(rm); 247 248 /* 249 * Move the message from the send queue to the retransmit 250 * list right away. 251 */ 252 list_move_tail(&rm->m_conn_item, 253 &cp->cp_retrans); 254 } 255 256 spin_unlock_irqrestore(&cp->cp_lock, flags); 257 258 if (!rm) 259 break; 260 261 /* Unfortunately, the way Infiniband deals with 262 * RDMA to a bad MR key is by moving the entire 263 * queue pair to error state. We cold possibly 264 * recover from that, but right now we drop the 265 * connection. 266 * Therefore, we never retransmit messages with RDMA ops. 267 */ 268 if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) || 269 (rm->rdma.op_active && 270 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) { 271 spin_lock_irqsave(&cp->cp_lock, flags); 272 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) 273 list_move(&rm->m_conn_item, &to_be_dropped); 274 spin_unlock_irqrestore(&cp->cp_lock, flags); 275 continue; 276 } 277 278 /* Require an ACK every once in a while */ 279 len = ntohl(rm->m_inc.i_hdr.h_len); 280 if (cp->cp_unacked_packets == 0 || 281 cp->cp_unacked_bytes < len) { 282 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 283 284 cp->cp_unacked_packets = 285 rds_sysctl_max_unacked_packets; 286 cp->cp_unacked_bytes = 287 rds_sysctl_max_unacked_bytes; 288 rds_stats_inc(s_send_ack_required); 289 } else { 290 cp->cp_unacked_bytes -= len; 291 cp->cp_unacked_packets--; 292 } 293 294 cp->cp_xmit_rm = rm; 295 } 296 297 /* The transport either sends the whole rdma or none of it */ 298 if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) { 299 rm->m_final_op = &rm->rdma; 300 /* The transport owns the mapped memory for now. 301 * You can't unmap it while it's on the send queue 302 */ 303 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 304 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma); 305 if (ret) { 306 clear_bit(RDS_MSG_MAPPED, &rm->m_flags); 307 wake_up_interruptible(&rm->m_flush_wait); 308 break; 309 } 310 cp->cp_xmit_rdma_sent = 1; 311 312 } 313 314 if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) { 315 rm->m_final_op = &rm->atomic; 316 /* The transport owns the mapped memory for now. 317 * You can't unmap it while it's on the send queue 318 */ 319 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 320 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic); 321 if (ret) { 322 clear_bit(RDS_MSG_MAPPED, &rm->m_flags); 323 wake_up_interruptible(&rm->m_flush_wait); 324 break; 325 } 326 cp->cp_xmit_atomic_sent = 1; 327 328 } 329 330 /* 331 * A number of cases require an RDS header to be sent 332 * even if there is no data. 333 * We permit 0-byte sends; rds-ping depends on this. 334 * However, if there are exclusively attached silent ops, 335 * we skip the hdr/data send, to enable silent operation. 336 */ 337 if (rm->data.op_nents == 0) { 338 int ops_present; 339 int all_ops_are_silent = 1; 340 341 ops_present = (rm->atomic.op_active || rm->rdma.op_active); 342 if (rm->atomic.op_active && !rm->atomic.op_silent) 343 all_ops_are_silent = 0; 344 if (rm->rdma.op_active && !rm->rdma.op_silent) 345 all_ops_are_silent = 0; 346 347 if (ops_present && all_ops_are_silent 348 && !rm->m_rdma_cookie) 349 rm->data.op_active = 0; 350 } 351 352 if (rm->data.op_active && !cp->cp_xmit_data_sent) { 353 rm->m_final_op = &rm->data; 354 355 ret = conn->c_trans->xmit(conn, rm, 356 cp->cp_xmit_hdr_off, 357 cp->cp_xmit_sg, 358 cp->cp_xmit_data_off); 359 if (ret <= 0) 360 break; 361 362 if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) { 363 tmp = min_t(int, ret, 364 sizeof(struct rds_header) - 365 cp->cp_xmit_hdr_off); 366 cp->cp_xmit_hdr_off += tmp; 367 ret -= tmp; 368 } 369 370 sg = &rm->data.op_sg[cp->cp_xmit_sg]; 371 while (ret) { 372 tmp = min_t(int, ret, sg->length - 373 cp->cp_xmit_data_off); 374 cp->cp_xmit_data_off += tmp; 375 ret -= tmp; 376 if (cp->cp_xmit_data_off == sg->length) { 377 cp->cp_xmit_data_off = 0; 378 sg++; 379 cp->cp_xmit_sg++; 380 BUG_ON(ret != 0 && cp->cp_xmit_sg == 381 rm->data.op_nents); 382 } 383 } 384 385 if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) && 386 (cp->cp_xmit_sg == rm->data.op_nents)) 387 cp->cp_xmit_data_sent = 1; 388 } 389 390 /* 391 * A rm will only take multiple times through this loop 392 * if there is a data op. Thus, if the data is sent (or there was 393 * none), then we're done with the rm. 394 */ 395 if (!rm->data.op_active || cp->cp_xmit_data_sent) { 396 cp->cp_xmit_rm = NULL; 397 cp->cp_xmit_sg = 0; 398 cp->cp_xmit_hdr_off = 0; 399 cp->cp_xmit_data_off = 0; 400 cp->cp_xmit_rdma_sent = 0; 401 cp->cp_xmit_atomic_sent = 0; 402 cp->cp_xmit_data_sent = 0; 403 404 rds_message_put(rm); 405 } 406 } 407 408 over_batch: 409 if (conn->c_trans->xmit_path_complete) 410 conn->c_trans->xmit_path_complete(cp); 411 release_in_xmit(cp); 412 413 /* Nuke any messages we decided not to retransmit. */ 414 if (!list_empty(&to_be_dropped)) { 415 /* irqs on here, so we can put(), unlike above */ 416 list_for_each_entry(rm, &to_be_dropped, m_conn_item) 417 rds_message_put(rm); 418 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); 419 } 420 421 /* 422 * Other senders can queue a message after we last test the send queue 423 * but before we clear RDS_IN_XMIT. In that case they'd back off and 424 * not try and send their newly queued message. We need to check the 425 * send queue after having cleared RDS_IN_XMIT so that their message 426 * doesn't get stuck on the send queue. 427 * 428 * If the transport cannot continue (i.e ret != 0), then it must 429 * call us when more room is available, such as from the tx 430 * completion handler. 431 * 432 * We have an extra generation check here so that if someone manages 433 * to jump in after our release_in_xmit, we'll see that they have done 434 * some work and we will skip our goto 435 */ 436 if (ret == 0) { 437 bool raced; 438 439 smp_mb(); 440 raced = send_gen != READ_ONCE(cp->cp_send_gen); 441 442 if ((test_bit(0, &conn->c_map_queued) || 443 !list_empty(&cp->cp_send_queue)) && !raced) { 444 if (batch_count < send_batch_count) 445 goto restart; 446 rcu_read_lock(); 447 if (rds_destroy_pending(cp->cp_conn)) 448 ret = -ENETUNREACH; 449 else 450 queue_delayed_work(rds_wq, &cp->cp_send_w, 1); 451 rcu_read_unlock(); 452 } else if (raced) { 453 rds_stats_inc(s_send_lock_queue_raced); 454 } 455 } 456 out: 457 return ret; 458 } 459 EXPORT_SYMBOL_GPL(rds_send_xmit); 460 461 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) 462 { 463 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 464 465 assert_spin_locked(&rs->rs_lock); 466 467 BUG_ON(rs->rs_snd_bytes < len); 468 rs->rs_snd_bytes -= len; 469 470 if (rs->rs_snd_bytes == 0) 471 rds_stats_inc(s_send_queue_empty); 472 } 473 474 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, 475 is_acked_func is_acked) 476 { 477 if (is_acked) 478 return is_acked(rm, ack); 479 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; 480 } 481 482 /* 483 * This is pretty similar to what happens below in the ACK 484 * handling code - except that we call here as soon as we get 485 * the IB send completion on the RDMA op and the accompanying 486 * message. 487 */ 488 void rds_rdma_send_complete(struct rds_message *rm, int status) 489 { 490 struct rds_sock *rs = NULL; 491 struct rm_rdma_op *ro; 492 struct rds_notifier *notifier; 493 unsigned long flags; 494 495 spin_lock_irqsave(&rm->m_rs_lock, flags); 496 497 ro = &rm->rdma; 498 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && 499 ro->op_active && ro->op_notify && ro->op_notifier) { 500 notifier = ro->op_notifier; 501 rs = rm->m_rs; 502 sock_hold(rds_rs_to_sk(rs)); 503 504 notifier->n_status = status; 505 spin_lock(&rs->rs_lock); 506 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 507 spin_unlock(&rs->rs_lock); 508 509 ro->op_notifier = NULL; 510 } 511 512 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 513 514 if (rs) { 515 rds_wake_sk_sleep(rs); 516 sock_put(rds_rs_to_sk(rs)); 517 } 518 } 519 EXPORT_SYMBOL_GPL(rds_rdma_send_complete); 520 521 /* 522 * Just like above, except looks at atomic op 523 */ 524 void rds_atomic_send_complete(struct rds_message *rm, int status) 525 { 526 struct rds_sock *rs = NULL; 527 struct rm_atomic_op *ao; 528 struct rds_notifier *notifier; 529 unsigned long flags; 530 531 spin_lock_irqsave(&rm->m_rs_lock, flags); 532 533 ao = &rm->atomic; 534 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) 535 && ao->op_active && ao->op_notify && ao->op_notifier) { 536 notifier = ao->op_notifier; 537 rs = rm->m_rs; 538 sock_hold(rds_rs_to_sk(rs)); 539 540 notifier->n_status = status; 541 spin_lock(&rs->rs_lock); 542 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 543 spin_unlock(&rs->rs_lock); 544 545 ao->op_notifier = NULL; 546 } 547 548 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 549 550 if (rs) { 551 rds_wake_sk_sleep(rs); 552 sock_put(rds_rs_to_sk(rs)); 553 } 554 } 555 EXPORT_SYMBOL_GPL(rds_atomic_send_complete); 556 557 /* 558 * This is the same as rds_rdma_send_complete except we 559 * don't do any locking - we have all the ingredients (message, 560 * socket, socket lock) and can just move the notifier. 561 */ 562 static inline void 563 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) 564 { 565 struct rm_rdma_op *ro; 566 struct rm_atomic_op *ao; 567 568 ro = &rm->rdma; 569 if (ro->op_active && ro->op_notify && ro->op_notifier) { 570 ro->op_notifier->n_status = status; 571 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue); 572 ro->op_notifier = NULL; 573 } 574 575 ao = &rm->atomic; 576 if (ao->op_active && ao->op_notify && ao->op_notifier) { 577 ao->op_notifier->n_status = status; 578 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue); 579 ao->op_notifier = NULL; 580 } 581 582 /* No need to wake the app - caller does this */ 583 } 584 585 /* 586 * This removes messages from the socket's list if they're on it. The list 587 * argument must be private to the caller, we must be able to modify it 588 * without locks. The messages must have a reference held for their 589 * position on the list. This function will drop that reference after 590 * removing the messages from the 'messages' list regardless of if it found 591 * the messages on the socket list or not. 592 */ 593 static void rds_send_remove_from_sock(struct list_head *messages, int status) 594 { 595 unsigned long flags; 596 struct rds_sock *rs = NULL; 597 struct rds_message *rm; 598 599 while (!list_empty(messages)) { 600 int was_on_sock = 0; 601 602 rm = list_entry(messages->next, struct rds_message, 603 m_conn_item); 604 list_del_init(&rm->m_conn_item); 605 606 /* 607 * If we see this flag cleared then we're *sure* that someone 608 * else beat us to removing it from the sock. If we race 609 * with their flag update we'll get the lock and then really 610 * see that the flag has been cleared. 611 * 612 * The message spinlock makes sure nobody clears rm->m_rs 613 * while we're messing with it. It does not prevent the 614 * message from being removed from the socket, though. 615 */ 616 spin_lock_irqsave(&rm->m_rs_lock, flags); 617 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) 618 goto unlock_and_drop; 619 620 if (rs != rm->m_rs) { 621 if (rs) { 622 rds_wake_sk_sleep(rs); 623 sock_put(rds_rs_to_sk(rs)); 624 } 625 rs = rm->m_rs; 626 if (rs) 627 sock_hold(rds_rs_to_sk(rs)); 628 } 629 if (!rs) 630 goto unlock_and_drop; 631 spin_lock(&rs->rs_lock); 632 633 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { 634 struct rm_rdma_op *ro = &rm->rdma; 635 struct rds_notifier *notifier; 636 637 list_del_init(&rm->m_sock_item); 638 rds_send_sndbuf_remove(rs, rm); 639 640 if (ro->op_active && ro->op_notifier && 641 (ro->op_notify || (ro->op_recverr && status))) { 642 notifier = ro->op_notifier; 643 list_add_tail(¬ifier->n_list, 644 &rs->rs_notify_queue); 645 if (!notifier->n_status) 646 notifier->n_status = status; 647 rm->rdma.op_notifier = NULL; 648 } 649 was_on_sock = 1; 650 } 651 spin_unlock(&rs->rs_lock); 652 653 unlock_and_drop: 654 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 655 rds_message_put(rm); 656 if (was_on_sock) 657 rds_message_put(rm); 658 } 659 660 if (rs) { 661 rds_wake_sk_sleep(rs); 662 sock_put(rds_rs_to_sk(rs)); 663 } 664 } 665 666 /* 667 * Transports call here when they've determined that the receiver queued 668 * messages up to, and including, the given sequence number. Messages are 669 * moved to the retrans queue when rds_send_xmit picks them off the send 670 * queue. This means that in the TCP case, the message may not have been 671 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked 672 * checks the RDS_MSG_HAS_ACK_SEQ bit. 673 */ 674 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack, 675 is_acked_func is_acked) 676 { 677 struct rds_message *rm, *tmp; 678 unsigned long flags; 679 LIST_HEAD(list); 680 681 spin_lock_irqsave(&cp->cp_lock, flags); 682 683 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { 684 if (!rds_send_is_acked(rm, ack, is_acked)) 685 break; 686 687 list_move(&rm->m_conn_item, &list); 688 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); 689 } 690 691 /* order flag updates with spin locks */ 692 if (!list_empty(&list)) 693 smp_mb__after_atomic(); 694 695 spin_unlock_irqrestore(&cp->cp_lock, flags); 696 697 /* now remove the messages from the sock list as needed */ 698 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); 699 } 700 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked); 701 702 void rds_send_drop_acked(struct rds_connection *conn, u64 ack, 703 is_acked_func is_acked) 704 { 705 WARN_ON(conn->c_trans->t_mp_capable); 706 rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked); 707 } 708 EXPORT_SYMBOL_GPL(rds_send_drop_acked); 709 710 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest) 711 { 712 struct rds_message *rm, *tmp; 713 struct rds_connection *conn; 714 struct rds_conn_path *cp; 715 unsigned long flags; 716 LIST_HEAD(list); 717 718 /* get all the messages we're dropping under the rs lock */ 719 spin_lock_irqsave(&rs->rs_lock, flags); 720 721 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { 722 if (dest && 723 (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) || 724 dest->sin6_port != rm->m_inc.i_hdr.h_dport)) 725 continue; 726 727 list_move(&rm->m_sock_item, &list); 728 rds_send_sndbuf_remove(rs, rm); 729 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 730 } 731 732 /* order flag updates with the rs lock */ 733 smp_mb__after_atomic(); 734 735 spin_unlock_irqrestore(&rs->rs_lock, flags); 736 737 if (list_empty(&list)) 738 return; 739 740 /* Remove the messages from the conn */ 741 list_for_each_entry(rm, &list, m_sock_item) { 742 743 conn = rm->m_inc.i_conn; 744 if (conn->c_trans->t_mp_capable) 745 cp = rm->m_inc.i_conn_path; 746 else 747 cp = &conn->c_path[0]; 748 749 spin_lock_irqsave(&cp->cp_lock, flags); 750 /* 751 * Maybe someone else beat us to removing rm from the conn. 752 * If we race with their flag update we'll get the lock and 753 * then really see that the flag has been cleared. 754 */ 755 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { 756 spin_unlock_irqrestore(&cp->cp_lock, flags); 757 continue; 758 } 759 list_del_init(&rm->m_conn_item); 760 spin_unlock_irqrestore(&cp->cp_lock, flags); 761 762 /* 763 * Couldn't grab m_rs_lock in top loop (lock ordering), 764 * but we can now. 765 */ 766 spin_lock_irqsave(&rm->m_rs_lock, flags); 767 768 spin_lock(&rs->rs_lock); 769 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 770 spin_unlock(&rs->rs_lock); 771 772 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 773 774 rds_message_put(rm); 775 } 776 777 rds_wake_sk_sleep(rs); 778 779 while (!list_empty(&list)) { 780 rm = list_entry(list.next, struct rds_message, m_sock_item); 781 list_del_init(&rm->m_sock_item); 782 rds_message_wait(rm); 783 784 /* just in case the code above skipped this message 785 * because RDS_MSG_ON_CONN wasn't set, run it again here 786 * taking m_rs_lock is the only thing that keeps us 787 * from racing with ack processing. 788 */ 789 spin_lock_irqsave(&rm->m_rs_lock, flags); 790 791 spin_lock(&rs->rs_lock); 792 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 793 spin_unlock(&rs->rs_lock); 794 795 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 796 797 rds_message_put(rm); 798 } 799 } 800 801 /* 802 * we only want this to fire once so we use the callers 'queued'. It's 803 * possible that another thread can race with us and remove the 804 * message from the flow with RDS_CANCEL_SENT_TO. 805 */ 806 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, 807 struct rds_conn_path *cp, 808 struct rds_message *rm, __be16 sport, 809 __be16 dport, int *queued) 810 { 811 unsigned long flags; 812 u32 len; 813 814 if (*queued) 815 goto out; 816 817 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 818 819 /* this is the only place which holds both the socket's rs_lock 820 * and the connection's c_lock */ 821 spin_lock_irqsave(&rs->rs_lock, flags); 822 823 /* 824 * If there is a little space in sndbuf, we don't queue anything, 825 * and userspace gets -EAGAIN. But poll() indicates there's send 826 * room. This can lead to bad behavior (spinning) if snd_bytes isn't 827 * freed up by incoming acks. So we check the *old* value of 828 * rs_snd_bytes here to allow the last msg to exceed the buffer, 829 * and poll() now knows no more data can be sent. 830 */ 831 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { 832 rs->rs_snd_bytes += len; 833 834 /* let recv side know we are close to send space exhaustion. 835 * This is probably not the optimal way to do it, as this 836 * means we set the flag on *all* messages as soon as our 837 * throughput hits a certain threshold. 838 */ 839 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) 840 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 841 842 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); 843 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 844 rds_message_addref(rm); 845 sock_hold(rds_rs_to_sk(rs)); 846 rm->m_rs = rs; 847 848 /* The code ordering is a little weird, but we're 849 trying to minimize the time we hold c_lock */ 850 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); 851 rm->m_inc.i_conn = conn; 852 rm->m_inc.i_conn_path = cp; 853 rds_message_addref(rm); 854 855 spin_lock(&cp->cp_lock); 856 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++); 857 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); 858 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 859 spin_unlock(&cp->cp_lock); 860 861 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", 862 rm, len, rs, rs->rs_snd_bytes, 863 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); 864 865 *queued = 1; 866 } 867 868 spin_unlock_irqrestore(&rs->rs_lock, flags); 869 out: 870 return *queued; 871 } 872 873 /* 874 * rds_message is getting to be quite complicated, and we'd like to allocate 875 * it all in one go. This figures out how big it needs to be up front. 876 */ 877 static int rds_rm_size(struct msghdr *msg, int num_sgs, 878 struct rds_iov_vector_arr *vct) 879 { 880 struct cmsghdr *cmsg; 881 int size = 0; 882 int cmsg_groups = 0; 883 int retval; 884 bool zcopy_cookie = false; 885 struct rds_iov_vector *iov, *tmp_iov; 886 887 if (num_sgs < 0) 888 return -EINVAL; 889 890 for_each_cmsghdr(cmsg, msg) { 891 if (!CMSG_OK(msg, cmsg)) 892 return -EINVAL; 893 894 if (cmsg->cmsg_level != SOL_RDS) 895 continue; 896 897 switch (cmsg->cmsg_type) { 898 case RDS_CMSG_RDMA_ARGS: 899 if (vct->indx >= vct->len) { 900 vct->len += vct->incr; 901 tmp_iov = 902 krealloc(vct->vec, 903 vct->len * 904 sizeof(struct rds_iov_vector), 905 GFP_KERNEL); 906 if (!tmp_iov) { 907 vct->len -= vct->incr; 908 return -ENOMEM; 909 } 910 vct->vec = tmp_iov; 911 } 912 iov = &vct->vec[vct->indx]; 913 memset(iov, 0, sizeof(struct rds_iov_vector)); 914 vct->indx++; 915 cmsg_groups |= 1; 916 retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov); 917 if (retval < 0) 918 return retval; 919 size += retval; 920 921 break; 922 923 case RDS_CMSG_ZCOPY_COOKIE: 924 zcopy_cookie = true; 925 /* fall through */ 926 927 case RDS_CMSG_RDMA_DEST: 928 case RDS_CMSG_RDMA_MAP: 929 cmsg_groups |= 2; 930 /* these are valid but do no add any size */ 931 break; 932 933 case RDS_CMSG_ATOMIC_CSWP: 934 case RDS_CMSG_ATOMIC_FADD: 935 case RDS_CMSG_MASKED_ATOMIC_CSWP: 936 case RDS_CMSG_MASKED_ATOMIC_FADD: 937 cmsg_groups |= 1; 938 size += sizeof(struct scatterlist); 939 break; 940 941 default: 942 return -EINVAL; 943 } 944 945 } 946 947 if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie) 948 return -EINVAL; 949 950 size += num_sgs * sizeof(struct scatterlist); 951 952 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */ 953 if (cmsg_groups == 3) 954 return -EINVAL; 955 956 return size; 957 } 958 959 static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm, 960 struct cmsghdr *cmsg) 961 { 962 u32 *cookie; 963 964 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) || 965 !rm->data.op_mmp_znotifier) 966 return -EINVAL; 967 cookie = CMSG_DATA(cmsg); 968 rm->data.op_mmp_znotifier->z_cookie = *cookie; 969 return 0; 970 } 971 972 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, 973 struct msghdr *msg, int *allocated_mr, 974 struct rds_iov_vector_arr *vct) 975 { 976 struct cmsghdr *cmsg; 977 int ret = 0, ind = 0; 978 979 for_each_cmsghdr(cmsg, msg) { 980 if (!CMSG_OK(msg, cmsg)) 981 return -EINVAL; 982 983 if (cmsg->cmsg_level != SOL_RDS) 984 continue; 985 986 /* As a side effect, RDMA_DEST and RDMA_MAP will set 987 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr. 988 */ 989 switch (cmsg->cmsg_type) { 990 case RDS_CMSG_RDMA_ARGS: 991 if (ind >= vct->indx) 992 return -ENOMEM; 993 ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]); 994 ind++; 995 break; 996 997 case RDS_CMSG_RDMA_DEST: 998 ret = rds_cmsg_rdma_dest(rs, rm, cmsg); 999 break; 1000 1001 case RDS_CMSG_RDMA_MAP: 1002 ret = rds_cmsg_rdma_map(rs, rm, cmsg); 1003 if (!ret) 1004 *allocated_mr = 1; 1005 else if (ret == -ENODEV) 1006 /* Accommodate the get_mr() case which can fail 1007 * if connection isn't established yet. 1008 */ 1009 ret = -EAGAIN; 1010 break; 1011 case RDS_CMSG_ATOMIC_CSWP: 1012 case RDS_CMSG_ATOMIC_FADD: 1013 case RDS_CMSG_MASKED_ATOMIC_CSWP: 1014 case RDS_CMSG_MASKED_ATOMIC_FADD: 1015 ret = rds_cmsg_atomic(rs, rm, cmsg); 1016 break; 1017 1018 case RDS_CMSG_ZCOPY_COOKIE: 1019 ret = rds_cmsg_zcopy(rs, rm, cmsg); 1020 break; 1021 1022 default: 1023 return -EINVAL; 1024 } 1025 1026 if (ret) 1027 break; 1028 } 1029 1030 return ret; 1031 } 1032 1033 static int rds_send_mprds_hash(struct rds_sock *rs, 1034 struct rds_connection *conn, int nonblock) 1035 { 1036 int hash; 1037 1038 if (conn->c_npaths == 0) 1039 hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS); 1040 else 1041 hash = RDS_MPATH_HASH(rs, conn->c_npaths); 1042 if (conn->c_npaths == 0 && hash != 0) { 1043 rds_send_ping(conn, 0); 1044 1045 /* The underlying connection is not up yet. Need to wait 1046 * until it is up to be sure that the non-zero c_path can be 1047 * used. But if we are interrupted, we have to use the zero 1048 * c_path in case the connection ends up being non-MP capable. 1049 */ 1050 if (conn->c_npaths == 0) { 1051 /* Cannot wait for the connection be made, so just use 1052 * the base c_path. 1053 */ 1054 if (nonblock) 1055 return 0; 1056 if (wait_event_interruptible(conn->c_hs_waitq, 1057 conn->c_npaths != 0)) 1058 hash = 0; 1059 } 1060 if (conn->c_npaths == 1) 1061 hash = 0; 1062 } 1063 return hash; 1064 } 1065 1066 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes) 1067 { 1068 struct rds_rdma_args *args; 1069 struct cmsghdr *cmsg; 1070 1071 for_each_cmsghdr(cmsg, msg) { 1072 if (!CMSG_OK(msg, cmsg)) 1073 return -EINVAL; 1074 1075 if (cmsg->cmsg_level != SOL_RDS) 1076 continue; 1077 1078 if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) { 1079 if (cmsg->cmsg_len < 1080 CMSG_LEN(sizeof(struct rds_rdma_args))) 1081 return -EINVAL; 1082 args = CMSG_DATA(cmsg); 1083 *rdma_bytes += args->remote_vec.bytes; 1084 } 1085 } 1086 return 0; 1087 } 1088 1089 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len) 1090 { 1091 struct sock *sk = sock->sk; 1092 struct rds_sock *rs = rds_sk_to_rs(sk); 1093 DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); 1094 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1095 __be16 dport; 1096 struct rds_message *rm = NULL; 1097 struct rds_connection *conn; 1098 int ret = 0; 1099 int queued = 0, allocated_mr = 0; 1100 int nonblock = msg->msg_flags & MSG_DONTWAIT; 1101 long timeo = sock_sndtimeo(sk, nonblock); 1102 struct rds_conn_path *cpath; 1103 struct in6_addr daddr; 1104 __u32 scope_id = 0; 1105 size_t total_payload_len = payload_len, rdma_payload_len = 0; 1106 bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) && 1107 sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY)); 1108 int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE); 1109 int namelen; 1110 struct rds_iov_vector_arr vct; 1111 int ind; 1112 1113 memset(&vct, 0, sizeof(vct)); 1114 1115 /* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */ 1116 vct.incr = 1; 1117 1118 /* Mirror Linux UDP mirror of BSD error message compatibility */ 1119 /* XXX: Perhaps MSG_MORE someday */ 1120 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) { 1121 ret = -EOPNOTSUPP; 1122 goto out; 1123 } 1124 1125 namelen = msg->msg_namelen; 1126 if (namelen != 0) { 1127 if (namelen < sizeof(*usin)) { 1128 ret = -EINVAL; 1129 goto out; 1130 } 1131 switch (usin->sin_family) { 1132 case AF_INET: 1133 if (usin->sin_addr.s_addr == htonl(INADDR_ANY) || 1134 usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) || 1135 IN_MULTICAST(ntohl(usin->sin_addr.s_addr))) { 1136 ret = -EINVAL; 1137 goto out; 1138 } 1139 ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr); 1140 dport = usin->sin_port; 1141 break; 1142 1143 #if IS_ENABLED(CONFIG_IPV6) 1144 case AF_INET6: { 1145 int addr_type; 1146 1147 if (namelen < sizeof(*sin6)) { 1148 ret = -EINVAL; 1149 goto out; 1150 } 1151 addr_type = ipv6_addr_type(&sin6->sin6_addr); 1152 if (!(addr_type & IPV6_ADDR_UNICAST)) { 1153 __be32 addr4; 1154 1155 if (!(addr_type & IPV6_ADDR_MAPPED)) { 1156 ret = -EINVAL; 1157 goto out; 1158 } 1159 1160 /* It is a mapped address. Need to do some 1161 * sanity checks. 1162 */ 1163 addr4 = sin6->sin6_addr.s6_addr32[3]; 1164 if (addr4 == htonl(INADDR_ANY) || 1165 addr4 == htonl(INADDR_BROADCAST) || 1166 IN_MULTICAST(ntohl(addr4))) { 1167 ret = -EINVAL; 1168 goto out; 1169 } 1170 } 1171 if (addr_type & IPV6_ADDR_LINKLOCAL) { 1172 if (sin6->sin6_scope_id == 0) { 1173 ret = -EINVAL; 1174 goto out; 1175 } 1176 scope_id = sin6->sin6_scope_id; 1177 } 1178 1179 daddr = sin6->sin6_addr; 1180 dport = sin6->sin6_port; 1181 break; 1182 } 1183 #endif 1184 1185 default: 1186 ret = -EINVAL; 1187 goto out; 1188 } 1189 } else { 1190 /* We only care about consistency with ->connect() */ 1191 lock_sock(sk); 1192 daddr = rs->rs_conn_addr; 1193 dport = rs->rs_conn_port; 1194 scope_id = rs->rs_bound_scope_id; 1195 release_sock(sk); 1196 } 1197 1198 lock_sock(sk); 1199 if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) { 1200 release_sock(sk); 1201 ret = -ENOTCONN; 1202 goto out; 1203 } else if (namelen != 0) { 1204 /* Cannot send to an IPv4 address using an IPv6 source 1205 * address and cannot send to an IPv6 address using an 1206 * IPv4 source address. 1207 */ 1208 if (ipv6_addr_v4mapped(&daddr) ^ 1209 ipv6_addr_v4mapped(&rs->rs_bound_addr)) { 1210 release_sock(sk); 1211 ret = -EOPNOTSUPP; 1212 goto out; 1213 } 1214 /* If the socket is already bound to a link local address, 1215 * it can only send to peers on the same link. But allow 1216 * communicating beween link local and non-link local address. 1217 */ 1218 if (scope_id != rs->rs_bound_scope_id) { 1219 if (!scope_id) { 1220 scope_id = rs->rs_bound_scope_id; 1221 } else if (rs->rs_bound_scope_id) { 1222 release_sock(sk); 1223 ret = -EINVAL; 1224 goto out; 1225 } 1226 } 1227 } 1228 release_sock(sk); 1229 1230 ret = rds_rdma_bytes(msg, &rdma_payload_len); 1231 if (ret) 1232 goto out; 1233 1234 total_payload_len += rdma_payload_len; 1235 if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) { 1236 ret = -EMSGSIZE; 1237 goto out; 1238 } 1239 1240 if (payload_len > rds_sk_sndbuf(rs)) { 1241 ret = -EMSGSIZE; 1242 goto out; 1243 } 1244 1245 if (zcopy) { 1246 if (rs->rs_transport->t_type != RDS_TRANS_TCP) { 1247 ret = -EOPNOTSUPP; 1248 goto out; 1249 } 1250 num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX); 1251 } 1252 /* size of rm including all sgs */ 1253 ret = rds_rm_size(msg, num_sgs, &vct); 1254 if (ret < 0) 1255 goto out; 1256 1257 rm = rds_message_alloc(ret, GFP_KERNEL); 1258 if (!rm) { 1259 ret = -ENOMEM; 1260 goto out; 1261 } 1262 1263 /* Attach data to the rm */ 1264 if (payload_len) { 1265 rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs, &ret); 1266 if (!rm->data.op_sg) 1267 goto out; 1268 ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy); 1269 if (ret) 1270 goto out; 1271 } 1272 rm->data.op_active = 1; 1273 1274 rm->m_daddr = daddr; 1275 1276 /* rds_conn_create has a spinlock that runs with IRQ off. 1277 * Caching the conn in the socket helps a lot. */ 1278 if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr) && 1279 rs->rs_tos == rs->rs_conn->c_tos) { 1280 conn = rs->rs_conn; 1281 } else { 1282 conn = rds_conn_create_outgoing(sock_net(sock->sk), 1283 &rs->rs_bound_addr, &daddr, 1284 rs->rs_transport, rs->rs_tos, 1285 sock->sk->sk_allocation, 1286 scope_id); 1287 if (IS_ERR(conn)) { 1288 ret = PTR_ERR(conn); 1289 goto out; 1290 } 1291 rs->rs_conn = conn; 1292 } 1293 1294 if (conn->c_trans->t_mp_capable) 1295 cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)]; 1296 else 1297 cpath = &conn->c_path[0]; 1298 1299 rm->m_conn_path = cpath; 1300 1301 /* Parse any control messages the user may have included. */ 1302 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct); 1303 if (ret) { 1304 /* Trigger connection so that its ready for the next retry */ 1305 if (ret == -EAGAIN) 1306 rds_conn_connect_if_down(conn); 1307 goto out; 1308 } 1309 1310 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) { 1311 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", 1312 &rm->rdma, conn->c_trans->xmit_rdma); 1313 ret = -EOPNOTSUPP; 1314 goto out; 1315 } 1316 1317 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) { 1318 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n", 1319 &rm->atomic, conn->c_trans->xmit_atomic); 1320 ret = -EOPNOTSUPP; 1321 goto out; 1322 } 1323 1324 if (rds_destroy_pending(conn)) { 1325 ret = -EAGAIN; 1326 goto out; 1327 } 1328 1329 rds_conn_path_connect_if_down(cpath); 1330 1331 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); 1332 if (ret) { 1333 rs->rs_seen_congestion = 1; 1334 goto out; 1335 } 1336 while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port, 1337 dport, &queued)) { 1338 rds_stats_inc(s_send_queue_full); 1339 1340 if (nonblock) { 1341 ret = -EAGAIN; 1342 goto out; 1343 } 1344 1345 timeo = wait_event_interruptible_timeout(*sk_sleep(sk), 1346 rds_send_queue_rm(rs, conn, cpath, rm, 1347 rs->rs_bound_port, 1348 dport, 1349 &queued), 1350 timeo); 1351 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); 1352 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) 1353 continue; 1354 1355 ret = timeo; 1356 if (ret == 0) 1357 ret = -ETIMEDOUT; 1358 goto out; 1359 } 1360 1361 /* 1362 * By now we've committed to the send. We reuse rds_send_worker() 1363 * to retry sends in the rds thread if the transport asks us to. 1364 */ 1365 rds_stats_inc(s_send_queued); 1366 1367 ret = rds_send_xmit(cpath); 1368 if (ret == -ENOMEM || ret == -EAGAIN) { 1369 ret = 0; 1370 rcu_read_lock(); 1371 if (rds_destroy_pending(cpath->cp_conn)) 1372 ret = -ENETUNREACH; 1373 else 1374 queue_delayed_work(rds_wq, &cpath->cp_send_w, 1); 1375 rcu_read_unlock(); 1376 } 1377 if (ret) 1378 goto out; 1379 rds_message_put(rm); 1380 1381 for (ind = 0; ind < vct.indx; ind++) 1382 kfree(vct.vec[ind].iov); 1383 kfree(vct.vec); 1384 1385 return payload_len; 1386 1387 out: 1388 for (ind = 0; ind < vct.indx; ind++) 1389 kfree(vct.vec[ind].iov); 1390 kfree(vct.vec); 1391 1392 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. 1393 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN 1394 * or in any other way, we need to destroy the MR again */ 1395 if (allocated_mr) 1396 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); 1397 1398 if (rm) 1399 rds_message_put(rm); 1400 return ret; 1401 } 1402 1403 /* 1404 * send out a probe. Can be shared by rds_send_ping, 1405 * rds_send_pong, rds_send_hb. 1406 * rds_send_hb should use h_flags 1407 * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED 1408 * or 1409 * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED 1410 */ 1411 static int 1412 rds_send_probe(struct rds_conn_path *cp, __be16 sport, 1413 __be16 dport, u8 h_flags) 1414 { 1415 struct rds_message *rm; 1416 unsigned long flags; 1417 int ret = 0; 1418 1419 rm = rds_message_alloc(0, GFP_ATOMIC); 1420 if (!rm) { 1421 ret = -ENOMEM; 1422 goto out; 1423 } 1424 1425 rm->m_daddr = cp->cp_conn->c_faddr; 1426 rm->data.op_active = 1; 1427 1428 rds_conn_path_connect_if_down(cp); 1429 1430 ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL); 1431 if (ret) 1432 goto out; 1433 1434 spin_lock_irqsave(&cp->cp_lock, flags); 1435 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); 1436 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 1437 rds_message_addref(rm); 1438 rm->m_inc.i_conn = cp->cp_conn; 1439 rm->m_inc.i_conn_path = cp; 1440 1441 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 1442 cp->cp_next_tx_seq); 1443 rm->m_inc.i_hdr.h_flags |= h_flags; 1444 cp->cp_next_tx_seq++; 1445 1446 if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) && 1447 cp->cp_conn->c_trans->t_mp_capable) { 1448 u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS); 1449 u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num); 1450 1451 rds_message_add_extension(&rm->m_inc.i_hdr, 1452 RDS_EXTHDR_NPATHS, &npaths, 1453 sizeof(npaths)); 1454 rds_message_add_extension(&rm->m_inc.i_hdr, 1455 RDS_EXTHDR_GEN_NUM, 1456 &my_gen_num, 1457 sizeof(u32)); 1458 } 1459 spin_unlock_irqrestore(&cp->cp_lock, flags); 1460 1461 rds_stats_inc(s_send_queued); 1462 rds_stats_inc(s_send_pong); 1463 1464 /* schedule the send work on rds_wq */ 1465 rcu_read_lock(); 1466 if (!rds_destroy_pending(cp->cp_conn)) 1467 queue_delayed_work(rds_wq, &cp->cp_send_w, 1); 1468 rcu_read_unlock(); 1469 1470 rds_message_put(rm); 1471 return 0; 1472 1473 out: 1474 if (rm) 1475 rds_message_put(rm); 1476 return ret; 1477 } 1478 1479 int 1480 rds_send_pong(struct rds_conn_path *cp, __be16 dport) 1481 { 1482 return rds_send_probe(cp, 0, dport, 0); 1483 } 1484 1485 void 1486 rds_send_ping(struct rds_connection *conn, int cp_index) 1487 { 1488 unsigned long flags; 1489 struct rds_conn_path *cp = &conn->c_path[cp_index]; 1490 1491 spin_lock_irqsave(&cp->cp_lock, flags); 1492 if (conn->c_ping_triggered) { 1493 spin_unlock_irqrestore(&cp->cp_lock, flags); 1494 return; 1495 } 1496 conn->c_ping_triggered = 1; 1497 spin_unlock_irqrestore(&cp->cp_lock, flags); 1498 rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0); 1499 } 1500 EXPORT_SYMBOL_GPL(rds_send_ping); 1501