xref: /openbmc/linux/net/rds/send.c (revision 8b030a57)
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42 
43 #include "rds.h"
44 
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46  * time to time and briefly release the CPU. Otherwise the softlock watchdog
47  * will kick our shin.
48  * Also, it seems fairer to not let one busy connection stall all the
49  * others.
50  *
51  * send_batch_count is the number of times we'll loop in send_xmit. Setting
52  * it to 0 will restore the old behavior (where we looped until we had
53  * drained the queue).
54  */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58 
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60 
61 /*
62  * Reset the send state.  Callers must ensure that this doesn't race with
63  * rds_send_xmit().
64  */
65 void rds_send_path_reset(struct rds_conn_path *cp)
66 {
67 	struct rds_message *rm, *tmp;
68 	unsigned long flags;
69 
70 	if (cp->cp_xmit_rm) {
71 		rm = cp->cp_xmit_rm;
72 		cp->cp_xmit_rm = NULL;
73 		/* Tell the user the RDMA op is no longer mapped by the
74 		 * transport. This isn't entirely true (it's flushed out
75 		 * independently) but as the connection is down, there's
76 		 * no ongoing RDMA to/from that memory */
77 		rds_message_unmapped(rm);
78 		rds_message_put(rm);
79 	}
80 
81 	cp->cp_xmit_sg = 0;
82 	cp->cp_xmit_hdr_off = 0;
83 	cp->cp_xmit_data_off = 0;
84 	cp->cp_xmit_atomic_sent = 0;
85 	cp->cp_xmit_rdma_sent = 0;
86 	cp->cp_xmit_data_sent = 0;
87 
88 	cp->cp_conn->c_map_queued = 0;
89 
90 	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 
93 	/* Mark messages as retransmissions, and move them to the send q */
94 	spin_lock_irqsave(&cp->cp_lock, flags);
95 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 	}
99 	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 	spin_unlock_irqrestore(&cp->cp_lock, flags);
101 }
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
103 
104 static int acquire_in_xmit(struct rds_conn_path *cp)
105 {
106 	return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
107 }
108 
109 static void release_in_xmit(struct rds_conn_path *cp)
110 {
111 	clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 	smp_mb__after_atomic();
113 	/*
114 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 	 * hot path and finding waiters is very rare.  We don't want to walk
116 	 * the system-wide hashed waitqueue buckets in the fast path only to
117 	 * almost never find waiters.
118 	 */
119 	if (waitqueue_active(&cp->cp_waitq))
120 		wake_up_all(&cp->cp_waitq);
121 }
122 
123 /*
124  * We're making the conscious trade-off here to only send one message
125  * down the connection at a time.
126  *   Pro:
127  *      - tx queueing is a simple fifo list
128  *   	- reassembly is optional and easily done by transports per conn
129  *      - no per flow rx lookup at all, straight to the socket
130  *   	- less per-frag memory and wire overhead
131  *   Con:
132  *      - queued acks can be delayed behind large messages
133  *   Depends:
134  *      - small message latency is higher behind queued large messages
135  *      - large message latency isn't starved by intervening small sends
136  */
137 int rds_send_xmit(struct rds_conn_path *cp)
138 {
139 	struct rds_connection *conn = cp->cp_conn;
140 	struct rds_message *rm;
141 	unsigned long flags;
142 	unsigned int tmp;
143 	struct scatterlist *sg;
144 	int ret = 0;
145 	LIST_HEAD(to_be_dropped);
146 	int batch_count;
147 	unsigned long send_gen = 0;
148 
149 restart:
150 	batch_count = 0;
151 
152 	/*
153 	 * sendmsg calls here after having queued its message on the send
154 	 * queue.  We only have one task feeding the connection at a time.  If
155 	 * another thread is already feeding the queue then we back off.  This
156 	 * avoids blocking the caller and trading per-connection data between
157 	 * caches per message.
158 	 */
159 	if (!acquire_in_xmit(cp)) {
160 		rds_stats_inc(s_send_lock_contention);
161 		ret = -ENOMEM;
162 		goto out;
163 	}
164 
165 	if (rds_destroy_pending(cp->cp_conn)) {
166 		release_in_xmit(cp);
167 		ret = -ENETUNREACH; /* dont requeue send work */
168 		goto out;
169 	}
170 
171 	/*
172 	 * we record the send generation after doing the xmit acquire.
173 	 * if someone else manages to jump in and do some work, we'll use
174 	 * this to avoid a goto restart farther down.
175 	 *
176 	 * The acquire_in_xmit() check above ensures that only one
177 	 * caller can increment c_send_gen at any time.
178 	 */
179 	send_gen = READ_ONCE(cp->cp_send_gen) + 1;
180 	WRITE_ONCE(cp->cp_send_gen, send_gen);
181 
182 	/*
183 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
184 	 * we do the opposite to avoid races.
185 	 */
186 	if (!rds_conn_path_up(cp)) {
187 		release_in_xmit(cp);
188 		ret = 0;
189 		goto out;
190 	}
191 
192 	if (conn->c_trans->xmit_path_prepare)
193 		conn->c_trans->xmit_path_prepare(cp);
194 
195 	/*
196 	 * spin trying to push headers and data down the connection until
197 	 * the connection doesn't make forward progress.
198 	 */
199 	while (1) {
200 
201 		rm = cp->cp_xmit_rm;
202 
203 		/*
204 		 * If between sending messages, we can send a pending congestion
205 		 * map update.
206 		 */
207 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
208 			rm = rds_cong_update_alloc(conn);
209 			if (IS_ERR(rm)) {
210 				ret = PTR_ERR(rm);
211 				break;
212 			}
213 			rm->data.op_active = 1;
214 			rm->m_inc.i_conn_path = cp;
215 			rm->m_inc.i_conn = cp->cp_conn;
216 
217 			cp->cp_xmit_rm = rm;
218 		}
219 
220 		/*
221 		 * If not already working on one, grab the next message.
222 		 *
223 		 * cp_xmit_rm holds a ref while we're sending this message down
224 		 * the connction.  We can use this ref while holding the
225 		 * send_sem.. rds_send_reset() is serialized with it.
226 		 */
227 		if (!rm) {
228 			unsigned int len;
229 
230 			batch_count++;
231 
232 			/* we want to process as big a batch as we can, but
233 			 * we also want to avoid softlockups.  If we've been
234 			 * through a lot of messages, lets back off and see
235 			 * if anyone else jumps in
236 			 */
237 			if (batch_count >= send_batch_count)
238 				goto over_batch;
239 
240 			spin_lock_irqsave(&cp->cp_lock, flags);
241 
242 			if (!list_empty(&cp->cp_send_queue)) {
243 				rm = list_entry(cp->cp_send_queue.next,
244 						struct rds_message,
245 						m_conn_item);
246 				rds_message_addref(rm);
247 
248 				/*
249 				 * Move the message from the send queue to the retransmit
250 				 * list right away.
251 				 */
252 				list_move_tail(&rm->m_conn_item,
253 					       &cp->cp_retrans);
254 			}
255 
256 			spin_unlock_irqrestore(&cp->cp_lock, flags);
257 
258 			if (!rm)
259 				break;
260 
261 			/* Unfortunately, the way Infiniband deals with
262 			 * RDMA to a bad MR key is by moving the entire
263 			 * queue pair to error state. We cold possibly
264 			 * recover from that, but right now we drop the
265 			 * connection.
266 			 * Therefore, we never retransmit messages with RDMA ops.
267 			 */
268 			if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
269 			    (rm->rdma.op_active &&
270 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
271 				spin_lock_irqsave(&cp->cp_lock, flags);
272 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
273 					list_move(&rm->m_conn_item, &to_be_dropped);
274 				spin_unlock_irqrestore(&cp->cp_lock, flags);
275 				continue;
276 			}
277 
278 			/* Require an ACK every once in a while */
279 			len = ntohl(rm->m_inc.i_hdr.h_len);
280 			if (cp->cp_unacked_packets == 0 ||
281 			    cp->cp_unacked_bytes < len) {
282 				set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
283 
284 				cp->cp_unacked_packets =
285 					rds_sysctl_max_unacked_packets;
286 				cp->cp_unacked_bytes =
287 					rds_sysctl_max_unacked_bytes;
288 				rds_stats_inc(s_send_ack_required);
289 			} else {
290 				cp->cp_unacked_bytes -= len;
291 				cp->cp_unacked_packets--;
292 			}
293 
294 			cp->cp_xmit_rm = rm;
295 		}
296 
297 		/* The transport either sends the whole rdma or none of it */
298 		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
299 			rm->m_final_op = &rm->rdma;
300 			/* The transport owns the mapped memory for now.
301 			 * You can't unmap it while it's on the send queue
302 			 */
303 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
304 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
305 			if (ret) {
306 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
307 				wake_up_interruptible(&rm->m_flush_wait);
308 				break;
309 			}
310 			cp->cp_xmit_rdma_sent = 1;
311 
312 		}
313 
314 		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
315 			rm->m_final_op = &rm->atomic;
316 			/* The transport owns the mapped memory for now.
317 			 * You can't unmap it while it's on the send queue
318 			 */
319 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
320 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
321 			if (ret) {
322 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
323 				wake_up_interruptible(&rm->m_flush_wait);
324 				break;
325 			}
326 			cp->cp_xmit_atomic_sent = 1;
327 
328 		}
329 
330 		/*
331 		 * A number of cases require an RDS header to be sent
332 		 * even if there is no data.
333 		 * We permit 0-byte sends; rds-ping depends on this.
334 		 * However, if there are exclusively attached silent ops,
335 		 * we skip the hdr/data send, to enable silent operation.
336 		 */
337 		if (rm->data.op_nents == 0) {
338 			int ops_present;
339 			int all_ops_are_silent = 1;
340 
341 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
342 			if (rm->atomic.op_active && !rm->atomic.op_silent)
343 				all_ops_are_silent = 0;
344 			if (rm->rdma.op_active && !rm->rdma.op_silent)
345 				all_ops_are_silent = 0;
346 
347 			if (ops_present && all_ops_are_silent
348 			    && !rm->m_rdma_cookie)
349 				rm->data.op_active = 0;
350 		}
351 
352 		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
353 			rm->m_final_op = &rm->data;
354 
355 			ret = conn->c_trans->xmit(conn, rm,
356 						  cp->cp_xmit_hdr_off,
357 						  cp->cp_xmit_sg,
358 						  cp->cp_xmit_data_off);
359 			if (ret <= 0)
360 				break;
361 
362 			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
363 				tmp = min_t(int, ret,
364 					    sizeof(struct rds_header) -
365 					    cp->cp_xmit_hdr_off);
366 				cp->cp_xmit_hdr_off += tmp;
367 				ret -= tmp;
368 			}
369 
370 			sg = &rm->data.op_sg[cp->cp_xmit_sg];
371 			while (ret) {
372 				tmp = min_t(int, ret, sg->length -
373 						      cp->cp_xmit_data_off);
374 				cp->cp_xmit_data_off += tmp;
375 				ret -= tmp;
376 				if (cp->cp_xmit_data_off == sg->length) {
377 					cp->cp_xmit_data_off = 0;
378 					sg++;
379 					cp->cp_xmit_sg++;
380 					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
381 					       rm->data.op_nents);
382 				}
383 			}
384 
385 			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
386 			    (cp->cp_xmit_sg == rm->data.op_nents))
387 				cp->cp_xmit_data_sent = 1;
388 		}
389 
390 		/*
391 		 * A rm will only take multiple times through this loop
392 		 * if there is a data op. Thus, if the data is sent (or there was
393 		 * none), then we're done with the rm.
394 		 */
395 		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
396 			cp->cp_xmit_rm = NULL;
397 			cp->cp_xmit_sg = 0;
398 			cp->cp_xmit_hdr_off = 0;
399 			cp->cp_xmit_data_off = 0;
400 			cp->cp_xmit_rdma_sent = 0;
401 			cp->cp_xmit_atomic_sent = 0;
402 			cp->cp_xmit_data_sent = 0;
403 
404 			rds_message_put(rm);
405 		}
406 	}
407 
408 over_batch:
409 	if (conn->c_trans->xmit_path_complete)
410 		conn->c_trans->xmit_path_complete(cp);
411 	release_in_xmit(cp);
412 
413 	/* Nuke any messages we decided not to retransmit. */
414 	if (!list_empty(&to_be_dropped)) {
415 		/* irqs on here, so we can put(), unlike above */
416 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
417 			rds_message_put(rm);
418 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
419 	}
420 
421 	/*
422 	 * Other senders can queue a message after we last test the send queue
423 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
424 	 * not try and send their newly queued message.  We need to check the
425 	 * send queue after having cleared RDS_IN_XMIT so that their message
426 	 * doesn't get stuck on the send queue.
427 	 *
428 	 * If the transport cannot continue (i.e ret != 0), then it must
429 	 * call us when more room is available, such as from the tx
430 	 * completion handler.
431 	 *
432 	 * We have an extra generation check here so that if someone manages
433 	 * to jump in after our release_in_xmit, we'll see that they have done
434 	 * some work and we will skip our goto
435 	 */
436 	if (ret == 0) {
437 		bool raced;
438 
439 		smp_mb();
440 		raced = send_gen != READ_ONCE(cp->cp_send_gen);
441 
442 		if ((test_bit(0, &conn->c_map_queued) ||
443 		    !list_empty(&cp->cp_send_queue)) && !raced) {
444 			if (batch_count < send_batch_count)
445 				goto restart;
446 			rcu_read_lock();
447 			if (rds_destroy_pending(cp->cp_conn))
448 				ret = -ENETUNREACH;
449 			else
450 				queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
451 			rcu_read_unlock();
452 		} else if (raced) {
453 			rds_stats_inc(s_send_lock_queue_raced);
454 		}
455 	}
456 out:
457 	return ret;
458 }
459 EXPORT_SYMBOL_GPL(rds_send_xmit);
460 
461 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
462 {
463 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
464 
465 	assert_spin_locked(&rs->rs_lock);
466 
467 	BUG_ON(rs->rs_snd_bytes < len);
468 	rs->rs_snd_bytes -= len;
469 
470 	if (rs->rs_snd_bytes == 0)
471 		rds_stats_inc(s_send_queue_empty);
472 }
473 
474 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
475 				    is_acked_func is_acked)
476 {
477 	if (is_acked)
478 		return is_acked(rm, ack);
479 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
480 }
481 
482 /*
483  * This is pretty similar to what happens below in the ACK
484  * handling code - except that we call here as soon as we get
485  * the IB send completion on the RDMA op and the accompanying
486  * message.
487  */
488 void rds_rdma_send_complete(struct rds_message *rm, int status)
489 {
490 	struct rds_sock *rs = NULL;
491 	struct rm_rdma_op *ro;
492 	struct rds_notifier *notifier;
493 	unsigned long flags;
494 	unsigned int notify = 0;
495 
496 	spin_lock_irqsave(&rm->m_rs_lock, flags);
497 
498 	notify =  rm->rdma.op_notify | rm->data.op_notify;
499 	ro = &rm->rdma;
500 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
501 	    ro->op_active && notify && ro->op_notifier) {
502 		notifier = ro->op_notifier;
503 		rs = rm->m_rs;
504 		sock_hold(rds_rs_to_sk(rs));
505 
506 		notifier->n_status = status;
507 		spin_lock(&rs->rs_lock);
508 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
509 		spin_unlock(&rs->rs_lock);
510 
511 		ro->op_notifier = NULL;
512 	}
513 
514 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
515 
516 	if (rs) {
517 		rds_wake_sk_sleep(rs);
518 		sock_put(rds_rs_to_sk(rs));
519 	}
520 }
521 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
522 
523 /*
524  * Just like above, except looks at atomic op
525  */
526 void rds_atomic_send_complete(struct rds_message *rm, int status)
527 {
528 	struct rds_sock *rs = NULL;
529 	struct rm_atomic_op *ao;
530 	struct rds_notifier *notifier;
531 	unsigned long flags;
532 
533 	spin_lock_irqsave(&rm->m_rs_lock, flags);
534 
535 	ao = &rm->atomic;
536 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
537 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
538 		notifier = ao->op_notifier;
539 		rs = rm->m_rs;
540 		sock_hold(rds_rs_to_sk(rs));
541 
542 		notifier->n_status = status;
543 		spin_lock(&rs->rs_lock);
544 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
545 		spin_unlock(&rs->rs_lock);
546 
547 		ao->op_notifier = NULL;
548 	}
549 
550 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
551 
552 	if (rs) {
553 		rds_wake_sk_sleep(rs);
554 		sock_put(rds_rs_to_sk(rs));
555 	}
556 }
557 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
558 
559 /*
560  * This is the same as rds_rdma_send_complete except we
561  * don't do any locking - we have all the ingredients (message,
562  * socket, socket lock) and can just move the notifier.
563  */
564 static inline void
565 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
566 {
567 	struct rm_rdma_op *ro;
568 	struct rm_atomic_op *ao;
569 
570 	ro = &rm->rdma;
571 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
572 		ro->op_notifier->n_status = status;
573 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
574 		ro->op_notifier = NULL;
575 	}
576 
577 	ao = &rm->atomic;
578 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
579 		ao->op_notifier->n_status = status;
580 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
581 		ao->op_notifier = NULL;
582 	}
583 
584 	/* No need to wake the app - caller does this */
585 }
586 
587 /*
588  * This removes messages from the socket's list if they're on it.  The list
589  * argument must be private to the caller, we must be able to modify it
590  * without locks.  The messages must have a reference held for their
591  * position on the list.  This function will drop that reference after
592  * removing the messages from the 'messages' list regardless of if it found
593  * the messages on the socket list or not.
594  */
595 static void rds_send_remove_from_sock(struct list_head *messages, int status)
596 {
597 	unsigned long flags;
598 	struct rds_sock *rs = NULL;
599 	struct rds_message *rm;
600 
601 	while (!list_empty(messages)) {
602 		int was_on_sock = 0;
603 
604 		rm = list_entry(messages->next, struct rds_message,
605 				m_conn_item);
606 		list_del_init(&rm->m_conn_item);
607 
608 		/*
609 		 * If we see this flag cleared then we're *sure* that someone
610 		 * else beat us to removing it from the sock.  If we race
611 		 * with their flag update we'll get the lock and then really
612 		 * see that the flag has been cleared.
613 		 *
614 		 * The message spinlock makes sure nobody clears rm->m_rs
615 		 * while we're messing with it. It does not prevent the
616 		 * message from being removed from the socket, though.
617 		 */
618 		spin_lock_irqsave(&rm->m_rs_lock, flags);
619 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
620 			goto unlock_and_drop;
621 
622 		if (rs != rm->m_rs) {
623 			if (rs) {
624 				rds_wake_sk_sleep(rs);
625 				sock_put(rds_rs_to_sk(rs));
626 			}
627 			rs = rm->m_rs;
628 			if (rs)
629 				sock_hold(rds_rs_to_sk(rs));
630 		}
631 		if (!rs)
632 			goto unlock_and_drop;
633 		spin_lock(&rs->rs_lock);
634 
635 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
636 			struct rm_rdma_op *ro = &rm->rdma;
637 			struct rds_notifier *notifier;
638 
639 			list_del_init(&rm->m_sock_item);
640 			rds_send_sndbuf_remove(rs, rm);
641 
642 			if (ro->op_active && ro->op_notifier &&
643 			       (ro->op_notify || (ro->op_recverr && status))) {
644 				notifier = ro->op_notifier;
645 				list_add_tail(&notifier->n_list,
646 						&rs->rs_notify_queue);
647 				if (!notifier->n_status)
648 					notifier->n_status = status;
649 				rm->rdma.op_notifier = NULL;
650 			}
651 			was_on_sock = 1;
652 		}
653 		spin_unlock(&rs->rs_lock);
654 
655 unlock_and_drop:
656 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
657 		rds_message_put(rm);
658 		if (was_on_sock)
659 			rds_message_put(rm);
660 	}
661 
662 	if (rs) {
663 		rds_wake_sk_sleep(rs);
664 		sock_put(rds_rs_to_sk(rs));
665 	}
666 }
667 
668 /*
669  * Transports call here when they've determined that the receiver queued
670  * messages up to, and including, the given sequence number.  Messages are
671  * moved to the retrans queue when rds_send_xmit picks them off the send
672  * queue. This means that in the TCP case, the message may not have been
673  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
674  * checks the RDS_MSG_HAS_ACK_SEQ bit.
675  */
676 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
677 			      is_acked_func is_acked)
678 {
679 	struct rds_message *rm, *tmp;
680 	unsigned long flags;
681 	LIST_HEAD(list);
682 
683 	spin_lock_irqsave(&cp->cp_lock, flags);
684 
685 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
686 		if (!rds_send_is_acked(rm, ack, is_acked))
687 			break;
688 
689 		list_move(&rm->m_conn_item, &list);
690 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
691 	}
692 
693 	/* order flag updates with spin locks */
694 	if (!list_empty(&list))
695 		smp_mb__after_atomic();
696 
697 	spin_unlock_irqrestore(&cp->cp_lock, flags);
698 
699 	/* now remove the messages from the sock list as needed */
700 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
701 }
702 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
703 
704 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
705 			 is_acked_func is_acked)
706 {
707 	WARN_ON(conn->c_trans->t_mp_capable);
708 	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
709 }
710 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
711 
712 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
713 {
714 	struct rds_message *rm, *tmp;
715 	struct rds_connection *conn;
716 	struct rds_conn_path *cp;
717 	unsigned long flags;
718 	LIST_HEAD(list);
719 
720 	/* get all the messages we're dropping under the rs lock */
721 	spin_lock_irqsave(&rs->rs_lock, flags);
722 
723 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
724 		if (dest &&
725 		    (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
726 		     dest->sin6_port != rm->m_inc.i_hdr.h_dport))
727 			continue;
728 
729 		list_move(&rm->m_sock_item, &list);
730 		rds_send_sndbuf_remove(rs, rm);
731 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
732 	}
733 
734 	/* order flag updates with the rs lock */
735 	smp_mb__after_atomic();
736 
737 	spin_unlock_irqrestore(&rs->rs_lock, flags);
738 
739 	if (list_empty(&list))
740 		return;
741 
742 	/* Remove the messages from the conn */
743 	list_for_each_entry(rm, &list, m_sock_item) {
744 
745 		conn = rm->m_inc.i_conn;
746 		if (conn->c_trans->t_mp_capable)
747 			cp = rm->m_inc.i_conn_path;
748 		else
749 			cp = &conn->c_path[0];
750 
751 		spin_lock_irqsave(&cp->cp_lock, flags);
752 		/*
753 		 * Maybe someone else beat us to removing rm from the conn.
754 		 * If we race with their flag update we'll get the lock and
755 		 * then really see that the flag has been cleared.
756 		 */
757 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
758 			spin_unlock_irqrestore(&cp->cp_lock, flags);
759 			continue;
760 		}
761 		list_del_init(&rm->m_conn_item);
762 		spin_unlock_irqrestore(&cp->cp_lock, flags);
763 
764 		/*
765 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
766 		 * but we can now.
767 		 */
768 		spin_lock_irqsave(&rm->m_rs_lock, flags);
769 
770 		spin_lock(&rs->rs_lock);
771 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
772 		spin_unlock(&rs->rs_lock);
773 
774 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
775 
776 		rds_message_put(rm);
777 	}
778 
779 	rds_wake_sk_sleep(rs);
780 
781 	while (!list_empty(&list)) {
782 		rm = list_entry(list.next, struct rds_message, m_sock_item);
783 		list_del_init(&rm->m_sock_item);
784 		rds_message_wait(rm);
785 
786 		/* just in case the code above skipped this message
787 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
788 		 * taking m_rs_lock is the only thing that keeps us
789 		 * from racing with ack processing.
790 		 */
791 		spin_lock_irqsave(&rm->m_rs_lock, flags);
792 
793 		spin_lock(&rs->rs_lock);
794 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
795 		spin_unlock(&rs->rs_lock);
796 
797 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
798 
799 		rds_message_put(rm);
800 	}
801 }
802 
803 /*
804  * we only want this to fire once so we use the callers 'queued'.  It's
805  * possible that another thread can race with us and remove the
806  * message from the flow with RDS_CANCEL_SENT_TO.
807  */
808 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
809 			     struct rds_conn_path *cp,
810 			     struct rds_message *rm, __be16 sport,
811 			     __be16 dport, int *queued)
812 {
813 	unsigned long flags;
814 	u32 len;
815 
816 	if (*queued)
817 		goto out;
818 
819 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
820 
821 	/* this is the only place which holds both the socket's rs_lock
822 	 * and the connection's c_lock */
823 	spin_lock_irqsave(&rs->rs_lock, flags);
824 
825 	/*
826 	 * If there is a little space in sndbuf, we don't queue anything,
827 	 * and userspace gets -EAGAIN. But poll() indicates there's send
828 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
829 	 * freed up by incoming acks. So we check the *old* value of
830 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
831 	 * and poll() now knows no more data can be sent.
832 	 */
833 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
834 		rs->rs_snd_bytes += len;
835 
836 		/* let recv side know we are close to send space exhaustion.
837 		 * This is probably not the optimal way to do it, as this
838 		 * means we set the flag on *all* messages as soon as our
839 		 * throughput hits a certain threshold.
840 		 */
841 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
842 			set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
843 
844 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
845 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
846 		rds_message_addref(rm);
847 		sock_hold(rds_rs_to_sk(rs));
848 		rm->m_rs = rs;
849 
850 		/* The code ordering is a little weird, but we're
851 		   trying to minimize the time we hold c_lock */
852 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
853 		rm->m_inc.i_conn = conn;
854 		rm->m_inc.i_conn_path = cp;
855 		rds_message_addref(rm);
856 
857 		spin_lock(&cp->cp_lock);
858 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
859 		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
860 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
861 		spin_unlock(&cp->cp_lock);
862 
863 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
864 			 rm, len, rs, rs->rs_snd_bytes,
865 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
866 
867 		*queued = 1;
868 	}
869 
870 	spin_unlock_irqrestore(&rs->rs_lock, flags);
871 out:
872 	return *queued;
873 }
874 
875 /*
876  * rds_message is getting to be quite complicated, and we'd like to allocate
877  * it all in one go. This figures out how big it needs to be up front.
878  */
879 static int rds_rm_size(struct msghdr *msg, int num_sgs,
880 		       struct rds_iov_vector_arr *vct)
881 {
882 	struct cmsghdr *cmsg;
883 	int size = 0;
884 	int cmsg_groups = 0;
885 	int retval;
886 	bool zcopy_cookie = false;
887 	struct rds_iov_vector *iov, *tmp_iov;
888 
889 	if (num_sgs < 0)
890 		return -EINVAL;
891 
892 	for_each_cmsghdr(cmsg, msg) {
893 		if (!CMSG_OK(msg, cmsg))
894 			return -EINVAL;
895 
896 		if (cmsg->cmsg_level != SOL_RDS)
897 			continue;
898 
899 		switch (cmsg->cmsg_type) {
900 		case RDS_CMSG_RDMA_ARGS:
901 			if (vct->indx >= vct->len) {
902 				vct->len += vct->incr;
903 				tmp_iov =
904 					krealloc(vct->vec,
905 						 vct->len *
906 						 sizeof(struct rds_iov_vector),
907 						 GFP_KERNEL);
908 				if (!tmp_iov) {
909 					vct->len -= vct->incr;
910 					return -ENOMEM;
911 				}
912 				vct->vec = tmp_iov;
913 			}
914 			iov = &vct->vec[vct->indx];
915 			memset(iov, 0, sizeof(struct rds_iov_vector));
916 			vct->indx++;
917 			cmsg_groups |= 1;
918 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov);
919 			if (retval < 0)
920 				return retval;
921 			size += retval;
922 
923 			break;
924 
925 		case RDS_CMSG_ZCOPY_COOKIE:
926 			zcopy_cookie = true;
927 			/* fall through */
928 
929 		case RDS_CMSG_RDMA_DEST:
930 		case RDS_CMSG_RDMA_MAP:
931 			cmsg_groups |= 2;
932 			/* these are valid but do no add any size */
933 			break;
934 
935 		case RDS_CMSG_ATOMIC_CSWP:
936 		case RDS_CMSG_ATOMIC_FADD:
937 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
938 		case RDS_CMSG_MASKED_ATOMIC_FADD:
939 			cmsg_groups |= 1;
940 			size += sizeof(struct scatterlist);
941 			break;
942 
943 		default:
944 			return -EINVAL;
945 		}
946 
947 	}
948 
949 	if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
950 		return -EINVAL;
951 
952 	size += num_sgs * sizeof(struct scatterlist);
953 
954 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
955 	if (cmsg_groups == 3)
956 		return -EINVAL;
957 
958 	return size;
959 }
960 
961 static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
962 			  struct cmsghdr *cmsg)
963 {
964 	u32 *cookie;
965 
966 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
967 	    !rm->data.op_mmp_znotifier)
968 		return -EINVAL;
969 	cookie = CMSG_DATA(cmsg);
970 	rm->data.op_mmp_znotifier->z_cookie = *cookie;
971 	return 0;
972 }
973 
974 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
975 			 struct msghdr *msg, int *allocated_mr,
976 			 struct rds_iov_vector_arr *vct)
977 {
978 	struct cmsghdr *cmsg;
979 	int ret = 0, ind = 0;
980 
981 	for_each_cmsghdr(cmsg, msg) {
982 		if (!CMSG_OK(msg, cmsg))
983 			return -EINVAL;
984 
985 		if (cmsg->cmsg_level != SOL_RDS)
986 			continue;
987 
988 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
989 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
990 		 */
991 		switch (cmsg->cmsg_type) {
992 		case RDS_CMSG_RDMA_ARGS:
993 			if (ind >= vct->indx)
994 				return -ENOMEM;
995 			ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]);
996 			ind++;
997 			break;
998 
999 		case RDS_CMSG_RDMA_DEST:
1000 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
1001 			break;
1002 
1003 		case RDS_CMSG_RDMA_MAP:
1004 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
1005 			if (!ret)
1006 				*allocated_mr = 1;
1007 			else if (ret == -ENODEV)
1008 				/* Accommodate the get_mr() case which can fail
1009 				 * if connection isn't established yet.
1010 				 */
1011 				ret = -EAGAIN;
1012 			break;
1013 		case RDS_CMSG_ATOMIC_CSWP:
1014 		case RDS_CMSG_ATOMIC_FADD:
1015 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
1016 		case RDS_CMSG_MASKED_ATOMIC_FADD:
1017 			ret = rds_cmsg_atomic(rs, rm, cmsg);
1018 			break;
1019 
1020 		case RDS_CMSG_ZCOPY_COOKIE:
1021 			ret = rds_cmsg_zcopy(rs, rm, cmsg);
1022 			break;
1023 
1024 		default:
1025 			return -EINVAL;
1026 		}
1027 
1028 		if (ret)
1029 			break;
1030 	}
1031 
1032 	return ret;
1033 }
1034 
1035 static int rds_send_mprds_hash(struct rds_sock *rs,
1036 			       struct rds_connection *conn, int nonblock)
1037 {
1038 	int hash;
1039 
1040 	if (conn->c_npaths == 0)
1041 		hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
1042 	else
1043 		hash = RDS_MPATH_HASH(rs, conn->c_npaths);
1044 	if (conn->c_npaths == 0 && hash != 0) {
1045 		rds_send_ping(conn, 0);
1046 
1047 		/* The underlying connection is not up yet.  Need to wait
1048 		 * until it is up to be sure that the non-zero c_path can be
1049 		 * used.  But if we are interrupted, we have to use the zero
1050 		 * c_path in case the connection ends up being non-MP capable.
1051 		 */
1052 		if (conn->c_npaths == 0) {
1053 			/* Cannot wait for the connection be made, so just use
1054 			 * the base c_path.
1055 			 */
1056 			if (nonblock)
1057 				return 0;
1058 			if (wait_event_interruptible(conn->c_hs_waitq,
1059 						     conn->c_npaths != 0))
1060 				hash = 0;
1061 		}
1062 		if (conn->c_npaths == 1)
1063 			hash = 0;
1064 	}
1065 	return hash;
1066 }
1067 
1068 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
1069 {
1070 	struct rds_rdma_args *args;
1071 	struct cmsghdr *cmsg;
1072 
1073 	for_each_cmsghdr(cmsg, msg) {
1074 		if (!CMSG_OK(msg, cmsg))
1075 			return -EINVAL;
1076 
1077 		if (cmsg->cmsg_level != SOL_RDS)
1078 			continue;
1079 
1080 		if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1081 			if (cmsg->cmsg_len <
1082 			    CMSG_LEN(sizeof(struct rds_rdma_args)))
1083 				return -EINVAL;
1084 			args = CMSG_DATA(cmsg);
1085 			*rdma_bytes += args->remote_vec.bytes;
1086 		}
1087 	}
1088 	return 0;
1089 }
1090 
1091 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1092 {
1093 	struct sock *sk = sock->sk;
1094 	struct rds_sock *rs = rds_sk_to_rs(sk);
1095 	DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
1096 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1097 	__be16 dport;
1098 	struct rds_message *rm = NULL;
1099 	struct rds_connection *conn;
1100 	int ret = 0;
1101 	int queued = 0, allocated_mr = 0;
1102 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
1103 	long timeo = sock_sndtimeo(sk, nonblock);
1104 	struct rds_conn_path *cpath;
1105 	struct in6_addr daddr;
1106 	__u32 scope_id = 0;
1107 	size_t total_payload_len = payload_len, rdma_payload_len = 0;
1108 	bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
1109 		      sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
1110 	int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE);
1111 	int namelen;
1112 	struct rds_iov_vector_arr vct;
1113 	int ind;
1114 
1115 	memset(&vct, 0, sizeof(vct));
1116 
1117 	/* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
1118 	vct.incr = 1;
1119 
1120 	/* Mirror Linux UDP mirror of BSD error message compatibility */
1121 	/* XXX: Perhaps MSG_MORE someday */
1122 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
1123 		ret = -EOPNOTSUPP;
1124 		goto out;
1125 	}
1126 
1127 	namelen = msg->msg_namelen;
1128 	if (namelen != 0) {
1129 		if (namelen < sizeof(*usin)) {
1130 			ret = -EINVAL;
1131 			goto out;
1132 		}
1133 		switch (usin->sin_family) {
1134 		case AF_INET:
1135 			if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
1136 			    usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
1137 			    IN_MULTICAST(ntohl(usin->sin_addr.s_addr))) {
1138 				ret = -EINVAL;
1139 				goto out;
1140 			}
1141 			ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
1142 			dport = usin->sin_port;
1143 			break;
1144 
1145 #if IS_ENABLED(CONFIG_IPV6)
1146 		case AF_INET6: {
1147 			int addr_type;
1148 
1149 			if (namelen < sizeof(*sin6)) {
1150 				ret = -EINVAL;
1151 				goto out;
1152 			}
1153 			addr_type = ipv6_addr_type(&sin6->sin6_addr);
1154 			if (!(addr_type & IPV6_ADDR_UNICAST)) {
1155 				__be32 addr4;
1156 
1157 				if (!(addr_type & IPV6_ADDR_MAPPED)) {
1158 					ret = -EINVAL;
1159 					goto out;
1160 				}
1161 
1162 				/* It is a mapped address.  Need to do some
1163 				 * sanity checks.
1164 				 */
1165 				addr4 = sin6->sin6_addr.s6_addr32[3];
1166 				if (addr4 == htonl(INADDR_ANY) ||
1167 				    addr4 == htonl(INADDR_BROADCAST) ||
1168 				    IN_MULTICAST(ntohl(addr4))) {
1169 					ret = -EINVAL;
1170 					goto out;
1171 				}
1172 			}
1173 			if (addr_type & IPV6_ADDR_LINKLOCAL) {
1174 				if (sin6->sin6_scope_id == 0) {
1175 					ret = -EINVAL;
1176 					goto out;
1177 				}
1178 				scope_id = sin6->sin6_scope_id;
1179 			}
1180 
1181 			daddr = sin6->sin6_addr;
1182 			dport = sin6->sin6_port;
1183 			break;
1184 		}
1185 #endif
1186 
1187 		default:
1188 			ret = -EINVAL;
1189 			goto out;
1190 		}
1191 	} else {
1192 		/* We only care about consistency with ->connect() */
1193 		lock_sock(sk);
1194 		daddr = rs->rs_conn_addr;
1195 		dport = rs->rs_conn_port;
1196 		scope_id = rs->rs_bound_scope_id;
1197 		release_sock(sk);
1198 	}
1199 
1200 	lock_sock(sk);
1201 	if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
1202 		release_sock(sk);
1203 		ret = -ENOTCONN;
1204 		goto out;
1205 	} else if (namelen != 0) {
1206 		/* Cannot send to an IPv4 address using an IPv6 source
1207 		 * address and cannot send to an IPv6 address using an
1208 		 * IPv4 source address.
1209 		 */
1210 		if (ipv6_addr_v4mapped(&daddr) ^
1211 		    ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
1212 			release_sock(sk);
1213 			ret = -EOPNOTSUPP;
1214 			goto out;
1215 		}
1216 		/* If the socket is already bound to a link local address,
1217 		 * it can only send to peers on the same link.  But allow
1218 		 * communicating beween link local and non-link local address.
1219 		 */
1220 		if (scope_id != rs->rs_bound_scope_id) {
1221 			if (!scope_id) {
1222 				scope_id = rs->rs_bound_scope_id;
1223 			} else if (rs->rs_bound_scope_id) {
1224 				release_sock(sk);
1225 				ret = -EINVAL;
1226 				goto out;
1227 			}
1228 		}
1229 	}
1230 	release_sock(sk);
1231 
1232 	ret = rds_rdma_bytes(msg, &rdma_payload_len);
1233 	if (ret)
1234 		goto out;
1235 
1236 	total_payload_len += rdma_payload_len;
1237 	if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1238 		ret = -EMSGSIZE;
1239 		goto out;
1240 	}
1241 
1242 	if (payload_len > rds_sk_sndbuf(rs)) {
1243 		ret = -EMSGSIZE;
1244 		goto out;
1245 	}
1246 
1247 	if (zcopy) {
1248 		if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
1249 			ret = -EOPNOTSUPP;
1250 			goto out;
1251 		}
1252 		num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
1253 	}
1254 	/* size of rm including all sgs */
1255 	ret = rds_rm_size(msg, num_sgs, &vct);
1256 	if (ret < 0)
1257 		goto out;
1258 
1259 	rm = rds_message_alloc(ret, GFP_KERNEL);
1260 	if (!rm) {
1261 		ret = -ENOMEM;
1262 		goto out;
1263 	}
1264 
1265 	/* Attach data to the rm */
1266 	if (payload_len) {
1267 		rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs, &ret);
1268 		if (!rm->data.op_sg)
1269 			goto out;
1270 		ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
1271 		if (ret)
1272 			goto out;
1273 	}
1274 	rm->data.op_active = 1;
1275 
1276 	rm->m_daddr = daddr;
1277 
1278 	/* rds_conn_create has a spinlock that runs with IRQ off.
1279 	 * Caching the conn in the socket helps a lot. */
1280 	if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr))
1281 		conn = rs->rs_conn;
1282 	else {
1283 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1284 						&rs->rs_bound_addr, &daddr,
1285 						rs->rs_transport,
1286 						sock->sk->sk_allocation,
1287 						scope_id);
1288 		if (IS_ERR(conn)) {
1289 			ret = PTR_ERR(conn);
1290 			goto out;
1291 		}
1292 		rs->rs_conn = conn;
1293 	}
1294 
1295 	if (conn->c_trans->t_mp_capable)
1296 		cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)];
1297 	else
1298 		cpath = &conn->c_path[0];
1299 
1300 	rm->m_conn_path = cpath;
1301 
1302 	/* Parse any control messages the user may have included. */
1303 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct);
1304 	if (ret) {
1305 		/* Trigger connection so that its ready for the next retry */
1306 		if (ret ==  -EAGAIN)
1307 			rds_conn_connect_if_down(conn);
1308 		goto out;
1309 	}
1310 
1311 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1312 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1313 			       &rm->rdma, conn->c_trans->xmit_rdma);
1314 		ret = -EOPNOTSUPP;
1315 		goto out;
1316 	}
1317 
1318 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1319 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1320 			       &rm->atomic, conn->c_trans->xmit_atomic);
1321 		ret = -EOPNOTSUPP;
1322 		goto out;
1323 	}
1324 
1325 	if (rds_destroy_pending(conn)) {
1326 		ret = -EAGAIN;
1327 		goto out;
1328 	}
1329 
1330 	rds_conn_path_connect_if_down(cpath);
1331 
1332 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1333 	if (ret) {
1334 		rs->rs_seen_congestion = 1;
1335 		goto out;
1336 	}
1337 	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1338 				  dport, &queued)) {
1339 		rds_stats_inc(s_send_queue_full);
1340 
1341 		if (nonblock) {
1342 			ret = -EAGAIN;
1343 			goto out;
1344 		}
1345 
1346 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1347 					rds_send_queue_rm(rs, conn, cpath, rm,
1348 							  rs->rs_bound_port,
1349 							  dport,
1350 							  &queued),
1351 					timeo);
1352 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1353 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1354 			continue;
1355 
1356 		ret = timeo;
1357 		if (ret == 0)
1358 			ret = -ETIMEDOUT;
1359 		goto out;
1360 	}
1361 
1362 	/*
1363 	 * By now we've committed to the send.  We reuse rds_send_worker()
1364 	 * to retry sends in the rds thread if the transport asks us to.
1365 	 */
1366 	rds_stats_inc(s_send_queued);
1367 
1368 	ret = rds_send_xmit(cpath);
1369 	if (ret == -ENOMEM || ret == -EAGAIN) {
1370 		ret = 0;
1371 		rcu_read_lock();
1372 		if (rds_destroy_pending(cpath->cp_conn))
1373 			ret = -ENETUNREACH;
1374 		else
1375 			queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1376 		rcu_read_unlock();
1377 	}
1378 	if (ret)
1379 		goto out;
1380 	rds_message_put(rm);
1381 
1382 	for (ind = 0; ind < vct.indx; ind++)
1383 		kfree(vct.vec[ind].iov);
1384 	kfree(vct.vec);
1385 
1386 	return payload_len;
1387 
1388 out:
1389 	for (ind = 0; ind < vct.indx; ind++)
1390 		kfree(vct.vec[ind].iov);
1391 	kfree(vct.vec);
1392 
1393 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1394 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1395 	 * or in any other way, we need to destroy the MR again */
1396 	if (allocated_mr)
1397 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1398 
1399 	if (rm)
1400 		rds_message_put(rm);
1401 	return ret;
1402 }
1403 
1404 /*
1405  * send out a probe. Can be shared by rds_send_ping,
1406  * rds_send_pong, rds_send_hb.
1407  * rds_send_hb should use h_flags
1408  *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1409  * or
1410  *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1411  */
1412 static int
1413 rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1414 	       __be16 dport, u8 h_flags)
1415 {
1416 	struct rds_message *rm;
1417 	unsigned long flags;
1418 	int ret = 0;
1419 
1420 	rm = rds_message_alloc(0, GFP_ATOMIC);
1421 	if (!rm) {
1422 		ret = -ENOMEM;
1423 		goto out;
1424 	}
1425 
1426 	rm->m_daddr = cp->cp_conn->c_faddr;
1427 	rm->data.op_active = 1;
1428 
1429 	rds_conn_path_connect_if_down(cp);
1430 
1431 	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1432 	if (ret)
1433 		goto out;
1434 
1435 	spin_lock_irqsave(&cp->cp_lock, flags);
1436 	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1437 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1438 	rds_message_addref(rm);
1439 	rm->m_inc.i_conn = cp->cp_conn;
1440 	rm->m_inc.i_conn_path = cp;
1441 
1442 	rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1443 				    cp->cp_next_tx_seq);
1444 	rm->m_inc.i_hdr.h_flags |= h_flags;
1445 	cp->cp_next_tx_seq++;
1446 
1447 	if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1448 	    cp->cp_conn->c_trans->t_mp_capable) {
1449 		u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1450 		u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
1451 
1452 		rds_message_add_extension(&rm->m_inc.i_hdr,
1453 					  RDS_EXTHDR_NPATHS, &npaths,
1454 					  sizeof(npaths));
1455 		rds_message_add_extension(&rm->m_inc.i_hdr,
1456 					  RDS_EXTHDR_GEN_NUM,
1457 					  &my_gen_num,
1458 					  sizeof(u32));
1459 	}
1460 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1461 
1462 	rds_stats_inc(s_send_queued);
1463 	rds_stats_inc(s_send_pong);
1464 
1465 	/* schedule the send work on rds_wq */
1466 	rcu_read_lock();
1467 	if (!rds_destroy_pending(cp->cp_conn))
1468 		queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1469 	rcu_read_unlock();
1470 
1471 	rds_message_put(rm);
1472 	return 0;
1473 
1474 out:
1475 	if (rm)
1476 		rds_message_put(rm);
1477 	return ret;
1478 }
1479 
1480 int
1481 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1482 {
1483 	return rds_send_probe(cp, 0, dport, 0);
1484 }
1485 
1486 void
1487 rds_send_ping(struct rds_connection *conn, int cp_index)
1488 {
1489 	unsigned long flags;
1490 	struct rds_conn_path *cp = &conn->c_path[cp_index];
1491 
1492 	spin_lock_irqsave(&cp->cp_lock, flags);
1493 	if (conn->c_ping_triggered) {
1494 		spin_unlock_irqrestore(&cp->cp_lock, flags);
1495 		return;
1496 	}
1497 	conn->c_ping_triggered = 1;
1498 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1499 	rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
1500 }
1501 EXPORT_SYMBOL_GPL(rds_send_ping);
1502