1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/moduleparam.h> 35 #include <linux/gfp.h> 36 #include <net/sock.h> 37 #include <linux/in.h> 38 #include <linux/list.h> 39 #include <linux/ratelimit.h> 40 #include <linux/export.h> 41 #include <linux/sizes.h> 42 43 #include "rds.h" 44 45 /* When transmitting messages in rds_send_xmit, we need to emerge from 46 * time to time and briefly release the CPU. Otherwise the softlock watchdog 47 * will kick our shin. 48 * Also, it seems fairer to not let one busy connection stall all the 49 * others. 50 * 51 * send_batch_count is the number of times we'll loop in send_xmit. Setting 52 * it to 0 will restore the old behavior (where we looped until we had 53 * drained the queue). 54 */ 55 static int send_batch_count = SZ_1K; 56 module_param(send_batch_count, int, 0444); 57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); 58 59 static void rds_send_remove_from_sock(struct list_head *messages, int status); 60 61 /* 62 * Reset the send state. Callers must ensure that this doesn't race with 63 * rds_send_xmit(). 64 */ 65 void rds_send_reset(struct rds_connection *conn) 66 { 67 struct rds_message *rm, *tmp; 68 unsigned long flags; 69 70 if (conn->c_xmit_rm) { 71 rm = conn->c_xmit_rm; 72 conn->c_xmit_rm = NULL; 73 /* Tell the user the RDMA op is no longer mapped by the 74 * transport. This isn't entirely true (it's flushed out 75 * independently) but as the connection is down, there's 76 * no ongoing RDMA to/from that memory */ 77 rds_message_unmapped(rm); 78 rds_message_put(rm); 79 } 80 81 conn->c_xmit_sg = 0; 82 conn->c_xmit_hdr_off = 0; 83 conn->c_xmit_data_off = 0; 84 conn->c_xmit_atomic_sent = 0; 85 conn->c_xmit_rdma_sent = 0; 86 conn->c_xmit_data_sent = 0; 87 88 conn->c_map_queued = 0; 89 90 conn->c_unacked_packets = rds_sysctl_max_unacked_packets; 91 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes; 92 93 /* Mark messages as retransmissions, and move them to the send q */ 94 spin_lock_irqsave(&conn->c_lock, flags); 95 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { 96 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 97 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); 98 } 99 list_splice_init(&conn->c_retrans, &conn->c_send_queue); 100 spin_unlock_irqrestore(&conn->c_lock, flags); 101 } 102 103 static int acquire_in_xmit(struct rds_connection *conn) 104 { 105 return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0; 106 } 107 108 static void release_in_xmit(struct rds_connection *conn) 109 { 110 clear_bit(RDS_IN_XMIT, &conn->c_flags); 111 smp_mb__after_atomic(); 112 /* 113 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a 114 * hot path and finding waiters is very rare. We don't want to walk 115 * the system-wide hashed waitqueue buckets in the fast path only to 116 * almost never find waiters. 117 */ 118 if (waitqueue_active(&conn->c_waitq)) 119 wake_up_all(&conn->c_waitq); 120 } 121 122 /* 123 * We're making the conscious trade-off here to only send one message 124 * down the connection at a time. 125 * Pro: 126 * - tx queueing is a simple fifo list 127 * - reassembly is optional and easily done by transports per conn 128 * - no per flow rx lookup at all, straight to the socket 129 * - less per-frag memory and wire overhead 130 * Con: 131 * - queued acks can be delayed behind large messages 132 * Depends: 133 * - small message latency is higher behind queued large messages 134 * - large message latency isn't starved by intervening small sends 135 */ 136 int rds_send_xmit(struct rds_connection *conn) 137 { 138 struct rds_message *rm; 139 unsigned long flags; 140 unsigned int tmp; 141 struct scatterlist *sg; 142 int ret = 0; 143 LIST_HEAD(to_be_dropped); 144 int batch_count; 145 unsigned long send_gen = 0; 146 147 restart: 148 batch_count = 0; 149 150 /* 151 * sendmsg calls here after having queued its message on the send 152 * queue. We only have one task feeding the connection at a time. If 153 * another thread is already feeding the queue then we back off. This 154 * avoids blocking the caller and trading per-connection data between 155 * caches per message. 156 */ 157 if (!acquire_in_xmit(conn)) { 158 rds_stats_inc(s_send_lock_contention); 159 ret = -ENOMEM; 160 goto out; 161 } 162 163 /* 164 * we record the send generation after doing the xmit acquire. 165 * if someone else manages to jump in and do some work, we'll use 166 * this to avoid a goto restart farther down. 167 * 168 * The acquire_in_xmit() check above ensures that only one 169 * caller can increment c_send_gen at any time. 170 */ 171 conn->c_send_gen++; 172 send_gen = conn->c_send_gen; 173 174 /* 175 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT, 176 * we do the opposite to avoid races. 177 */ 178 if (!rds_conn_up(conn)) { 179 release_in_xmit(conn); 180 ret = 0; 181 goto out; 182 } 183 184 if (conn->c_trans->xmit_prepare) 185 conn->c_trans->xmit_prepare(conn); 186 187 /* 188 * spin trying to push headers and data down the connection until 189 * the connection doesn't make forward progress. 190 */ 191 while (1) { 192 193 rm = conn->c_xmit_rm; 194 195 /* 196 * If between sending messages, we can send a pending congestion 197 * map update. 198 */ 199 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { 200 rm = rds_cong_update_alloc(conn); 201 if (IS_ERR(rm)) { 202 ret = PTR_ERR(rm); 203 break; 204 } 205 rm->data.op_active = 1; 206 207 conn->c_xmit_rm = rm; 208 } 209 210 /* 211 * If not already working on one, grab the next message. 212 * 213 * c_xmit_rm holds a ref while we're sending this message down 214 * the connction. We can use this ref while holding the 215 * send_sem.. rds_send_reset() is serialized with it. 216 */ 217 if (!rm) { 218 unsigned int len; 219 220 batch_count++; 221 222 /* we want to process as big a batch as we can, but 223 * we also want to avoid softlockups. If we've been 224 * through a lot of messages, lets back off and see 225 * if anyone else jumps in 226 */ 227 if (batch_count >= send_batch_count) 228 goto over_batch; 229 230 spin_lock_irqsave(&conn->c_lock, flags); 231 232 if (!list_empty(&conn->c_send_queue)) { 233 rm = list_entry(conn->c_send_queue.next, 234 struct rds_message, 235 m_conn_item); 236 rds_message_addref(rm); 237 238 /* 239 * Move the message from the send queue to the retransmit 240 * list right away. 241 */ 242 list_move_tail(&rm->m_conn_item, &conn->c_retrans); 243 } 244 245 spin_unlock_irqrestore(&conn->c_lock, flags); 246 247 if (!rm) 248 break; 249 250 /* Unfortunately, the way Infiniband deals with 251 * RDMA to a bad MR key is by moving the entire 252 * queue pair to error state. We cold possibly 253 * recover from that, but right now we drop the 254 * connection. 255 * Therefore, we never retransmit messages with RDMA ops. 256 */ 257 if (rm->rdma.op_active && 258 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) { 259 spin_lock_irqsave(&conn->c_lock, flags); 260 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) 261 list_move(&rm->m_conn_item, &to_be_dropped); 262 spin_unlock_irqrestore(&conn->c_lock, flags); 263 continue; 264 } 265 266 /* Require an ACK every once in a while */ 267 len = ntohl(rm->m_inc.i_hdr.h_len); 268 if (conn->c_unacked_packets == 0 || 269 conn->c_unacked_bytes < len) { 270 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 271 272 conn->c_unacked_packets = rds_sysctl_max_unacked_packets; 273 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes; 274 rds_stats_inc(s_send_ack_required); 275 } else { 276 conn->c_unacked_bytes -= len; 277 conn->c_unacked_packets--; 278 } 279 280 conn->c_xmit_rm = rm; 281 } 282 283 /* The transport either sends the whole rdma or none of it */ 284 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) { 285 rm->m_final_op = &rm->rdma; 286 /* The transport owns the mapped memory for now. 287 * You can't unmap it while it's on the send queue 288 */ 289 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 290 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma); 291 if (ret) { 292 clear_bit(RDS_MSG_MAPPED, &rm->m_flags); 293 wake_up_interruptible(&rm->m_flush_wait); 294 break; 295 } 296 conn->c_xmit_rdma_sent = 1; 297 298 } 299 300 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) { 301 rm->m_final_op = &rm->atomic; 302 /* The transport owns the mapped memory for now. 303 * You can't unmap it while it's on the send queue 304 */ 305 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 306 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic); 307 if (ret) { 308 clear_bit(RDS_MSG_MAPPED, &rm->m_flags); 309 wake_up_interruptible(&rm->m_flush_wait); 310 break; 311 } 312 conn->c_xmit_atomic_sent = 1; 313 314 } 315 316 /* 317 * A number of cases require an RDS header to be sent 318 * even if there is no data. 319 * We permit 0-byte sends; rds-ping depends on this. 320 * However, if there are exclusively attached silent ops, 321 * we skip the hdr/data send, to enable silent operation. 322 */ 323 if (rm->data.op_nents == 0) { 324 int ops_present; 325 int all_ops_are_silent = 1; 326 327 ops_present = (rm->atomic.op_active || rm->rdma.op_active); 328 if (rm->atomic.op_active && !rm->atomic.op_silent) 329 all_ops_are_silent = 0; 330 if (rm->rdma.op_active && !rm->rdma.op_silent) 331 all_ops_are_silent = 0; 332 333 if (ops_present && all_ops_are_silent 334 && !rm->m_rdma_cookie) 335 rm->data.op_active = 0; 336 } 337 338 if (rm->data.op_active && !conn->c_xmit_data_sent) { 339 rm->m_final_op = &rm->data; 340 ret = conn->c_trans->xmit(conn, rm, 341 conn->c_xmit_hdr_off, 342 conn->c_xmit_sg, 343 conn->c_xmit_data_off); 344 if (ret <= 0) 345 break; 346 347 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) { 348 tmp = min_t(int, ret, 349 sizeof(struct rds_header) - 350 conn->c_xmit_hdr_off); 351 conn->c_xmit_hdr_off += tmp; 352 ret -= tmp; 353 } 354 355 sg = &rm->data.op_sg[conn->c_xmit_sg]; 356 while (ret) { 357 tmp = min_t(int, ret, sg->length - 358 conn->c_xmit_data_off); 359 conn->c_xmit_data_off += tmp; 360 ret -= tmp; 361 if (conn->c_xmit_data_off == sg->length) { 362 conn->c_xmit_data_off = 0; 363 sg++; 364 conn->c_xmit_sg++; 365 BUG_ON(ret != 0 && 366 conn->c_xmit_sg == rm->data.op_nents); 367 } 368 } 369 370 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) && 371 (conn->c_xmit_sg == rm->data.op_nents)) 372 conn->c_xmit_data_sent = 1; 373 } 374 375 /* 376 * A rm will only take multiple times through this loop 377 * if there is a data op. Thus, if the data is sent (or there was 378 * none), then we're done with the rm. 379 */ 380 if (!rm->data.op_active || conn->c_xmit_data_sent) { 381 conn->c_xmit_rm = NULL; 382 conn->c_xmit_sg = 0; 383 conn->c_xmit_hdr_off = 0; 384 conn->c_xmit_data_off = 0; 385 conn->c_xmit_rdma_sent = 0; 386 conn->c_xmit_atomic_sent = 0; 387 conn->c_xmit_data_sent = 0; 388 389 rds_message_put(rm); 390 } 391 } 392 393 over_batch: 394 if (conn->c_trans->xmit_complete) 395 conn->c_trans->xmit_complete(conn); 396 release_in_xmit(conn); 397 398 /* Nuke any messages we decided not to retransmit. */ 399 if (!list_empty(&to_be_dropped)) { 400 /* irqs on here, so we can put(), unlike above */ 401 list_for_each_entry(rm, &to_be_dropped, m_conn_item) 402 rds_message_put(rm); 403 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); 404 } 405 406 /* 407 * Other senders can queue a message after we last test the send queue 408 * but before we clear RDS_IN_XMIT. In that case they'd back off and 409 * not try and send their newly queued message. We need to check the 410 * send queue after having cleared RDS_IN_XMIT so that their message 411 * doesn't get stuck on the send queue. 412 * 413 * If the transport cannot continue (i.e ret != 0), then it must 414 * call us when more room is available, such as from the tx 415 * completion handler. 416 * 417 * We have an extra generation check here so that if someone manages 418 * to jump in after our release_in_xmit, we'll see that they have done 419 * some work and we will skip our goto 420 */ 421 if (ret == 0) { 422 smp_mb(); 423 if ((test_bit(0, &conn->c_map_queued) || 424 !list_empty(&conn->c_send_queue)) && 425 send_gen == conn->c_send_gen) { 426 rds_stats_inc(s_send_lock_queue_raced); 427 if (batch_count < send_batch_count) 428 goto restart; 429 queue_delayed_work(rds_wq, &conn->c_send_w, 1); 430 } 431 } 432 out: 433 return ret; 434 } 435 EXPORT_SYMBOL_GPL(rds_send_xmit); 436 437 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) 438 { 439 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 440 441 assert_spin_locked(&rs->rs_lock); 442 443 BUG_ON(rs->rs_snd_bytes < len); 444 rs->rs_snd_bytes -= len; 445 446 if (rs->rs_snd_bytes == 0) 447 rds_stats_inc(s_send_queue_empty); 448 } 449 450 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, 451 is_acked_func is_acked) 452 { 453 if (is_acked) 454 return is_acked(rm, ack); 455 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; 456 } 457 458 /* 459 * This is pretty similar to what happens below in the ACK 460 * handling code - except that we call here as soon as we get 461 * the IB send completion on the RDMA op and the accompanying 462 * message. 463 */ 464 void rds_rdma_send_complete(struct rds_message *rm, int status) 465 { 466 struct rds_sock *rs = NULL; 467 struct rm_rdma_op *ro; 468 struct rds_notifier *notifier; 469 unsigned long flags; 470 471 spin_lock_irqsave(&rm->m_rs_lock, flags); 472 473 ro = &rm->rdma; 474 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && 475 ro->op_active && ro->op_notify && ro->op_notifier) { 476 notifier = ro->op_notifier; 477 rs = rm->m_rs; 478 sock_hold(rds_rs_to_sk(rs)); 479 480 notifier->n_status = status; 481 spin_lock(&rs->rs_lock); 482 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 483 spin_unlock(&rs->rs_lock); 484 485 ro->op_notifier = NULL; 486 } 487 488 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 489 490 if (rs) { 491 rds_wake_sk_sleep(rs); 492 sock_put(rds_rs_to_sk(rs)); 493 } 494 } 495 EXPORT_SYMBOL_GPL(rds_rdma_send_complete); 496 497 /* 498 * Just like above, except looks at atomic op 499 */ 500 void rds_atomic_send_complete(struct rds_message *rm, int status) 501 { 502 struct rds_sock *rs = NULL; 503 struct rm_atomic_op *ao; 504 struct rds_notifier *notifier; 505 unsigned long flags; 506 507 spin_lock_irqsave(&rm->m_rs_lock, flags); 508 509 ao = &rm->atomic; 510 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) 511 && ao->op_active && ao->op_notify && ao->op_notifier) { 512 notifier = ao->op_notifier; 513 rs = rm->m_rs; 514 sock_hold(rds_rs_to_sk(rs)); 515 516 notifier->n_status = status; 517 spin_lock(&rs->rs_lock); 518 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 519 spin_unlock(&rs->rs_lock); 520 521 ao->op_notifier = NULL; 522 } 523 524 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 525 526 if (rs) { 527 rds_wake_sk_sleep(rs); 528 sock_put(rds_rs_to_sk(rs)); 529 } 530 } 531 EXPORT_SYMBOL_GPL(rds_atomic_send_complete); 532 533 /* 534 * This is the same as rds_rdma_send_complete except we 535 * don't do any locking - we have all the ingredients (message, 536 * socket, socket lock) and can just move the notifier. 537 */ 538 static inline void 539 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) 540 { 541 struct rm_rdma_op *ro; 542 struct rm_atomic_op *ao; 543 544 ro = &rm->rdma; 545 if (ro->op_active && ro->op_notify && ro->op_notifier) { 546 ro->op_notifier->n_status = status; 547 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue); 548 ro->op_notifier = NULL; 549 } 550 551 ao = &rm->atomic; 552 if (ao->op_active && ao->op_notify && ao->op_notifier) { 553 ao->op_notifier->n_status = status; 554 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue); 555 ao->op_notifier = NULL; 556 } 557 558 /* No need to wake the app - caller does this */ 559 } 560 561 /* 562 * This is called from the IB send completion when we detect 563 * a RDMA operation that failed with remote access error. 564 * So speed is not an issue here. 565 */ 566 struct rds_message *rds_send_get_message(struct rds_connection *conn, 567 struct rm_rdma_op *op) 568 { 569 struct rds_message *rm, *tmp, *found = NULL; 570 unsigned long flags; 571 572 spin_lock_irqsave(&conn->c_lock, flags); 573 574 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { 575 if (&rm->rdma == op) { 576 atomic_inc(&rm->m_refcount); 577 found = rm; 578 goto out; 579 } 580 } 581 582 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) { 583 if (&rm->rdma == op) { 584 atomic_inc(&rm->m_refcount); 585 found = rm; 586 break; 587 } 588 } 589 590 out: 591 spin_unlock_irqrestore(&conn->c_lock, flags); 592 593 return found; 594 } 595 EXPORT_SYMBOL_GPL(rds_send_get_message); 596 597 /* 598 * This removes messages from the socket's list if they're on it. The list 599 * argument must be private to the caller, we must be able to modify it 600 * without locks. The messages must have a reference held for their 601 * position on the list. This function will drop that reference after 602 * removing the messages from the 'messages' list regardless of if it found 603 * the messages on the socket list or not. 604 */ 605 static void rds_send_remove_from_sock(struct list_head *messages, int status) 606 { 607 unsigned long flags; 608 struct rds_sock *rs = NULL; 609 struct rds_message *rm; 610 611 while (!list_empty(messages)) { 612 int was_on_sock = 0; 613 614 rm = list_entry(messages->next, struct rds_message, 615 m_conn_item); 616 list_del_init(&rm->m_conn_item); 617 618 /* 619 * If we see this flag cleared then we're *sure* that someone 620 * else beat us to removing it from the sock. If we race 621 * with their flag update we'll get the lock and then really 622 * see that the flag has been cleared. 623 * 624 * The message spinlock makes sure nobody clears rm->m_rs 625 * while we're messing with it. It does not prevent the 626 * message from being removed from the socket, though. 627 */ 628 spin_lock_irqsave(&rm->m_rs_lock, flags); 629 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) 630 goto unlock_and_drop; 631 632 if (rs != rm->m_rs) { 633 if (rs) { 634 rds_wake_sk_sleep(rs); 635 sock_put(rds_rs_to_sk(rs)); 636 } 637 rs = rm->m_rs; 638 if (rs) 639 sock_hold(rds_rs_to_sk(rs)); 640 } 641 if (!rs) 642 goto unlock_and_drop; 643 spin_lock(&rs->rs_lock); 644 645 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { 646 struct rm_rdma_op *ro = &rm->rdma; 647 struct rds_notifier *notifier; 648 649 list_del_init(&rm->m_sock_item); 650 rds_send_sndbuf_remove(rs, rm); 651 652 if (ro->op_active && ro->op_notifier && 653 (ro->op_notify || (ro->op_recverr && status))) { 654 notifier = ro->op_notifier; 655 list_add_tail(¬ifier->n_list, 656 &rs->rs_notify_queue); 657 if (!notifier->n_status) 658 notifier->n_status = status; 659 rm->rdma.op_notifier = NULL; 660 } 661 was_on_sock = 1; 662 rm->m_rs = NULL; 663 } 664 spin_unlock(&rs->rs_lock); 665 666 unlock_and_drop: 667 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 668 rds_message_put(rm); 669 if (was_on_sock) 670 rds_message_put(rm); 671 } 672 673 if (rs) { 674 rds_wake_sk_sleep(rs); 675 sock_put(rds_rs_to_sk(rs)); 676 } 677 } 678 679 /* 680 * Transports call here when they've determined that the receiver queued 681 * messages up to, and including, the given sequence number. Messages are 682 * moved to the retrans queue when rds_send_xmit picks them off the send 683 * queue. This means that in the TCP case, the message may not have been 684 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked 685 * checks the RDS_MSG_HAS_ACK_SEQ bit. 686 */ 687 void rds_send_drop_acked(struct rds_connection *conn, u64 ack, 688 is_acked_func is_acked) 689 { 690 struct rds_message *rm, *tmp; 691 unsigned long flags; 692 LIST_HEAD(list); 693 694 spin_lock_irqsave(&conn->c_lock, flags); 695 696 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { 697 if (!rds_send_is_acked(rm, ack, is_acked)) 698 break; 699 700 list_move(&rm->m_conn_item, &list); 701 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); 702 } 703 704 /* order flag updates with spin locks */ 705 if (!list_empty(&list)) 706 smp_mb__after_atomic(); 707 708 spin_unlock_irqrestore(&conn->c_lock, flags); 709 710 /* now remove the messages from the sock list as needed */ 711 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); 712 } 713 EXPORT_SYMBOL_GPL(rds_send_drop_acked); 714 715 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest) 716 { 717 struct rds_message *rm, *tmp; 718 struct rds_connection *conn; 719 unsigned long flags; 720 LIST_HEAD(list); 721 722 /* get all the messages we're dropping under the rs lock */ 723 spin_lock_irqsave(&rs->rs_lock, flags); 724 725 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { 726 if (dest && (dest->sin_addr.s_addr != rm->m_daddr || 727 dest->sin_port != rm->m_inc.i_hdr.h_dport)) 728 continue; 729 730 list_move(&rm->m_sock_item, &list); 731 rds_send_sndbuf_remove(rs, rm); 732 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 733 } 734 735 /* order flag updates with the rs lock */ 736 smp_mb__after_atomic(); 737 738 spin_unlock_irqrestore(&rs->rs_lock, flags); 739 740 if (list_empty(&list)) 741 return; 742 743 /* Remove the messages from the conn */ 744 list_for_each_entry(rm, &list, m_sock_item) { 745 746 conn = rm->m_inc.i_conn; 747 748 spin_lock_irqsave(&conn->c_lock, flags); 749 /* 750 * Maybe someone else beat us to removing rm from the conn. 751 * If we race with their flag update we'll get the lock and 752 * then really see that the flag has been cleared. 753 */ 754 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { 755 spin_unlock_irqrestore(&conn->c_lock, flags); 756 spin_lock_irqsave(&rm->m_rs_lock, flags); 757 rm->m_rs = NULL; 758 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 759 continue; 760 } 761 list_del_init(&rm->m_conn_item); 762 spin_unlock_irqrestore(&conn->c_lock, flags); 763 764 /* 765 * Couldn't grab m_rs_lock in top loop (lock ordering), 766 * but we can now. 767 */ 768 spin_lock_irqsave(&rm->m_rs_lock, flags); 769 770 spin_lock(&rs->rs_lock); 771 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 772 spin_unlock(&rs->rs_lock); 773 774 rm->m_rs = NULL; 775 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 776 777 rds_message_put(rm); 778 } 779 780 rds_wake_sk_sleep(rs); 781 782 while (!list_empty(&list)) { 783 rm = list_entry(list.next, struct rds_message, m_sock_item); 784 list_del_init(&rm->m_sock_item); 785 rds_message_wait(rm); 786 787 /* just in case the code above skipped this message 788 * because RDS_MSG_ON_CONN wasn't set, run it again here 789 * taking m_rs_lock is the only thing that keeps us 790 * from racing with ack processing. 791 */ 792 spin_lock_irqsave(&rm->m_rs_lock, flags); 793 794 spin_lock(&rs->rs_lock); 795 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 796 spin_unlock(&rs->rs_lock); 797 798 rm->m_rs = NULL; 799 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 800 801 rds_message_put(rm); 802 } 803 } 804 805 /* 806 * we only want this to fire once so we use the callers 'queued'. It's 807 * possible that another thread can race with us and remove the 808 * message from the flow with RDS_CANCEL_SENT_TO. 809 */ 810 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, 811 struct rds_message *rm, __be16 sport, 812 __be16 dport, int *queued) 813 { 814 unsigned long flags; 815 u32 len; 816 817 if (*queued) 818 goto out; 819 820 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 821 822 /* this is the only place which holds both the socket's rs_lock 823 * and the connection's c_lock */ 824 spin_lock_irqsave(&rs->rs_lock, flags); 825 826 /* 827 * If there is a little space in sndbuf, we don't queue anything, 828 * and userspace gets -EAGAIN. But poll() indicates there's send 829 * room. This can lead to bad behavior (spinning) if snd_bytes isn't 830 * freed up by incoming acks. So we check the *old* value of 831 * rs_snd_bytes here to allow the last msg to exceed the buffer, 832 * and poll() now knows no more data can be sent. 833 */ 834 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { 835 rs->rs_snd_bytes += len; 836 837 /* let recv side know we are close to send space exhaustion. 838 * This is probably not the optimal way to do it, as this 839 * means we set the flag on *all* messages as soon as our 840 * throughput hits a certain threshold. 841 */ 842 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) 843 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 844 845 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); 846 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 847 rds_message_addref(rm); 848 rm->m_rs = rs; 849 850 /* The code ordering is a little weird, but we're 851 trying to minimize the time we hold c_lock */ 852 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); 853 rm->m_inc.i_conn = conn; 854 rds_message_addref(rm); 855 856 spin_lock(&conn->c_lock); 857 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++); 858 list_add_tail(&rm->m_conn_item, &conn->c_send_queue); 859 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 860 spin_unlock(&conn->c_lock); 861 862 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", 863 rm, len, rs, rs->rs_snd_bytes, 864 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); 865 866 *queued = 1; 867 } 868 869 spin_unlock_irqrestore(&rs->rs_lock, flags); 870 out: 871 return *queued; 872 } 873 874 /* 875 * rds_message is getting to be quite complicated, and we'd like to allocate 876 * it all in one go. This figures out how big it needs to be up front. 877 */ 878 static int rds_rm_size(struct msghdr *msg, int data_len) 879 { 880 struct cmsghdr *cmsg; 881 int size = 0; 882 int cmsg_groups = 0; 883 int retval; 884 885 for_each_cmsghdr(cmsg, msg) { 886 if (!CMSG_OK(msg, cmsg)) 887 return -EINVAL; 888 889 if (cmsg->cmsg_level != SOL_RDS) 890 continue; 891 892 switch (cmsg->cmsg_type) { 893 case RDS_CMSG_RDMA_ARGS: 894 cmsg_groups |= 1; 895 retval = rds_rdma_extra_size(CMSG_DATA(cmsg)); 896 if (retval < 0) 897 return retval; 898 size += retval; 899 900 break; 901 902 case RDS_CMSG_RDMA_DEST: 903 case RDS_CMSG_RDMA_MAP: 904 cmsg_groups |= 2; 905 /* these are valid but do no add any size */ 906 break; 907 908 case RDS_CMSG_ATOMIC_CSWP: 909 case RDS_CMSG_ATOMIC_FADD: 910 case RDS_CMSG_MASKED_ATOMIC_CSWP: 911 case RDS_CMSG_MASKED_ATOMIC_FADD: 912 cmsg_groups |= 1; 913 size += sizeof(struct scatterlist); 914 break; 915 916 default: 917 return -EINVAL; 918 } 919 920 } 921 922 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist); 923 924 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */ 925 if (cmsg_groups == 3) 926 return -EINVAL; 927 928 return size; 929 } 930 931 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, 932 struct msghdr *msg, int *allocated_mr) 933 { 934 struct cmsghdr *cmsg; 935 int ret = 0; 936 937 for_each_cmsghdr(cmsg, msg) { 938 if (!CMSG_OK(msg, cmsg)) 939 return -EINVAL; 940 941 if (cmsg->cmsg_level != SOL_RDS) 942 continue; 943 944 /* As a side effect, RDMA_DEST and RDMA_MAP will set 945 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr. 946 */ 947 switch (cmsg->cmsg_type) { 948 case RDS_CMSG_RDMA_ARGS: 949 ret = rds_cmsg_rdma_args(rs, rm, cmsg); 950 break; 951 952 case RDS_CMSG_RDMA_DEST: 953 ret = rds_cmsg_rdma_dest(rs, rm, cmsg); 954 break; 955 956 case RDS_CMSG_RDMA_MAP: 957 ret = rds_cmsg_rdma_map(rs, rm, cmsg); 958 if (!ret) 959 *allocated_mr = 1; 960 break; 961 case RDS_CMSG_ATOMIC_CSWP: 962 case RDS_CMSG_ATOMIC_FADD: 963 case RDS_CMSG_MASKED_ATOMIC_CSWP: 964 case RDS_CMSG_MASKED_ATOMIC_FADD: 965 ret = rds_cmsg_atomic(rs, rm, cmsg); 966 break; 967 968 default: 969 return -EINVAL; 970 } 971 972 if (ret) 973 break; 974 } 975 976 return ret; 977 } 978 979 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len) 980 { 981 struct sock *sk = sock->sk; 982 struct rds_sock *rs = rds_sk_to_rs(sk); 983 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 984 __be32 daddr; 985 __be16 dport; 986 struct rds_message *rm = NULL; 987 struct rds_connection *conn; 988 int ret = 0; 989 int queued = 0, allocated_mr = 0; 990 int nonblock = msg->msg_flags & MSG_DONTWAIT; 991 long timeo = sock_sndtimeo(sk, nonblock); 992 993 /* Mirror Linux UDP mirror of BSD error message compatibility */ 994 /* XXX: Perhaps MSG_MORE someday */ 995 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) { 996 ret = -EOPNOTSUPP; 997 goto out; 998 } 999 1000 if (msg->msg_namelen) { 1001 /* XXX fail non-unicast destination IPs? */ 1002 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) { 1003 ret = -EINVAL; 1004 goto out; 1005 } 1006 daddr = usin->sin_addr.s_addr; 1007 dport = usin->sin_port; 1008 } else { 1009 /* We only care about consistency with ->connect() */ 1010 lock_sock(sk); 1011 daddr = rs->rs_conn_addr; 1012 dport = rs->rs_conn_port; 1013 release_sock(sk); 1014 } 1015 1016 lock_sock(sk); 1017 if (daddr == 0 || rs->rs_bound_addr == 0) { 1018 release_sock(sk); 1019 ret = -ENOTCONN; /* XXX not a great errno */ 1020 goto out; 1021 } 1022 release_sock(sk); 1023 1024 if (payload_len > rds_sk_sndbuf(rs)) { 1025 ret = -EMSGSIZE; 1026 goto out; 1027 } 1028 1029 /* size of rm including all sgs */ 1030 ret = rds_rm_size(msg, payload_len); 1031 if (ret < 0) 1032 goto out; 1033 1034 rm = rds_message_alloc(ret, GFP_KERNEL); 1035 if (!rm) { 1036 ret = -ENOMEM; 1037 goto out; 1038 } 1039 1040 /* Attach data to the rm */ 1041 if (payload_len) { 1042 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE)); 1043 if (!rm->data.op_sg) { 1044 ret = -ENOMEM; 1045 goto out; 1046 } 1047 ret = rds_message_copy_from_user(rm, &msg->msg_iter); 1048 if (ret) 1049 goto out; 1050 } 1051 rm->data.op_active = 1; 1052 1053 rm->m_daddr = daddr; 1054 1055 /* rds_conn_create has a spinlock that runs with IRQ off. 1056 * Caching the conn in the socket helps a lot. */ 1057 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr) 1058 conn = rs->rs_conn; 1059 else { 1060 conn = rds_conn_create_outgoing(sock_net(sock->sk), 1061 rs->rs_bound_addr, daddr, 1062 rs->rs_transport, 1063 sock->sk->sk_allocation); 1064 if (IS_ERR(conn)) { 1065 ret = PTR_ERR(conn); 1066 goto out; 1067 } 1068 rs->rs_conn = conn; 1069 } 1070 1071 /* Parse any control messages the user may have included. */ 1072 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr); 1073 if (ret) 1074 goto out; 1075 1076 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) { 1077 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", 1078 &rm->rdma, conn->c_trans->xmit_rdma); 1079 ret = -EOPNOTSUPP; 1080 goto out; 1081 } 1082 1083 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) { 1084 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n", 1085 &rm->atomic, conn->c_trans->xmit_atomic); 1086 ret = -EOPNOTSUPP; 1087 goto out; 1088 } 1089 1090 rds_conn_connect_if_down(conn); 1091 1092 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); 1093 if (ret) { 1094 rs->rs_seen_congestion = 1; 1095 goto out; 1096 } 1097 1098 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port, 1099 dport, &queued)) { 1100 rds_stats_inc(s_send_queue_full); 1101 1102 if (nonblock) { 1103 ret = -EAGAIN; 1104 goto out; 1105 } 1106 1107 timeo = wait_event_interruptible_timeout(*sk_sleep(sk), 1108 rds_send_queue_rm(rs, conn, rm, 1109 rs->rs_bound_port, 1110 dport, 1111 &queued), 1112 timeo); 1113 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); 1114 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) 1115 continue; 1116 1117 ret = timeo; 1118 if (ret == 0) 1119 ret = -ETIMEDOUT; 1120 goto out; 1121 } 1122 1123 /* 1124 * By now we've committed to the send. We reuse rds_send_worker() 1125 * to retry sends in the rds thread if the transport asks us to. 1126 */ 1127 rds_stats_inc(s_send_queued); 1128 1129 ret = rds_send_xmit(conn); 1130 if (ret == -ENOMEM || ret == -EAGAIN) 1131 queue_delayed_work(rds_wq, &conn->c_send_w, 1); 1132 1133 rds_message_put(rm); 1134 return payload_len; 1135 1136 out: 1137 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. 1138 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN 1139 * or in any other way, we need to destroy the MR again */ 1140 if (allocated_mr) 1141 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); 1142 1143 if (rm) 1144 rds_message_put(rm); 1145 return ret; 1146 } 1147 1148 /* 1149 * Reply to a ping packet. 1150 */ 1151 int 1152 rds_send_pong(struct rds_connection *conn, __be16 dport) 1153 { 1154 struct rds_message *rm; 1155 unsigned long flags; 1156 int ret = 0; 1157 1158 rm = rds_message_alloc(0, GFP_ATOMIC); 1159 if (!rm) { 1160 ret = -ENOMEM; 1161 goto out; 1162 } 1163 1164 rm->m_daddr = conn->c_faddr; 1165 rm->data.op_active = 1; 1166 1167 rds_conn_connect_if_down(conn); 1168 1169 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL); 1170 if (ret) 1171 goto out; 1172 1173 spin_lock_irqsave(&conn->c_lock, flags); 1174 list_add_tail(&rm->m_conn_item, &conn->c_send_queue); 1175 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 1176 rds_message_addref(rm); 1177 rm->m_inc.i_conn = conn; 1178 1179 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport, 1180 conn->c_next_tx_seq); 1181 conn->c_next_tx_seq++; 1182 spin_unlock_irqrestore(&conn->c_lock, flags); 1183 1184 rds_stats_inc(s_send_queued); 1185 rds_stats_inc(s_send_pong); 1186 1187 /* schedule the send work on rds_wq */ 1188 queue_delayed_work(rds_wq, &conn->c_send_w, 1); 1189 1190 rds_message_put(rm); 1191 return 0; 1192 1193 out: 1194 if (rm) 1195 rds_message_put(rm); 1196 return ret; 1197 } 1198