1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/moduleparam.h> 35 #include <linux/gfp.h> 36 #include <net/sock.h> 37 #include <linux/in.h> 38 #include <linux/list.h> 39 #include <linux/ratelimit.h> 40 #include <linux/export.h> 41 #include <linux/sizes.h> 42 43 #include "rds.h" 44 45 /* When transmitting messages in rds_send_xmit, we need to emerge from 46 * time to time and briefly release the CPU. Otherwise the softlock watchdog 47 * will kick our shin. 48 * Also, it seems fairer to not let one busy connection stall all the 49 * others. 50 * 51 * send_batch_count is the number of times we'll loop in send_xmit. Setting 52 * it to 0 will restore the old behavior (where we looped until we had 53 * drained the queue). 54 */ 55 static int send_batch_count = SZ_1K; 56 module_param(send_batch_count, int, 0444); 57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); 58 59 static void rds_send_remove_from_sock(struct list_head *messages, int status); 60 61 /* 62 * Reset the send state. Callers must ensure that this doesn't race with 63 * rds_send_xmit(). 64 */ 65 void rds_send_path_reset(struct rds_conn_path *cp) 66 { 67 struct rds_message *rm, *tmp; 68 unsigned long flags; 69 70 if (cp->cp_xmit_rm) { 71 rm = cp->cp_xmit_rm; 72 cp->cp_xmit_rm = NULL; 73 /* Tell the user the RDMA op is no longer mapped by the 74 * transport. This isn't entirely true (it's flushed out 75 * independently) but as the connection is down, there's 76 * no ongoing RDMA to/from that memory */ 77 rds_message_unmapped(rm); 78 rds_message_put(rm); 79 } 80 81 cp->cp_xmit_sg = 0; 82 cp->cp_xmit_hdr_off = 0; 83 cp->cp_xmit_data_off = 0; 84 cp->cp_xmit_atomic_sent = 0; 85 cp->cp_xmit_rdma_sent = 0; 86 cp->cp_xmit_data_sent = 0; 87 88 cp->cp_conn->c_map_queued = 0; 89 90 cp->cp_unacked_packets = rds_sysctl_max_unacked_packets; 91 cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes; 92 93 /* Mark messages as retransmissions, and move them to the send q */ 94 spin_lock_irqsave(&cp->cp_lock, flags); 95 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { 96 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 97 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); 98 } 99 list_splice_init(&cp->cp_retrans, &cp->cp_send_queue); 100 spin_unlock_irqrestore(&cp->cp_lock, flags); 101 } 102 EXPORT_SYMBOL_GPL(rds_send_path_reset); 103 104 static int acquire_in_xmit(struct rds_conn_path *cp) 105 { 106 return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0; 107 } 108 109 static void release_in_xmit(struct rds_conn_path *cp) 110 { 111 clear_bit(RDS_IN_XMIT, &cp->cp_flags); 112 smp_mb__after_atomic(); 113 /* 114 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a 115 * hot path and finding waiters is very rare. We don't want to walk 116 * the system-wide hashed waitqueue buckets in the fast path only to 117 * almost never find waiters. 118 */ 119 if (waitqueue_active(&cp->cp_waitq)) 120 wake_up_all(&cp->cp_waitq); 121 } 122 123 /* 124 * We're making the conscious trade-off here to only send one message 125 * down the connection at a time. 126 * Pro: 127 * - tx queueing is a simple fifo list 128 * - reassembly is optional and easily done by transports per conn 129 * - no per flow rx lookup at all, straight to the socket 130 * - less per-frag memory and wire overhead 131 * Con: 132 * - queued acks can be delayed behind large messages 133 * Depends: 134 * - small message latency is higher behind queued large messages 135 * - large message latency isn't starved by intervening small sends 136 */ 137 int rds_send_xmit(struct rds_conn_path *cp) 138 { 139 struct rds_connection *conn = cp->cp_conn; 140 struct rds_message *rm; 141 unsigned long flags; 142 unsigned int tmp; 143 struct scatterlist *sg; 144 int ret = 0; 145 LIST_HEAD(to_be_dropped); 146 int batch_count; 147 unsigned long send_gen = 0; 148 149 restart: 150 batch_count = 0; 151 152 /* 153 * sendmsg calls here after having queued its message on the send 154 * queue. We only have one task feeding the connection at a time. If 155 * another thread is already feeding the queue then we back off. This 156 * avoids blocking the caller and trading per-connection data between 157 * caches per message. 158 */ 159 if (!acquire_in_xmit(cp)) { 160 rds_stats_inc(s_send_lock_contention); 161 ret = -ENOMEM; 162 goto out; 163 } 164 165 /* 166 * we record the send generation after doing the xmit acquire. 167 * if someone else manages to jump in and do some work, we'll use 168 * this to avoid a goto restart farther down. 169 * 170 * The acquire_in_xmit() check above ensures that only one 171 * caller can increment c_send_gen at any time. 172 */ 173 send_gen = READ_ONCE(cp->cp_send_gen) + 1; 174 WRITE_ONCE(cp->cp_send_gen, send_gen); 175 176 /* 177 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT, 178 * we do the opposite to avoid races. 179 */ 180 if (!rds_conn_path_up(cp)) { 181 release_in_xmit(cp); 182 ret = 0; 183 goto out; 184 } 185 186 if (conn->c_trans->xmit_path_prepare) 187 conn->c_trans->xmit_path_prepare(cp); 188 189 /* 190 * spin trying to push headers and data down the connection until 191 * the connection doesn't make forward progress. 192 */ 193 while (1) { 194 195 rm = cp->cp_xmit_rm; 196 197 /* 198 * If between sending messages, we can send a pending congestion 199 * map update. 200 */ 201 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { 202 rm = rds_cong_update_alloc(conn); 203 if (IS_ERR(rm)) { 204 ret = PTR_ERR(rm); 205 break; 206 } 207 rm->data.op_active = 1; 208 rm->m_inc.i_conn_path = cp; 209 rm->m_inc.i_conn = cp->cp_conn; 210 211 cp->cp_xmit_rm = rm; 212 } 213 214 /* 215 * If not already working on one, grab the next message. 216 * 217 * cp_xmit_rm holds a ref while we're sending this message down 218 * the connction. We can use this ref while holding the 219 * send_sem.. rds_send_reset() is serialized with it. 220 */ 221 if (!rm) { 222 unsigned int len; 223 224 batch_count++; 225 226 /* we want to process as big a batch as we can, but 227 * we also want to avoid softlockups. If we've been 228 * through a lot of messages, lets back off and see 229 * if anyone else jumps in 230 */ 231 if (batch_count >= send_batch_count) 232 goto over_batch; 233 234 spin_lock_irqsave(&cp->cp_lock, flags); 235 236 if (!list_empty(&cp->cp_send_queue)) { 237 rm = list_entry(cp->cp_send_queue.next, 238 struct rds_message, 239 m_conn_item); 240 rds_message_addref(rm); 241 242 /* 243 * Move the message from the send queue to the retransmit 244 * list right away. 245 */ 246 list_move_tail(&rm->m_conn_item, 247 &cp->cp_retrans); 248 } 249 250 spin_unlock_irqrestore(&cp->cp_lock, flags); 251 252 if (!rm) 253 break; 254 255 /* Unfortunately, the way Infiniband deals with 256 * RDMA to a bad MR key is by moving the entire 257 * queue pair to error state. We cold possibly 258 * recover from that, but right now we drop the 259 * connection. 260 * Therefore, we never retransmit messages with RDMA ops. 261 */ 262 if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) || 263 (rm->rdma.op_active && 264 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) { 265 spin_lock_irqsave(&cp->cp_lock, flags); 266 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) 267 list_move(&rm->m_conn_item, &to_be_dropped); 268 spin_unlock_irqrestore(&cp->cp_lock, flags); 269 continue; 270 } 271 272 /* Require an ACK every once in a while */ 273 len = ntohl(rm->m_inc.i_hdr.h_len); 274 if (cp->cp_unacked_packets == 0 || 275 cp->cp_unacked_bytes < len) { 276 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 277 278 cp->cp_unacked_packets = 279 rds_sysctl_max_unacked_packets; 280 cp->cp_unacked_bytes = 281 rds_sysctl_max_unacked_bytes; 282 rds_stats_inc(s_send_ack_required); 283 } else { 284 cp->cp_unacked_bytes -= len; 285 cp->cp_unacked_packets--; 286 } 287 288 cp->cp_xmit_rm = rm; 289 } 290 291 /* The transport either sends the whole rdma or none of it */ 292 if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) { 293 rm->m_final_op = &rm->rdma; 294 /* The transport owns the mapped memory for now. 295 * You can't unmap it while it's on the send queue 296 */ 297 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 298 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma); 299 if (ret) { 300 clear_bit(RDS_MSG_MAPPED, &rm->m_flags); 301 wake_up_interruptible(&rm->m_flush_wait); 302 break; 303 } 304 cp->cp_xmit_rdma_sent = 1; 305 306 } 307 308 if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) { 309 rm->m_final_op = &rm->atomic; 310 /* The transport owns the mapped memory for now. 311 * You can't unmap it while it's on the send queue 312 */ 313 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 314 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic); 315 if (ret) { 316 clear_bit(RDS_MSG_MAPPED, &rm->m_flags); 317 wake_up_interruptible(&rm->m_flush_wait); 318 break; 319 } 320 cp->cp_xmit_atomic_sent = 1; 321 322 } 323 324 /* 325 * A number of cases require an RDS header to be sent 326 * even if there is no data. 327 * We permit 0-byte sends; rds-ping depends on this. 328 * However, if there are exclusively attached silent ops, 329 * we skip the hdr/data send, to enable silent operation. 330 */ 331 if (rm->data.op_nents == 0) { 332 int ops_present; 333 int all_ops_are_silent = 1; 334 335 ops_present = (rm->atomic.op_active || rm->rdma.op_active); 336 if (rm->atomic.op_active && !rm->atomic.op_silent) 337 all_ops_are_silent = 0; 338 if (rm->rdma.op_active && !rm->rdma.op_silent) 339 all_ops_are_silent = 0; 340 341 if (ops_present && all_ops_are_silent 342 && !rm->m_rdma_cookie) 343 rm->data.op_active = 0; 344 } 345 346 if (rm->data.op_active && !cp->cp_xmit_data_sent) { 347 rm->m_final_op = &rm->data; 348 349 ret = conn->c_trans->xmit(conn, rm, 350 cp->cp_xmit_hdr_off, 351 cp->cp_xmit_sg, 352 cp->cp_xmit_data_off); 353 if (ret <= 0) 354 break; 355 356 if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) { 357 tmp = min_t(int, ret, 358 sizeof(struct rds_header) - 359 cp->cp_xmit_hdr_off); 360 cp->cp_xmit_hdr_off += tmp; 361 ret -= tmp; 362 } 363 364 sg = &rm->data.op_sg[cp->cp_xmit_sg]; 365 while (ret) { 366 tmp = min_t(int, ret, sg->length - 367 cp->cp_xmit_data_off); 368 cp->cp_xmit_data_off += tmp; 369 ret -= tmp; 370 if (cp->cp_xmit_data_off == sg->length) { 371 cp->cp_xmit_data_off = 0; 372 sg++; 373 cp->cp_xmit_sg++; 374 BUG_ON(ret != 0 && cp->cp_xmit_sg == 375 rm->data.op_nents); 376 } 377 } 378 379 if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) && 380 (cp->cp_xmit_sg == rm->data.op_nents)) 381 cp->cp_xmit_data_sent = 1; 382 } 383 384 /* 385 * A rm will only take multiple times through this loop 386 * if there is a data op. Thus, if the data is sent (or there was 387 * none), then we're done with the rm. 388 */ 389 if (!rm->data.op_active || cp->cp_xmit_data_sent) { 390 cp->cp_xmit_rm = NULL; 391 cp->cp_xmit_sg = 0; 392 cp->cp_xmit_hdr_off = 0; 393 cp->cp_xmit_data_off = 0; 394 cp->cp_xmit_rdma_sent = 0; 395 cp->cp_xmit_atomic_sent = 0; 396 cp->cp_xmit_data_sent = 0; 397 398 rds_message_put(rm); 399 } 400 } 401 402 over_batch: 403 if (conn->c_trans->xmit_path_complete) 404 conn->c_trans->xmit_path_complete(cp); 405 release_in_xmit(cp); 406 407 /* Nuke any messages we decided not to retransmit. */ 408 if (!list_empty(&to_be_dropped)) { 409 /* irqs on here, so we can put(), unlike above */ 410 list_for_each_entry(rm, &to_be_dropped, m_conn_item) 411 rds_message_put(rm); 412 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); 413 } 414 415 /* 416 * Other senders can queue a message after we last test the send queue 417 * but before we clear RDS_IN_XMIT. In that case they'd back off and 418 * not try and send their newly queued message. We need to check the 419 * send queue after having cleared RDS_IN_XMIT so that their message 420 * doesn't get stuck on the send queue. 421 * 422 * If the transport cannot continue (i.e ret != 0), then it must 423 * call us when more room is available, such as from the tx 424 * completion handler. 425 * 426 * We have an extra generation check here so that if someone manages 427 * to jump in after our release_in_xmit, we'll see that they have done 428 * some work and we will skip our goto 429 */ 430 if (ret == 0) { 431 bool raced; 432 433 smp_mb(); 434 raced = send_gen != READ_ONCE(cp->cp_send_gen); 435 436 if ((test_bit(0, &conn->c_map_queued) || 437 !list_empty(&cp->cp_send_queue)) && !raced) { 438 if (batch_count < send_batch_count) 439 goto restart; 440 queue_delayed_work(rds_wq, &cp->cp_send_w, 1); 441 } else if (raced) { 442 rds_stats_inc(s_send_lock_queue_raced); 443 } 444 } 445 out: 446 return ret; 447 } 448 EXPORT_SYMBOL_GPL(rds_send_xmit); 449 450 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) 451 { 452 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 453 454 assert_spin_locked(&rs->rs_lock); 455 456 BUG_ON(rs->rs_snd_bytes < len); 457 rs->rs_snd_bytes -= len; 458 459 if (rs->rs_snd_bytes == 0) 460 rds_stats_inc(s_send_queue_empty); 461 } 462 463 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, 464 is_acked_func is_acked) 465 { 466 if (is_acked) 467 return is_acked(rm, ack); 468 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; 469 } 470 471 /* 472 * This is pretty similar to what happens below in the ACK 473 * handling code - except that we call here as soon as we get 474 * the IB send completion on the RDMA op and the accompanying 475 * message. 476 */ 477 void rds_rdma_send_complete(struct rds_message *rm, int status) 478 { 479 struct rds_sock *rs = NULL; 480 struct rm_rdma_op *ro; 481 struct rds_notifier *notifier; 482 unsigned long flags; 483 unsigned int notify = 0; 484 485 spin_lock_irqsave(&rm->m_rs_lock, flags); 486 487 notify = rm->rdma.op_notify | rm->data.op_notify; 488 ro = &rm->rdma; 489 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && 490 ro->op_active && notify && ro->op_notifier) { 491 notifier = ro->op_notifier; 492 rs = rm->m_rs; 493 sock_hold(rds_rs_to_sk(rs)); 494 495 notifier->n_status = status; 496 spin_lock(&rs->rs_lock); 497 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 498 spin_unlock(&rs->rs_lock); 499 500 ro->op_notifier = NULL; 501 } 502 503 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 504 505 if (rs) { 506 rds_wake_sk_sleep(rs); 507 sock_put(rds_rs_to_sk(rs)); 508 } 509 } 510 EXPORT_SYMBOL_GPL(rds_rdma_send_complete); 511 512 /* 513 * Just like above, except looks at atomic op 514 */ 515 void rds_atomic_send_complete(struct rds_message *rm, int status) 516 { 517 struct rds_sock *rs = NULL; 518 struct rm_atomic_op *ao; 519 struct rds_notifier *notifier; 520 unsigned long flags; 521 522 spin_lock_irqsave(&rm->m_rs_lock, flags); 523 524 ao = &rm->atomic; 525 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) 526 && ao->op_active && ao->op_notify && ao->op_notifier) { 527 notifier = ao->op_notifier; 528 rs = rm->m_rs; 529 sock_hold(rds_rs_to_sk(rs)); 530 531 notifier->n_status = status; 532 spin_lock(&rs->rs_lock); 533 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 534 spin_unlock(&rs->rs_lock); 535 536 ao->op_notifier = NULL; 537 } 538 539 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 540 541 if (rs) { 542 rds_wake_sk_sleep(rs); 543 sock_put(rds_rs_to_sk(rs)); 544 } 545 } 546 EXPORT_SYMBOL_GPL(rds_atomic_send_complete); 547 548 /* 549 * This is the same as rds_rdma_send_complete except we 550 * don't do any locking - we have all the ingredients (message, 551 * socket, socket lock) and can just move the notifier. 552 */ 553 static inline void 554 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) 555 { 556 struct rm_rdma_op *ro; 557 struct rm_atomic_op *ao; 558 559 ro = &rm->rdma; 560 if (ro->op_active && ro->op_notify && ro->op_notifier) { 561 ro->op_notifier->n_status = status; 562 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue); 563 ro->op_notifier = NULL; 564 } 565 566 ao = &rm->atomic; 567 if (ao->op_active && ao->op_notify && ao->op_notifier) { 568 ao->op_notifier->n_status = status; 569 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue); 570 ao->op_notifier = NULL; 571 } 572 573 /* No need to wake the app - caller does this */ 574 } 575 576 /* 577 * This removes messages from the socket's list if they're on it. The list 578 * argument must be private to the caller, we must be able to modify it 579 * without locks. The messages must have a reference held for their 580 * position on the list. This function will drop that reference after 581 * removing the messages from the 'messages' list regardless of if it found 582 * the messages on the socket list or not. 583 */ 584 static void rds_send_remove_from_sock(struct list_head *messages, int status) 585 { 586 unsigned long flags; 587 struct rds_sock *rs = NULL; 588 struct rds_message *rm; 589 590 while (!list_empty(messages)) { 591 int was_on_sock = 0; 592 593 rm = list_entry(messages->next, struct rds_message, 594 m_conn_item); 595 list_del_init(&rm->m_conn_item); 596 597 /* 598 * If we see this flag cleared then we're *sure* that someone 599 * else beat us to removing it from the sock. If we race 600 * with their flag update we'll get the lock and then really 601 * see that the flag has been cleared. 602 * 603 * The message spinlock makes sure nobody clears rm->m_rs 604 * while we're messing with it. It does not prevent the 605 * message from being removed from the socket, though. 606 */ 607 spin_lock_irqsave(&rm->m_rs_lock, flags); 608 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) 609 goto unlock_and_drop; 610 611 if (rs != rm->m_rs) { 612 if (rs) { 613 rds_wake_sk_sleep(rs); 614 sock_put(rds_rs_to_sk(rs)); 615 } 616 rs = rm->m_rs; 617 if (rs) 618 sock_hold(rds_rs_to_sk(rs)); 619 } 620 if (!rs) 621 goto unlock_and_drop; 622 spin_lock(&rs->rs_lock); 623 624 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { 625 struct rm_rdma_op *ro = &rm->rdma; 626 struct rds_notifier *notifier; 627 628 list_del_init(&rm->m_sock_item); 629 rds_send_sndbuf_remove(rs, rm); 630 631 if (ro->op_active && ro->op_notifier && 632 (ro->op_notify || (ro->op_recverr && status))) { 633 notifier = ro->op_notifier; 634 list_add_tail(¬ifier->n_list, 635 &rs->rs_notify_queue); 636 if (!notifier->n_status) 637 notifier->n_status = status; 638 rm->rdma.op_notifier = NULL; 639 } 640 was_on_sock = 1; 641 rm->m_rs = NULL; 642 } 643 spin_unlock(&rs->rs_lock); 644 645 unlock_and_drop: 646 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 647 rds_message_put(rm); 648 if (was_on_sock) 649 rds_message_put(rm); 650 } 651 652 if (rs) { 653 rds_wake_sk_sleep(rs); 654 sock_put(rds_rs_to_sk(rs)); 655 } 656 } 657 658 /* 659 * Transports call here when they've determined that the receiver queued 660 * messages up to, and including, the given sequence number. Messages are 661 * moved to the retrans queue when rds_send_xmit picks them off the send 662 * queue. This means that in the TCP case, the message may not have been 663 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked 664 * checks the RDS_MSG_HAS_ACK_SEQ bit. 665 */ 666 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack, 667 is_acked_func is_acked) 668 { 669 struct rds_message *rm, *tmp; 670 unsigned long flags; 671 LIST_HEAD(list); 672 673 spin_lock_irqsave(&cp->cp_lock, flags); 674 675 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { 676 if (!rds_send_is_acked(rm, ack, is_acked)) 677 break; 678 679 list_move(&rm->m_conn_item, &list); 680 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); 681 } 682 683 /* order flag updates with spin locks */ 684 if (!list_empty(&list)) 685 smp_mb__after_atomic(); 686 687 spin_unlock_irqrestore(&cp->cp_lock, flags); 688 689 /* now remove the messages from the sock list as needed */ 690 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); 691 } 692 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked); 693 694 void rds_send_drop_acked(struct rds_connection *conn, u64 ack, 695 is_acked_func is_acked) 696 { 697 WARN_ON(conn->c_trans->t_mp_capable); 698 rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked); 699 } 700 EXPORT_SYMBOL_GPL(rds_send_drop_acked); 701 702 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest) 703 { 704 struct rds_message *rm, *tmp; 705 struct rds_connection *conn; 706 struct rds_conn_path *cp; 707 unsigned long flags; 708 LIST_HEAD(list); 709 710 /* get all the messages we're dropping under the rs lock */ 711 spin_lock_irqsave(&rs->rs_lock, flags); 712 713 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { 714 if (dest && (dest->sin_addr.s_addr != rm->m_daddr || 715 dest->sin_port != rm->m_inc.i_hdr.h_dport)) 716 continue; 717 718 list_move(&rm->m_sock_item, &list); 719 rds_send_sndbuf_remove(rs, rm); 720 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 721 } 722 723 /* order flag updates with the rs lock */ 724 smp_mb__after_atomic(); 725 726 spin_unlock_irqrestore(&rs->rs_lock, flags); 727 728 if (list_empty(&list)) 729 return; 730 731 /* Remove the messages from the conn */ 732 list_for_each_entry(rm, &list, m_sock_item) { 733 734 conn = rm->m_inc.i_conn; 735 if (conn->c_trans->t_mp_capable) 736 cp = rm->m_inc.i_conn_path; 737 else 738 cp = &conn->c_path[0]; 739 740 spin_lock_irqsave(&cp->cp_lock, flags); 741 /* 742 * Maybe someone else beat us to removing rm from the conn. 743 * If we race with their flag update we'll get the lock and 744 * then really see that the flag has been cleared. 745 */ 746 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { 747 spin_unlock_irqrestore(&cp->cp_lock, flags); 748 spin_lock_irqsave(&rm->m_rs_lock, flags); 749 rm->m_rs = NULL; 750 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 751 continue; 752 } 753 list_del_init(&rm->m_conn_item); 754 spin_unlock_irqrestore(&cp->cp_lock, flags); 755 756 /* 757 * Couldn't grab m_rs_lock in top loop (lock ordering), 758 * but we can now. 759 */ 760 spin_lock_irqsave(&rm->m_rs_lock, flags); 761 762 spin_lock(&rs->rs_lock); 763 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 764 spin_unlock(&rs->rs_lock); 765 766 rm->m_rs = NULL; 767 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 768 769 rds_message_put(rm); 770 } 771 772 rds_wake_sk_sleep(rs); 773 774 while (!list_empty(&list)) { 775 rm = list_entry(list.next, struct rds_message, m_sock_item); 776 list_del_init(&rm->m_sock_item); 777 rds_message_wait(rm); 778 779 /* just in case the code above skipped this message 780 * because RDS_MSG_ON_CONN wasn't set, run it again here 781 * taking m_rs_lock is the only thing that keeps us 782 * from racing with ack processing. 783 */ 784 spin_lock_irqsave(&rm->m_rs_lock, flags); 785 786 spin_lock(&rs->rs_lock); 787 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 788 spin_unlock(&rs->rs_lock); 789 790 rm->m_rs = NULL; 791 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 792 793 rds_message_put(rm); 794 } 795 } 796 797 /* 798 * we only want this to fire once so we use the callers 'queued'. It's 799 * possible that another thread can race with us and remove the 800 * message from the flow with RDS_CANCEL_SENT_TO. 801 */ 802 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, 803 struct rds_conn_path *cp, 804 struct rds_message *rm, __be16 sport, 805 __be16 dport, int *queued) 806 { 807 unsigned long flags; 808 u32 len; 809 810 if (*queued) 811 goto out; 812 813 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 814 815 /* this is the only place which holds both the socket's rs_lock 816 * and the connection's c_lock */ 817 spin_lock_irqsave(&rs->rs_lock, flags); 818 819 /* 820 * If there is a little space in sndbuf, we don't queue anything, 821 * and userspace gets -EAGAIN. But poll() indicates there's send 822 * room. This can lead to bad behavior (spinning) if snd_bytes isn't 823 * freed up by incoming acks. So we check the *old* value of 824 * rs_snd_bytes here to allow the last msg to exceed the buffer, 825 * and poll() now knows no more data can be sent. 826 */ 827 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { 828 rs->rs_snd_bytes += len; 829 830 /* let recv side know we are close to send space exhaustion. 831 * This is probably not the optimal way to do it, as this 832 * means we set the flag on *all* messages as soon as our 833 * throughput hits a certain threshold. 834 */ 835 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) 836 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 837 838 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); 839 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 840 rds_message_addref(rm); 841 rm->m_rs = rs; 842 843 /* The code ordering is a little weird, but we're 844 trying to minimize the time we hold c_lock */ 845 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); 846 rm->m_inc.i_conn = conn; 847 rm->m_inc.i_conn_path = cp; 848 rds_message_addref(rm); 849 850 spin_lock(&cp->cp_lock); 851 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++); 852 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); 853 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 854 spin_unlock(&cp->cp_lock); 855 856 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", 857 rm, len, rs, rs->rs_snd_bytes, 858 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); 859 860 *queued = 1; 861 } 862 863 spin_unlock_irqrestore(&rs->rs_lock, flags); 864 out: 865 return *queued; 866 } 867 868 /* 869 * rds_message is getting to be quite complicated, and we'd like to allocate 870 * it all in one go. This figures out how big it needs to be up front. 871 */ 872 static int rds_rm_size(struct msghdr *msg, int data_len) 873 { 874 struct cmsghdr *cmsg; 875 int size = 0; 876 int cmsg_groups = 0; 877 int retval; 878 879 for_each_cmsghdr(cmsg, msg) { 880 if (!CMSG_OK(msg, cmsg)) 881 return -EINVAL; 882 883 if (cmsg->cmsg_level != SOL_RDS) 884 continue; 885 886 switch (cmsg->cmsg_type) { 887 case RDS_CMSG_RDMA_ARGS: 888 cmsg_groups |= 1; 889 retval = rds_rdma_extra_size(CMSG_DATA(cmsg)); 890 if (retval < 0) 891 return retval; 892 size += retval; 893 894 break; 895 896 case RDS_CMSG_RDMA_DEST: 897 case RDS_CMSG_RDMA_MAP: 898 cmsg_groups |= 2; 899 /* these are valid but do no add any size */ 900 break; 901 902 case RDS_CMSG_ATOMIC_CSWP: 903 case RDS_CMSG_ATOMIC_FADD: 904 case RDS_CMSG_MASKED_ATOMIC_CSWP: 905 case RDS_CMSG_MASKED_ATOMIC_FADD: 906 cmsg_groups |= 1; 907 size += sizeof(struct scatterlist); 908 break; 909 910 default: 911 return -EINVAL; 912 } 913 914 } 915 916 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist); 917 918 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */ 919 if (cmsg_groups == 3) 920 return -EINVAL; 921 922 return size; 923 } 924 925 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, 926 struct msghdr *msg, int *allocated_mr) 927 { 928 struct cmsghdr *cmsg; 929 int ret = 0; 930 931 for_each_cmsghdr(cmsg, msg) { 932 if (!CMSG_OK(msg, cmsg)) 933 return -EINVAL; 934 935 if (cmsg->cmsg_level != SOL_RDS) 936 continue; 937 938 /* As a side effect, RDMA_DEST and RDMA_MAP will set 939 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr. 940 */ 941 switch (cmsg->cmsg_type) { 942 case RDS_CMSG_RDMA_ARGS: 943 ret = rds_cmsg_rdma_args(rs, rm, cmsg); 944 break; 945 946 case RDS_CMSG_RDMA_DEST: 947 ret = rds_cmsg_rdma_dest(rs, rm, cmsg); 948 break; 949 950 case RDS_CMSG_RDMA_MAP: 951 ret = rds_cmsg_rdma_map(rs, rm, cmsg); 952 if (!ret) 953 *allocated_mr = 1; 954 else if (ret == -ENODEV) 955 /* Accommodate the get_mr() case which can fail 956 * if connection isn't established yet. 957 */ 958 ret = -EAGAIN; 959 break; 960 case RDS_CMSG_ATOMIC_CSWP: 961 case RDS_CMSG_ATOMIC_FADD: 962 case RDS_CMSG_MASKED_ATOMIC_CSWP: 963 case RDS_CMSG_MASKED_ATOMIC_FADD: 964 ret = rds_cmsg_atomic(rs, rm, cmsg); 965 break; 966 967 default: 968 return -EINVAL; 969 } 970 971 if (ret) 972 break; 973 } 974 975 return ret; 976 } 977 978 static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn) 979 { 980 int hash; 981 982 if (conn->c_npaths == 0) 983 hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS); 984 else 985 hash = RDS_MPATH_HASH(rs, conn->c_npaths); 986 if (conn->c_npaths == 0 && hash != 0) { 987 rds_send_ping(conn, 0); 988 989 if (conn->c_npaths == 0) { 990 wait_event_interruptible(conn->c_hs_waitq, 991 (conn->c_npaths != 0)); 992 } 993 if (conn->c_npaths == 1) 994 hash = 0; 995 } 996 return hash; 997 } 998 999 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes) 1000 { 1001 struct rds_rdma_args *args; 1002 struct cmsghdr *cmsg; 1003 1004 for_each_cmsghdr(cmsg, msg) { 1005 if (!CMSG_OK(msg, cmsg)) 1006 return -EINVAL; 1007 1008 if (cmsg->cmsg_level != SOL_RDS) 1009 continue; 1010 1011 if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) { 1012 args = CMSG_DATA(cmsg); 1013 *rdma_bytes += args->remote_vec.bytes; 1014 } 1015 } 1016 return 0; 1017 } 1018 1019 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len) 1020 { 1021 struct sock *sk = sock->sk; 1022 struct rds_sock *rs = rds_sk_to_rs(sk); 1023 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1024 __be32 daddr; 1025 __be16 dport; 1026 struct rds_message *rm = NULL; 1027 struct rds_connection *conn; 1028 int ret = 0; 1029 int queued = 0, allocated_mr = 0; 1030 int nonblock = msg->msg_flags & MSG_DONTWAIT; 1031 long timeo = sock_sndtimeo(sk, nonblock); 1032 struct rds_conn_path *cpath; 1033 size_t total_payload_len = payload_len, rdma_payload_len = 0; 1034 1035 /* Mirror Linux UDP mirror of BSD error message compatibility */ 1036 /* XXX: Perhaps MSG_MORE someday */ 1037 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) { 1038 ret = -EOPNOTSUPP; 1039 goto out; 1040 } 1041 1042 if (msg->msg_namelen) { 1043 /* XXX fail non-unicast destination IPs? */ 1044 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) { 1045 ret = -EINVAL; 1046 goto out; 1047 } 1048 daddr = usin->sin_addr.s_addr; 1049 dport = usin->sin_port; 1050 } else { 1051 /* We only care about consistency with ->connect() */ 1052 lock_sock(sk); 1053 daddr = rs->rs_conn_addr; 1054 dport = rs->rs_conn_port; 1055 release_sock(sk); 1056 } 1057 1058 lock_sock(sk); 1059 if (daddr == 0 || rs->rs_bound_addr == 0) { 1060 release_sock(sk); 1061 ret = -ENOTCONN; /* XXX not a great errno */ 1062 goto out; 1063 } 1064 release_sock(sk); 1065 1066 ret = rds_rdma_bytes(msg, &rdma_payload_len); 1067 if (ret) 1068 goto out; 1069 1070 total_payload_len += rdma_payload_len; 1071 if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) { 1072 ret = -EMSGSIZE; 1073 goto out; 1074 } 1075 1076 if (payload_len > rds_sk_sndbuf(rs)) { 1077 ret = -EMSGSIZE; 1078 goto out; 1079 } 1080 1081 /* size of rm including all sgs */ 1082 ret = rds_rm_size(msg, payload_len); 1083 if (ret < 0) 1084 goto out; 1085 1086 rm = rds_message_alloc(ret, GFP_KERNEL); 1087 if (!rm) { 1088 ret = -ENOMEM; 1089 goto out; 1090 } 1091 1092 /* Attach data to the rm */ 1093 if (payload_len) { 1094 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE)); 1095 if (!rm->data.op_sg) { 1096 ret = -ENOMEM; 1097 goto out; 1098 } 1099 ret = rds_message_copy_from_user(rm, &msg->msg_iter); 1100 if (ret) 1101 goto out; 1102 } 1103 rm->data.op_active = 1; 1104 1105 rm->m_daddr = daddr; 1106 1107 /* rds_conn_create has a spinlock that runs with IRQ off. 1108 * Caching the conn in the socket helps a lot. */ 1109 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr) 1110 conn = rs->rs_conn; 1111 else { 1112 conn = rds_conn_create_outgoing(sock_net(sock->sk), 1113 rs->rs_bound_addr, daddr, 1114 rs->rs_transport, 1115 sock->sk->sk_allocation); 1116 if (IS_ERR(conn)) { 1117 ret = PTR_ERR(conn); 1118 goto out; 1119 } 1120 rs->rs_conn = conn; 1121 } 1122 1123 /* Parse any control messages the user may have included. */ 1124 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr); 1125 if (ret) { 1126 /* Trigger connection so that its ready for the next retry */ 1127 if (ret == -EAGAIN) 1128 rds_conn_connect_if_down(conn); 1129 goto out; 1130 } 1131 1132 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) { 1133 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", 1134 &rm->rdma, conn->c_trans->xmit_rdma); 1135 ret = -EOPNOTSUPP; 1136 goto out; 1137 } 1138 1139 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) { 1140 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n", 1141 &rm->atomic, conn->c_trans->xmit_atomic); 1142 ret = -EOPNOTSUPP; 1143 goto out; 1144 } 1145 1146 if (conn->c_trans->t_mp_capable) 1147 cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)]; 1148 else 1149 cpath = &conn->c_path[0]; 1150 1151 rds_conn_path_connect_if_down(cpath); 1152 1153 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); 1154 if (ret) { 1155 rs->rs_seen_congestion = 1; 1156 goto out; 1157 } 1158 while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port, 1159 dport, &queued)) { 1160 rds_stats_inc(s_send_queue_full); 1161 1162 if (nonblock) { 1163 ret = -EAGAIN; 1164 goto out; 1165 } 1166 1167 timeo = wait_event_interruptible_timeout(*sk_sleep(sk), 1168 rds_send_queue_rm(rs, conn, cpath, rm, 1169 rs->rs_bound_port, 1170 dport, 1171 &queued), 1172 timeo); 1173 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); 1174 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) 1175 continue; 1176 1177 ret = timeo; 1178 if (ret == 0) 1179 ret = -ETIMEDOUT; 1180 goto out; 1181 } 1182 1183 /* 1184 * By now we've committed to the send. We reuse rds_send_worker() 1185 * to retry sends in the rds thread if the transport asks us to. 1186 */ 1187 rds_stats_inc(s_send_queued); 1188 1189 ret = rds_send_xmit(cpath); 1190 if (ret == -ENOMEM || ret == -EAGAIN) 1191 queue_delayed_work(rds_wq, &cpath->cp_send_w, 1); 1192 1193 rds_message_put(rm); 1194 return payload_len; 1195 1196 out: 1197 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. 1198 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN 1199 * or in any other way, we need to destroy the MR again */ 1200 if (allocated_mr) 1201 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); 1202 1203 if (rm) 1204 rds_message_put(rm); 1205 return ret; 1206 } 1207 1208 /* 1209 * send out a probe. Can be shared by rds_send_ping, 1210 * rds_send_pong, rds_send_hb. 1211 * rds_send_hb should use h_flags 1212 * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED 1213 * or 1214 * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED 1215 */ 1216 static int 1217 rds_send_probe(struct rds_conn_path *cp, __be16 sport, 1218 __be16 dport, u8 h_flags) 1219 { 1220 struct rds_message *rm; 1221 unsigned long flags; 1222 int ret = 0; 1223 1224 rm = rds_message_alloc(0, GFP_ATOMIC); 1225 if (!rm) { 1226 ret = -ENOMEM; 1227 goto out; 1228 } 1229 1230 rm->m_daddr = cp->cp_conn->c_faddr; 1231 rm->data.op_active = 1; 1232 1233 rds_conn_path_connect_if_down(cp); 1234 1235 ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL); 1236 if (ret) 1237 goto out; 1238 1239 spin_lock_irqsave(&cp->cp_lock, flags); 1240 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); 1241 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 1242 rds_message_addref(rm); 1243 rm->m_inc.i_conn = cp->cp_conn; 1244 rm->m_inc.i_conn_path = cp; 1245 1246 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 1247 cp->cp_next_tx_seq); 1248 rm->m_inc.i_hdr.h_flags |= h_flags; 1249 cp->cp_next_tx_seq++; 1250 1251 if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) && 1252 cp->cp_conn->c_trans->t_mp_capable) { 1253 u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS); 1254 u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num); 1255 1256 rds_message_add_extension(&rm->m_inc.i_hdr, 1257 RDS_EXTHDR_NPATHS, &npaths, 1258 sizeof(npaths)); 1259 rds_message_add_extension(&rm->m_inc.i_hdr, 1260 RDS_EXTHDR_GEN_NUM, 1261 &my_gen_num, 1262 sizeof(u32)); 1263 } 1264 spin_unlock_irqrestore(&cp->cp_lock, flags); 1265 1266 rds_stats_inc(s_send_queued); 1267 rds_stats_inc(s_send_pong); 1268 1269 /* schedule the send work on rds_wq */ 1270 queue_delayed_work(rds_wq, &cp->cp_send_w, 1); 1271 1272 rds_message_put(rm); 1273 return 0; 1274 1275 out: 1276 if (rm) 1277 rds_message_put(rm); 1278 return ret; 1279 } 1280 1281 int 1282 rds_send_pong(struct rds_conn_path *cp, __be16 dport) 1283 { 1284 return rds_send_probe(cp, 0, dport, 0); 1285 } 1286 1287 void 1288 rds_send_ping(struct rds_connection *conn, int cp_index) 1289 { 1290 unsigned long flags; 1291 struct rds_conn_path *cp = &conn->c_path[cp_index]; 1292 1293 spin_lock_irqsave(&cp->cp_lock, flags); 1294 if (conn->c_ping_triggered) { 1295 spin_unlock_irqrestore(&cp->cp_lock, flags); 1296 return; 1297 } 1298 conn->c_ping_triggered = 1; 1299 spin_unlock_irqrestore(&cp->cp_lock, flags); 1300 rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0); 1301 } 1302 EXPORT_SYMBOL_GPL(rds_send_ping); 1303