xref: /openbmc/linux/net/rds/send.c (revision 4f205687)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42 
43 #include "rds.h"
44 
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46  * time to time and briefly release the CPU. Otherwise the softlock watchdog
47  * will kick our shin.
48  * Also, it seems fairer to not let one busy connection stall all the
49  * others.
50  *
51  * send_batch_count is the number of times we'll loop in send_xmit. Setting
52  * it to 0 will restore the old behavior (where we looped until we had
53  * drained the queue).
54  */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58 
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60 
61 /*
62  * Reset the send state.  Callers must ensure that this doesn't race with
63  * rds_send_xmit().
64  */
65 void rds_send_reset(struct rds_connection *conn)
66 {
67 	struct rds_message *rm, *tmp;
68 	unsigned long flags;
69 
70 	if (conn->c_xmit_rm) {
71 		rm = conn->c_xmit_rm;
72 		conn->c_xmit_rm = NULL;
73 		/* Tell the user the RDMA op is no longer mapped by the
74 		 * transport. This isn't entirely true (it's flushed out
75 		 * independently) but as the connection is down, there's
76 		 * no ongoing RDMA to/from that memory */
77 		rds_message_unmapped(rm);
78 		rds_message_put(rm);
79 	}
80 
81 	conn->c_xmit_sg = 0;
82 	conn->c_xmit_hdr_off = 0;
83 	conn->c_xmit_data_off = 0;
84 	conn->c_xmit_atomic_sent = 0;
85 	conn->c_xmit_rdma_sent = 0;
86 	conn->c_xmit_data_sent = 0;
87 
88 	conn->c_map_queued = 0;
89 
90 	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
91 	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 
93 	/* Mark messages as retransmissions, and move them to the send q */
94 	spin_lock_irqsave(&conn->c_lock, flags);
95 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
96 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 	}
99 	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
100 	spin_unlock_irqrestore(&conn->c_lock, flags);
101 }
102 EXPORT_SYMBOL_GPL(rds_send_reset);
103 
104 static int acquire_in_xmit(struct rds_connection *conn)
105 {
106 	return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
107 }
108 
109 static void release_in_xmit(struct rds_connection *conn)
110 {
111 	clear_bit(RDS_IN_XMIT, &conn->c_flags);
112 	smp_mb__after_atomic();
113 	/*
114 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 	 * hot path and finding waiters is very rare.  We don't want to walk
116 	 * the system-wide hashed waitqueue buckets in the fast path only to
117 	 * almost never find waiters.
118 	 */
119 	if (waitqueue_active(&conn->c_waitq))
120 		wake_up_all(&conn->c_waitq);
121 }
122 
123 /*
124  * We're making the conscious trade-off here to only send one message
125  * down the connection at a time.
126  *   Pro:
127  *      - tx queueing is a simple fifo list
128  *   	- reassembly is optional and easily done by transports per conn
129  *      - no per flow rx lookup at all, straight to the socket
130  *   	- less per-frag memory and wire overhead
131  *   Con:
132  *      - queued acks can be delayed behind large messages
133  *   Depends:
134  *      - small message latency is higher behind queued large messages
135  *      - large message latency isn't starved by intervening small sends
136  */
137 int rds_send_xmit(struct rds_connection *conn)
138 {
139 	struct rds_message *rm;
140 	unsigned long flags;
141 	unsigned int tmp;
142 	struct scatterlist *sg;
143 	int ret = 0;
144 	LIST_HEAD(to_be_dropped);
145 	int batch_count;
146 	unsigned long send_gen = 0;
147 
148 restart:
149 	batch_count = 0;
150 
151 	/*
152 	 * sendmsg calls here after having queued its message on the send
153 	 * queue.  We only have one task feeding the connection at a time.  If
154 	 * another thread is already feeding the queue then we back off.  This
155 	 * avoids blocking the caller and trading per-connection data between
156 	 * caches per message.
157 	 */
158 	if (!acquire_in_xmit(conn)) {
159 		rds_stats_inc(s_send_lock_contention);
160 		ret = -ENOMEM;
161 		goto out;
162 	}
163 
164 	/*
165 	 * we record the send generation after doing the xmit acquire.
166 	 * if someone else manages to jump in and do some work, we'll use
167 	 * this to avoid a goto restart farther down.
168 	 *
169 	 * The acquire_in_xmit() check above ensures that only one
170 	 * caller can increment c_send_gen at any time.
171 	 */
172 	conn->c_send_gen++;
173 	send_gen = conn->c_send_gen;
174 
175 	/*
176 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
177 	 * we do the opposite to avoid races.
178 	 */
179 	if (!rds_conn_up(conn)) {
180 		release_in_xmit(conn);
181 		ret = 0;
182 		goto out;
183 	}
184 
185 	if (conn->c_trans->xmit_prepare)
186 		conn->c_trans->xmit_prepare(conn);
187 
188 	/*
189 	 * spin trying to push headers and data down the connection until
190 	 * the connection doesn't make forward progress.
191 	 */
192 	while (1) {
193 
194 		rm = conn->c_xmit_rm;
195 
196 		/*
197 		 * If between sending messages, we can send a pending congestion
198 		 * map update.
199 		 */
200 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
201 			rm = rds_cong_update_alloc(conn);
202 			if (IS_ERR(rm)) {
203 				ret = PTR_ERR(rm);
204 				break;
205 			}
206 			rm->data.op_active = 1;
207 
208 			conn->c_xmit_rm = rm;
209 		}
210 
211 		/*
212 		 * If not already working on one, grab the next message.
213 		 *
214 		 * c_xmit_rm holds a ref while we're sending this message down
215 		 * the connction.  We can use this ref while holding the
216 		 * send_sem.. rds_send_reset() is serialized with it.
217 		 */
218 		if (!rm) {
219 			unsigned int len;
220 
221 			batch_count++;
222 
223 			/* we want to process as big a batch as we can, but
224 			 * we also want to avoid softlockups.  If we've been
225 			 * through a lot of messages, lets back off and see
226 			 * if anyone else jumps in
227 			 */
228 			if (batch_count >= send_batch_count)
229 				goto over_batch;
230 
231 			spin_lock_irqsave(&conn->c_lock, flags);
232 
233 			if (!list_empty(&conn->c_send_queue)) {
234 				rm = list_entry(conn->c_send_queue.next,
235 						struct rds_message,
236 						m_conn_item);
237 				rds_message_addref(rm);
238 
239 				/*
240 				 * Move the message from the send queue to the retransmit
241 				 * list right away.
242 				 */
243 				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
244 			}
245 
246 			spin_unlock_irqrestore(&conn->c_lock, flags);
247 
248 			if (!rm)
249 				break;
250 
251 			/* Unfortunately, the way Infiniband deals with
252 			 * RDMA to a bad MR key is by moving the entire
253 			 * queue pair to error state. We cold possibly
254 			 * recover from that, but right now we drop the
255 			 * connection.
256 			 * Therefore, we never retransmit messages with RDMA ops.
257 			 */
258 			if (rm->rdma.op_active &&
259 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
260 				spin_lock_irqsave(&conn->c_lock, flags);
261 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
262 					list_move(&rm->m_conn_item, &to_be_dropped);
263 				spin_unlock_irqrestore(&conn->c_lock, flags);
264 				continue;
265 			}
266 
267 			/* Require an ACK every once in a while */
268 			len = ntohl(rm->m_inc.i_hdr.h_len);
269 			if (conn->c_unacked_packets == 0 ||
270 			    conn->c_unacked_bytes < len) {
271 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
272 
273 				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
274 				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
275 				rds_stats_inc(s_send_ack_required);
276 			} else {
277 				conn->c_unacked_bytes -= len;
278 				conn->c_unacked_packets--;
279 			}
280 
281 			conn->c_xmit_rm = rm;
282 		}
283 
284 		/* The transport either sends the whole rdma or none of it */
285 		if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
286 			rm->m_final_op = &rm->rdma;
287 			/* The transport owns the mapped memory for now.
288 			 * You can't unmap it while it's on the send queue
289 			 */
290 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
291 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
292 			if (ret) {
293 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
294 				wake_up_interruptible(&rm->m_flush_wait);
295 				break;
296 			}
297 			conn->c_xmit_rdma_sent = 1;
298 
299 		}
300 
301 		if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
302 			rm->m_final_op = &rm->atomic;
303 			/* The transport owns the mapped memory for now.
304 			 * You can't unmap it while it's on the send queue
305 			 */
306 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
307 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
308 			if (ret) {
309 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
310 				wake_up_interruptible(&rm->m_flush_wait);
311 				break;
312 			}
313 			conn->c_xmit_atomic_sent = 1;
314 
315 		}
316 
317 		/*
318 		 * A number of cases require an RDS header to be sent
319 		 * even if there is no data.
320 		 * We permit 0-byte sends; rds-ping depends on this.
321 		 * However, if there are exclusively attached silent ops,
322 		 * we skip the hdr/data send, to enable silent operation.
323 		 */
324 		if (rm->data.op_nents == 0) {
325 			int ops_present;
326 			int all_ops_are_silent = 1;
327 
328 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
329 			if (rm->atomic.op_active && !rm->atomic.op_silent)
330 				all_ops_are_silent = 0;
331 			if (rm->rdma.op_active && !rm->rdma.op_silent)
332 				all_ops_are_silent = 0;
333 
334 			if (ops_present && all_ops_are_silent
335 			    && !rm->m_rdma_cookie)
336 				rm->data.op_active = 0;
337 		}
338 
339 		if (rm->data.op_active && !conn->c_xmit_data_sent) {
340 			rm->m_final_op = &rm->data;
341 			ret = conn->c_trans->xmit(conn, rm,
342 						  conn->c_xmit_hdr_off,
343 						  conn->c_xmit_sg,
344 						  conn->c_xmit_data_off);
345 			if (ret <= 0)
346 				break;
347 
348 			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
349 				tmp = min_t(int, ret,
350 					    sizeof(struct rds_header) -
351 					    conn->c_xmit_hdr_off);
352 				conn->c_xmit_hdr_off += tmp;
353 				ret -= tmp;
354 			}
355 
356 			sg = &rm->data.op_sg[conn->c_xmit_sg];
357 			while (ret) {
358 				tmp = min_t(int, ret, sg->length -
359 						      conn->c_xmit_data_off);
360 				conn->c_xmit_data_off += tmp;
361 				ret -= tmp;
362 				if (conn->c_xmit_data_off == sg->length) {
363 					conn->c_xmit_data_off = 0;
364 					sg++;
365 					conn->c_xmit_sg++;
366 					BUG_ON(ret != 0 &&
367 					       conn->c_xmit_sg == rm->data.op_nents);
368 				}
369 			}
370 
371 			if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
372 			    (conn->c_xmit_sg == rm->data.op_nents))
373 				conn->c_xmit_data_sent = 1;
374 		}
375 
376 		/*
377 		 * A rm will only take multiple times through this loop
378 		 * if there is a data op. Thus, if the data is sent (or there was
379 		 * none), then we're done with the rm.
380 		 */
381 		if (!rm->data.op_active || conn->c_xmit_data_sent) {
382 			conn->c_xmit_rm = NULL;
383 			conn->c_xmit_sg = 0;
384 			conn->c_xmit_hdr_off = 0;
385 			conn->c_xmit_data_off = 0;
386 			conn->c_xmit_rdma_sent = 0;
387 			conn->c_xmit_atomic_sent = 0;
388 			conn->c_xmit_data_sent = 0;
389 
390 			rds_message_put(rm);
391 		}
392 	}
393 
394 over_batch:
395 	if (conn->c_trans->xmit_complete)
396 		conn->c_trans->xmit_complete(conn);
397 	release_in_xmit(conn);
398 
399 	/* Nuke any messages we decided not to retransmit. */
400 	if (!list_empty(&to_be_dropped)) {
401 		/* irqs on here, so we can put(), unlike above */
402 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
403 			rds_message_put(rm);
404 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
405 	}
406 
407 	/*
408 	 * Other senders can queue a message after we last test the send queue
409 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
410 	 * not try and send their newly queued message.  We need to check the
411 	 * send queue after having cleared RDS_IN_XMIT so that their message
412 	 * doesn't get stuck on the send queue.
413 	 *
414 	 * If the transport cannot continue (i.e ret != 0), then it must
415 	 * call us when more room is available, such as from the tx
416 	 * completion handler.
417 	 *
418 	 * We have an extra generation check here so that if someone manages
419 	 * to jump in after our release_in_xmit, we'll see that they have done
420 	 * some work and we will skip our goto
421 	 */
422 	if (ret == 0) {
423 		smp_mb();
424 		if ((test_bit(0, &conn->c_map_queued) ||
425 		     !list_empty(&conn->c_send_queue)) &&
426 		    send_gen == conn->c_send_gen) {
427 			rds_stats_inc(s_send_lock_queue_raced);
428 			if (batch_count < send_batch_count)
429 				goto restart;
430 			queue_delayed_work(rds_wq, &conn->c_send_w, 1);
431 		}
432 	}
433 out:
434 	return ret;
435 }
436 EXPORT_SYMBOL_GPL(rds_send_xmit);
437 
438 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
439 {
440 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
441 
442 	assert_spin_locked(&rs->rs_lock);
443 
444 	BUG_ON(rs->rs_snd_bytes < len);
445 	rs->rs_snd_bytes -= len;
446 
447 	if (rs->rs_snd_bytes == 0)
448 		rds_stats_inc(s_send_queue_empty);
449 }
450 
451 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
452 				    is_acked_func is_acked)
453 {
454 	if (is_acked)
455 		return is_acked(rm, ack);
456 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
457 }
458 
459 /*
460  * This is pretty similar to what happens below in the ACK
461  * handling code - except that we call here as soon as we get
462  * the IB send completion on the RDMA op and the accompanying
463  * message.
464  */
465 void rds_rdma_send_complete(struct rds_message *rm, int status)
466 {
467 	struct rds_sock *rs = NULL;
468 	struct rm_rdma_op *ro;
469 	struct rds_notifier *notifier;
470 	unsigned long flags;
471 
472 	spin_lock_irqsave(&rm->m_rs_lock, flags);
473 
474 	ro = &rm->rdma;
475 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
476 	    ro->op_active && ro->op_notify && ro->op_notifier) {
477 		notifier = ro->op_notifier;
478 		rs = rm->m_rs;
479 		sock_hold(rds_rs_to_sk(rs));
480 
481 		notifier->n_status = status;
482 		spin_lock(&rs->rs_lock);
483 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
484 		spin_unlock(&rs->rs_lock);
485 
486 		ro->op_notifier = NULL;
487 	}
488 
489 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
490 
491 	if (rs) {
492 		rds_wake_sk_sleep(rs);
493 		sock_put(rds_rs_to_sk(rs));
494 	}
495 }
496 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
497 
498 /*
499  * Just like above, except looks at atomic op
500  */
501 void rds_atomic_send_complete(struct rds_message *rm, int status)
502 {
503 	struct rds_sock *rs = NULL;
504 	struct rm_atomic_op *ao;
505 	struct rds_notifier *notifier;
506 	unsigned long flags;
507 
508 	spin_lock_irqsave(&rm->m_rs_lock, flags);
509 
510 	ao = &rm->atomic;
511 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
512 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
513 		notifier = ao->op_notifier;
514 		rs = rm->m_rs;
515 		sock_hold(rds_rs_to_sk(rs));
516 
517 		notifier->n_status = status;
518 		spin_lock(&rs->rs_lock);
519 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
520 		spin_unlock(&rs->rs_lock);
521 
522 		ao->op_notifier = NULL;
523 	}
524 
525 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
526 
527 	if (rs) {
528 		rds_wake_sk_sleep(rs);
529 		sock_put(rds_rs_to_sk(rs));
530 	}
531 }
532 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
533 
534 /*
535  * This is the same as rds_rdma_send_complete except we
536  * don't do any locking - we have all the ingredients (message,
537  * socket, socket lock) and can just move the notifier.
538  */
539 static inline void
540 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
541 {
542 	struct rm_rdma_op *ro;
543 	struct rm_atomic_op *ao;
544 
545 	ro = &rm->rdma;
546 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
547 		ro->op_notifier->n_status = status;
548 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
549 		ro->op_notifier = NULL;
550 	}
551 
552 	ao = &rm->atomic;
553 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
554 		ao->op_notifier->n_status = status;
555 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
556 		ao->op_notifier = NULL;
557 	}
558 
559 	/* No need to wake the app - caller does this */
560 }
561 
562 /*
563  * This is called from the IB send completion when we detect
564  * a RDMA operation that failed with remote access error.
565  * So speed is not an issue here.
566  */
567 struct rds_message *rds_send_get_message(struct rds_connection *conn,
568 					 struct rm_rdma_op *op)
569 {
570 	struct rds_message *rm, *tmp, *found = NULL;
571 	unsigned long flags;
572 
573 	spin_lock_irqsave(&conn->c_lock, flags);
574 
575 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
576 		if (&rm->rdma == op) {
577 			atomic_inc(&rm->m_refcount);
578 			found = rm;
579 			goto out;
580 		}
581 	}
582 
583 	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
584 		if (&rm->rdma == op) {
585 			atomic_inc(&rm->m_refcount);
586 			found = rm;
587 			break;
588 		}
589 	}
590 
591 out:
592 	spin_unlock_irqrestore(&conn->c_lock, flags);
593 
594 	return found;
595 }
596 EXPORT_SYMBOL_GPL(rds_send_get_message);
597 
598 /*
599  * This removes messages from the socket's list if they're on it.  The list
600  * argument must be private to the caller, we must be able to modify it
601  * without locks.  The messages must have a reference held for their
602  * position on the list.  This function will drop that reference after
603  * removing the messages from the 'messages' list regardless of if it found
604  * the messages on the socket list or not.
605  */
606 static void rds_send_remove_from_sock(struct list_head *messages, int status)
607 {
608 	unsigned long flags;
609 	struct rds_sock *rs = NULL;
610 	struct rds_message *rm;
611 
612 	while (!list_empty(messages)) {
613 		int was_on_sock = 0;
614 
615 		rm = list_entry(messages->next, struct rds_message,
616 				m_conn_item);
617 		list_del_init(&rm->m_conn_item);
618 
619 		/*
620 		 * If we see this flag cleared then we're *sure* that someone
621 		 * else beat us to removing it from the sock.  If we race
622 		 * with their flag update we'll get the lock and then really
623 		 * see that the flag has been cleared.
624 		 *
625 		 * The message spinlock makes sure nobody clears rm->m_rs
626 		 * while we're messing with it. It does not prevent the
627 		 * message from being removed from the socket, though.
628 		 */
629 		spin_lock_irqsave(&rm->m_rs_lock, flags);
630 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
631 			goto unlock_and_drop;
632 
633 		if (rs != rm->m_rs) {
634 			if (rs) {
635 				rds_wake_sk_sleep(rs);
636 				sock_put(rds_rs_to_sk(rs));
637 			}
638 			rs = rm->m_rs;
639 			if (rs)
640 				sock_hold(rds_rs_to_sk(rs));
641 		}
642 		if (!rs)
643 			goto unlock_and_drop;
644 		spin_lock(&rs->rs_lock);
645 
646 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
647 			struct rm_rdma_op *ro = &rm->rdma;
648 			struct rds_notifier *notifier;
649 
650 			list_del_init(&rm->m_sock_item);
651 			rds_send_sndbuf_remove(rs, rm);
652 
653 			if (ro->op_active && ro->op_notifier &&
654 			       (ro->op_notify || (ro->op_recverr && status))) {
655 				notifier = ro->op_notifier;
656 				list_add_tail(&notifier->n_list,
657 						&rs->rs_notify_queue);
658 				if (!notifier->n_status)
659 					notifier->n_status = status;
660 				rm->rdma.op_notifier = NULL;
661 			}
662 			was_on_sock = 1;
663 			rm->m_rs = NULL;
664 		}
665 		spin_unlock(&rs->rs_lock);
666 
667 unlock_and_drop:
668 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
669 		rds_message_put(rm);
670 		if (was_on_sock)
671 			rds_message_put(rm);
672 	}
673 
674 	if (rs) {
675 		rds_wake_sk_sleep(rs);
676 		sock_put(rds_rs_to_sk(rs));
677 	}
678 }
679 
680 /*
681  * Transports call here when they've determined that the receiver queued
682  * messages up to, and including, the given sequence number.  Messages are
683  * moved to the retrans queue when rds_send_xmit picks them off the send
684  * queue. This means that in the TCP case, the message may not have been
685  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
686  * checks the RDS_MSG_HAS_ACK_SEQ bit.
687  */
688 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
689 			 is_acked_func is_acked)
690 {
691 	struct rds_message *rm, *tmp;
692 	unsigned long flags;
693 	LIST_HEAD(list);
694 
695 	spin_lock_irqsave(&conn->c_lock, flags);
696 
697 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
698 		if (!rds_send_is_acked(rm, ack, is_acked))
699 			break;
700 
701 		list_move(&rm->m_conn_item, &list);
702 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
703 	}
704 
705 	/* order flag updates with spin locks */
706 	if (!list_empty(&list))
707 		smp_mb__after_atomic();
708 
709 	spin_unlock_irqrestore(&conn->c_lock, flags);
710 
711 	/* now remove the messages from the sock list as needed */
712 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
713 }
714 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
715 
716 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
717 {
718 	struct rds_message *rm, *tmp;
719 	struct rds_connection *conn;
720 	unsigned long flags;
721 	LIST_HEAD(list);
722 
723 	/* get all the messages we're dropping under the rs lock */
724 	spin_lock_irqsave(&rs->rs_lock, flags);
725 
726 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
727 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
728 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
729 			continue;
730 
731 		list_move(&rm->m_sock_item, &list);
732 		rds_send_sndbuf_remove(rs, rm);
733 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
734 	}
735 
736 	/* order flag updates with the rs lock */
737 	smp_mb__after_atomic();
738 
739 	spin_unlock_irqrestore(&rs->rs_lock, flags);
740 
741 	if (list_empty(&list))
742 		return;
743 
744 	/* Remove the messages from the conn */
745 	list_for_each_entry(rm, &list, m_sock_item) {
746 
747 		conn = rm->m_inc.i_conn;
748 
749 		spin_lock_irqsave(&conn->c_lock, flags);
750 		/*
751 		 * Maybe someone else beat us to removing rm from the conn.
752 		 * If we race with their flag update we'll get the lock and
753 		 * then really see that the flag has been cleared.
754 		 */
755 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
756 			spin_unlock_irqrestore(&conn->c_lock, flags);
757 			spin_lock_irqsave(&rm->m_rs_lock, flags);
758 			rm->m_rs = NULL;
759 			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
760 			continue;
761 		}
762 		list_del_init(&rm->m_conn_item);
763 		spin_unlock_irqrestore(&conn->c_lock, flags);
764 
765 		/*
766 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
767 		 * but we can now.
768 		 */
769 		spin_lock_irqsave(&rm->m_rs_lock, flags);
770 
771 		spin_lock(&rs->rs_lock);
772 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
773 		spin_unlock(&rs->rs_lock);
774 
775 		rm->m_rs = NULL;
776 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
777 
778 		rds_message_put(rm);
779 	}
780 
781 	rds_wake_sk_sleep(rs);
782 
783 	while (!list_empty(&list)) {
784 		rm = list_entry(list.next, struct rds_message, m_sock_item);
785 		list_del_init(&rm->m_sock_item);
786 		rds_message_wait(rm);
787 
788 		/* just in case the code above skipped this message
789 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
790 		 * taking m_rs_lock is the only thing that keeps us
791 		 * from racing with ack processing.
792 		 */
793 		spin_lock_irqsave(&rm->m_rs_lock, flags);
794 
795 		spin_lock(&rs->rs_lock);
796 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
797 		spin_unlock(&rs->rs_lock);
798 
799 		rm->m_rs = NULL;
800 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
801 
802 		rds_message_put(rm);
803 	}
804 }
805 
806 /*
807  * we only want this to fire once so we use the callers 'queued'.  It's
808  * possible that another thread can race with us and remove the
809  * message from the flow with RDS_CANCEL_SENT_TO.
810  */
811 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
812 			     struct rds_message *rm, __be16 sport,
813 			     __be16 dport, int *queued)
814 {
815 	unsigned long flags;
816 	u32 len;
817 
818 	if (*queued)
819 		goto out;
820 
821 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
822 
823 	/* this is the only place which holds both the socket's rs_lock
824 	 * and the connection's c_lock */
825 	spin_lock_irqsave(&rs->rs_lock, flags);
826 
827 	/*
828 	 * If there is a little space in sndbuf, we don't queue anything,
829 	 * and userspace gets -EAGAIN. But poll() indicates there's send
830 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
831 	 * freed up by incoming acks. So we check the *old* value of
832 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
833 	 * and poll() now knows no more data can be sent.
834 	 */
835 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
836 		rs->rs_snd_bytes += len;
837 
838 		/* let recv side know we are close to send space exhaustion.
839 		 * This is probably not the optimal way to do it, as this
840 		 * means we set the flag on *all* messages as soon as our
841 		 * throughput hits a certain threshold.
842 		 */
843 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
844 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
845 
846 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
847 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
848 		rds_message_addref(rm);
849 		rm->m_rs = rs;
850 
851 		/* The code ordering is a little weird, but we're
852 		   trying to minimize the time we hold c_lock */
853 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
854 		rm->m_inc.i_conn = conn;
855 		rds_message_addref(rm);
856 
857 		spin_lock(&conn->c_lock);
858 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
859 		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
860 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
861 		spin_unlock(&conn->c_lock);
862 
863 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
864 			 rm, len, rs, rs->rs_snd_bytes,
865 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
866 
867 		*queued = 1;
868 	}
869 
870 	spin_unlock_irqrestore(&rs->rs_lock, flags);
871 out:
872 	return *queued;
873 }
874 
875 /*
876  * rds_message is getting to be quite complicated, and we'd like to allocate
877  * it all in one go. This figures out how big it needs to be up front.
878  */
879 static int rds_rm_size(struct msghdr *msg, int data_len)
880 {
881 	struct cmsghdr *cmsg;
882 	int size = 0;
883 	int cmsg_groups = 0;
884 	int retval;
885 
886 	for_each_cmsghdr(cmsg, msg) {
887 		if (!CMSG_OK(msg, cmsg))
888 			return -EINVAL;
889 
890 		if (cmsg->cmsg_level != SOL_RDS)
891 			continue;
892 
893 		switch (cmsg->cmsg_type) {
894 		case RDS_CMSG_RDMA_ARGS:
895 			cmsg_groups |= 1;
896 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
897 			if (retval < 0)
898 				return retval;
899 			size += retval;
900 
901 			break;
902 
903 		case RDS_CMSG_RDMA_DEST:
904 		case RDS_CMSG_RDMA_MAP:
905 			cmsg_groups |= 2;
906 			/* these are valid but do no add any size */
907 			break;
908 
909 		case RDS_CMSG_ATOMIC_CSWP:
910 		case RDS_CMSG_ATOMIC_FADD:
911 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
912 		case RDS_CMSG_MASKED_ATOMIC_FADD:
913 			cmsg_groups |= 1;
914 			size += sizeof(struct scatterlist);
915 			break;
916 
917 		default:
918 			return -EINVAL;
919 		}
920 
921 	}
922 
923 	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
924 
925 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
926 	if (cmsg_groups == 3)
927 		return -EINVAL;
928 
929 	return size;
930 }
931 
932 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
933 			 struct msghdr *msg, int *allocated_mr)
934 {
935 	struct cmsghdr *cmsg;
936 	int ret = 0;
937 
938 	for_each_cmsghdr(cmsg, msg) {
939 		if (!CMSG_OK(msg, cmsg))
940 			return -EINVAL;
941 
942 		if (cmsg->cmsg_level != SOL_RDS)
943 			continue;
944 
945 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
946 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
947 		 */
948 		switch (cmsg->cmsg_type) {
949 		case RDS_CMSG_RDMA_ARGS:
950 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
951 			break;
952 
953 		case RDS_CMSG_RDMA_DEST:
954 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
955 			break;
956 
957 		case RDS_CMSG_RDMA_MAP:
958 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
959 			if (!ret)
960 				*allocated_mr = 1;
961 			break;
962 		case RDS_CMSG_ATOMIC_CSWP:
963 		case RDS_CMSG_ATOMIC_FADD:
964 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
965 		case RDS_CMSG_MASKED_ATOMIC_FADD:
966 			ret = rds_cmsg_atomic(rs, rm, cmsg);
967 			break;
968 
969 		default:
970 			return -EINVAL;
971 		}
972 
973 		if (ret)
974 			break;
975 	}
976 
977 	return ret;
978 }
979 
980 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
981 {
982 	struct sock *sk = sock->sk;
983 	struct rds_sock *rs = rds_sk_to_rs(sk);
984 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
985 	__be32 daddr;
986 	__be16 dport;
987 	struct rds_message *rm = NULL;
988 	struct rds_connection *conn;
989 	int ret = 0;
990 	int queued = 0, allocated_mr = 0;
991 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
992 	long timeo = sock_sndtimeo(sk, nonblock);
993 
994 	/* Mirror Linux UDP mirror of BSD error message compatibility */
995 	/* XXX: Perhaps MSG_MORE someday */
996 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
997 		ret = -EOPNOTSUPP;
998 		goto out;
999 	}
1000 
1001 	if (msg->msg_namelen) {
1002 		/* XXX fail non-unicast destination IPs? */
1003 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
1004 			ret = -EINVAL;
1005 			goto out;
1006 		}
1007 		daddr = usin->sin_addr.s_addr;
1008 		dport = usin->sin_port;
1009 	} else {
1010 		/* We only care about consistency with ->connect() */
1011 		lock_sock(sk);
1012 		daddr = rs->rs_conn_addr;
1013 		dport = rs->rs_conn_port;
1014 		release_sock(sk);
1015 	}
1016 
1017 	lock_sock(sk);
1018 	if (daddr == 0 || rs->rs_bound_addr == 0) {
1019 		release_sock(sk);
1020 		ret = -ENOTCONN; /* XXX not a great errno */
1021 		goto out;
1022 	}
1023 	release_sock(sk);
1024 
1025 	if (payload_len > rds_sk_sndbuf(rs)) {
1026 		ret = -EMSGSIZE;
1027 		goto out;
1028 	}
1029 
1030 	/* size of rm including all sgs */
1031 	ret = rds_rm_size(msg, payload_len);
1032 	if (ret < 0)
1033 		goto out;
1034 
1035 	rm = rds_message_alloc(ret, GFP_KERNEL);
1036 	if (!rm) {
1037 		ret = -ENOMEM;
1038 		goto out;
1039 	}
1040 
1041 	/* Attach data to the rm */
1042 	if (payload_len) {
1043 		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1044 		if (!rm->data.op_sg) {
1045 			ret = -ENOMEM;
1046 			goto out;
1047 		}
1048 		ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1049 		if (ret)
1050 			goto out;
1051 	}
1052 	rm->data.op_active = 1;
1053 
1054 	rm->m_daddr = daddr;
1055 
1056 	/* rds_conn_create has a spinlock that runs with IRQ off.
1057 	 * Caching the conn in the socket helps a lot. */
1058 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1059 		conn = rs->rs_conn;
1060 	else {
1061 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1062 						rs->rs_bound_addr, daddr,
1063 					rs->rs_transport,
1064 					sock->sk->sk_allocation);
1065 		if (IS_ERR(conn)) {
1066 			ret = PTR_ERR(conn);
1067 			goto out;
1068 		}
1069 		rs->rs_conn = conn;
1070 	}
1071 
1072 	/* Parse any control messages the user may have included. */
1073 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1074 	if (ret)
1075 		goto out;
1076 
1077 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1078 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1079 			       &rm->rdma, conn->c_trans->xmit_rdma);
1080 		ret = -EOPNOTSUPP;
1081 		goto out;
1082 	}
1083 
1084 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1085 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1086 			       &rm->atomic, conn->c_trans->xmit_atomic);
1087 		ret = -EOPNOTSUPP;
1088 		goto out;
1089 	}
1090 
1091 	rds_conn_connect_if_down(conn);
1092 
1093 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1094 	if (ret) {
1095 		rs->rs_seen_congestion = 1;
1096 		goto out;
1097 	}
1098 
1099 	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1100 				  dport, &queued)) {
1101 		rds_stats_inc(s_send_queue_full);
1102 
1103 		if (nonblock) {
1104 			ret = -EAGAIN;
1105 			goto out;
1106 		}
1107 
1108 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1109 					rds_send_queue_rm(rs, conn, rm,
1110 							  rs->rs_bound_port,
1111 							  dport,
1112 							  &queued),
1113 					timeo);
1114 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1115 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1116 			continue;
1117 
1118 		ret = timeo;
1119 		if (ret == 0)
1120 			ret = -ETIMEDOUT;
1121 		goto out;
1122 	}
1123 
1124 	/*
1125 	 * By now we've committed to the send.  We reuse rds_send_worker()
1126 	 * to retry sends in the rds thread if the transport asks us to.
1127 	 */
1128 	rds_stats_inc(s_send_queued);
1129 
1130 	ret = rds_send_xmit(conn);
1131 	if (ret == -ENOMEM || ret == -EAGAIN)
1132 		queue_delayed_work(rds_wq, &conn->c_send_w, 1);
1133 
1134 	rds_message_put(rm);
1135 	return payload_len;
1136 
1137 out:
1138 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1139 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1140 	 * or in any other way, we need to destroy the MR again */
1141 	if (allocated_mr)
1142 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1143 
1144 	if (rm)
1145 		rds_message_put(rm);
1146 	return ret;
1147 }
1148 
1149 /*
1150  * Reply to a ping packet.
1151  */
1152 int
1153 rds_send_pong(struct rds_connection *conn, __be16 dport)
1154 {
1155 	struct rds_message *rm;
1156 	unsigned long flags;
1157 	int ret = 0;
1158 
1159 	rm = rds_message_alloc(0, GFP_ATOMIC);
1160 	if (!rm) {
1161 		ret = -ENOMEM;
1162 		goto out;
1163 	}
1164 
1165 	rm->m_daddr = conn->c_faddr;
1166 	rm->data.op_active = 1;
1167 
1168 	rds_conn_connect_if_down(conn);
1169 
1170 	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1171 	if (ret)
1172 		goto out;
1173 
1174 	spin_lock_irqsave(&conn->c_lock, flags);
1175 	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1176 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1177 	rds_message_addref(rm);
1178 	rm->m_inc.i_conn = conn;
1179 
1180 	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1181 				    conn->c_next_tx_seq);
1182 	conn->c_next_tx_seq++;
1183 	spin_unlock_irqrestore(&conn->c_lock, flags);
1184 
1185 	rds_stats_inc(s_send_queued);
1186 	rds_stats_inc(s_send_pong);
1187 
1188 	/* schedule the send work on rds_wq */
1189 	queue_delayed_work(rds_wq, &conn->c_send_w, 1);
1190 
1191 	rds_message_put(rm);
1192 	return 0;
1193 
1194 out:
1195 	if (rm)
1196 		rds_message_put(rm);
1197 	return ret;
1198 }
1199