1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/moduleparam.h> 35 #include <linux/gfp.h> 36 #include <net/sock.h> 37 #include <linux/in.h> 38 #include <linux/list.h> 39 #include <linux/ratelimit.h> 40 #include <linux/export.h> 41 42 #include "rds.h" 43 44 /* When transmitting messages in rds_send_xmit, we need to emerge from 45 * time to time and briefly release the CPU. Otherwise the softlock watchdog 46 * will kick our shin. 47 * Also, it seems fairer to not let one busy connection stall all the 48 * others. 49 * 50 * send_batch_count is the number of times we'll loop in send_xmit. Setting 51 * it to 0 will restore the old behavior (where we looped until we had 52 * drained the queue). 53 */ 54 static int send_batch_count = 64; 55 module_param(send_batch_count, int, 0444); 56 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); 57 58 static void rds_send_remove_from_sock(struct list_head *messages, int status); 59 60 /* 61 * Reset the send state. Callers must ensure that this doesn't race with 62 * rds_send_xmit(). 63 */ 64 void rds_send_reset(struct rds_connection *conn) 65 { 66 struct rds_message *rm, *tmp; 67 unsigned long flags; 68 69 if (conn->c_xmit_rm) { 70 rm = conn->c_xmit_rm; 71 conn->c_xmit_rm = NULL; 72 /* Tell the user the RDMA op is no longer mapped by the 73 * transport. This isn't entirely true (it's flushed out 74 * independently) but as the connection is down, there's 75 * no ongoing RDMA to/from that memory */ 76 rds_message_unmapped(rm); 77 rds_message_put(rm); 78 } 79 80 conn->c_xmit_sg = 0; 81 conn->c_xmit_hdr_off = 0; 82 conn->c_xmit_data_off = 0; 83 conn->c_xmit_atomic_sent = 0; 84 conn->c_xmit_rdma_sent = 0; 85 conn->c_xmit_data_sent = 0; 86 87 conn->c_map_queued = 0; 88 89 conn->c_unacked_packets = rds_sysctl_max_unacked_packets; 90 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes; 91 92 /* Mark messages as retransmissions, and move them to the send q */ 93 spin_lock_irqsave(&conn->c_lock, flags); 94 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { 95 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 96 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); 97 } 98 list_splice_init(&conn->c_retrans, &conn->c_send_queue); 99 spin_unlock_irqrestore(&conn->c_lock, flags); 100 } 101 102 static int acquire_in_xmit(struct rds_connection *conn) 103 { 104 return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0; 105 } 106 107 static void release_in_xmit(struct rds_connection *conn) 108 { 109 clear_bit(RDS_IN_XMIT, &conn->c_flags); 110 smp_mb__after_atomic(); 111 /* 112 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a 113 * hot path and finding waiters is very rare. We don't want to walk 114 * the system-wide hashed waitqueue buckets in the fast path only to 115 * almost never find waiters. 116 */ 117 if (waitqueue_active(&conn->c_waitq)) 118 wake_up_all(&conn->c_waitq); 119 } 120 121 /* 122 * We're making the conscious trade-off here to only send one message 123 * down the connection at a time. 124 * Pro: 125 * - tx queueing is a simple fifo list 126 * - reassembly is optional and easily done by transports per conn 127 * - no per flow rx lookup at all, straight to the socket 128 * - less per-frag memory and wire overhead 129 * Con: 130 * - queued acks can be delayed behind large messages 131 * Depends: 132 * - small message latency is higher behind queued large messages 133 * - large message latency isn't starved by intervening small sends 134 */ 135 int rds_send_xmit(struct rds_connection *conn) 136 { 137 struct rds_message *rm; 138 unsigned long flags; 139 unsigned int tmp; 140 struct scatterlist *sg; 141 int ret = 0; 142 LIST_HEAD(to_be_dropped); 143 int batch_count; 144 unsigned long send_gen = 0; 145 146 restart: 147 batch_count = 0; 148 149 /* 150 * sendmsg calls here after having queued its message on the send 151 * queue. We only have one task feeding the connection at a time. If 152 * another thread is already feeding the queue then we back off. This 153 * avoids blocking the caller and trading per-connection data between 154 * caches per message. 155 */ 156 if (!acquire_in_xmit(conn)) { 157 rds_stats_inc(s_send_lock_contention); 158 ret = -ENOMEM; 159 goto out; 160 } 161 162 /* 163 * we record the send generation after doing the xmit acquire. 164 * if someone else manages to jump in and do some work, we'll use 165 * this to avoid a goto restart farther down. 166 * 167 * The acquire_in_xmit() check above ensures that only one 168 * caller can increment c_send_gen at any time. 169 */ 170 conn->c_send_gen++; 171 send_gen = conn->c_send_gen; 172 173 /* 174 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT, 175 * we do the opposite to avoid races. 176 */ 177 if (!rds_conn_up(conn)) { 178 release_in_xmit(conn); 179 ret = 0; 180 goto out; 181 } 182 183 if (conn->c_trans->xmit_prepare) 184 conn->c_trans->xmit_prepare(conn); 185 186 /* 187 * spin trying to push headers and data down the connection until 188 * the connection doesn't make forward progress. 189 */ 190 while (1) { 191 192 rm = conn->c_xmit_rm; 193 194 /* 195 * If between sending messages, we can send a pending congestion 196 * map update. 197 */ 198 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { 199 rm = rds_cong_update_alloc(conn); 200 if (IS_ERR(rm)) { 201 ret = PTR_ERR(rm); 202 break; 203 } 204 rm->data.op_active = 1; 205 206 conn->c_xmit_rm = rm; 207 } 208 209 /* 210 * If not already working on one, grab the next message. 211 * 212 * c_xmit_rm holds a ref while we're sending this message down 213 * the connction. We can use this ref while holding the 214 * send_sem.. rds_send_reset() is serialized with it. 215 */ 216 if (!rm) { 217 unsigned int len; 218 219 batch_count++; 220 221 /* we want to process as big a batch as we can, but 222 * we also want to avoid softlockups. If we've been 223 * through a lot of messages, lets back off and see 224 * if anyone else jumps in 225 */ 226 if (batch_count >= 1024) 227 goto over_batch; 228 229 spin_lock_irqsave(&conn->c_lock, flags); 230 231 if (!list_empty(&conn->c_send_queue)) { 232 rm = list_entry(conn->c_send_queue.next, 233 struct rds_message, 234 m_conn_item); 235 rds_message_addref(rm); 236 237 /* 238 * Move the message from the send queue to the retransmit 239 * list right away. 240 */ 241 list_move_tail(&rm->m_conn_item, &conn->c_retrans); 242 } 243 244 spin_unlock_irqrestore(&conn->c_lock, flags); 245 246 if (!rm) 247 break; 248 249 /* Unfortunately, the way Infiniband deals with 250 * RDMA to a bad MR key is by moving the entire 251 * queue pair to error state. We cold possibly 252 * recover from that, but right now we drop the 253 * connection. 254 * Therefore, we never retransmit messages with RDMA ops. 255 */ 256 if (rm->rdma.op_active && 257 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) { 258 spin_lock_irqsave(&conn->c_lock, flags); 259 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) 260 list_move(&rm->m_conn_item, &to_be_dropped); 261 spin_unlock_irqrestore(&conn->c_lock, flags); 262 continue; 263 } 264 265 /* Require an ACK every once in a while */ 266 len = ntohl(rm->m_inc.i_hdr.h_len); 267 if (conn->c_unacked_packets == 0 || 268 conn->c_unacked_bytes < len) { 269 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 270 271 conn->c_unacked_packets = rds_sysctl_max_unacked_packets; 272 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes; 273 rds_stats_inc(s_send_ack_required); 274 } else { 275 conn->c_unacked_bytes -= len; 276 conn->c_unacked_packets--; 277 } 278 279 conn->c_xmit_rm = rm; 280 } 281 282 /* The transport either sends the whole rdma or none of it */ 283 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) { 284 rm->m_final_op = &rm->rdma; 285 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma); 286 if (ret) 287 break; 288 conn->c_xmit_rdma_sent = 1; 289 290 /* The transport owns the mapped memory for now. 291 * You can't unmap it while it's on the send queue */ 292 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 293 } 294 295 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) { 296 rm->m_final_op = &rm->atomic; 297 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic); 298 if (ret) 299 break; 300 conn->c_xmit_atomic_sent = 1; 301 302 /* The transport owns the mapped memory for now. 303 * You can't unmap it while it's on the send queue */ 304 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 305 } 306 307 /* 308 * A number of cases require an RDS header to be sent 309 * even if there is no data. 310 * We permit 0-byte sends; rds-ping depends on this. 311 * However, if there are exclusively attached silent ops, 312 * we skip the hdr/data send, to enable silent operation. 313 */ 314 if (rm->data.op_nents == 0) { 315 int ops_present; 316 int all_ops_are_silent = 1; 317 318 ops_present = (rm->atomic.op_active || rm->rdma.op_active); 319 if (rm->atomic.op_active && !rm->atomic.op_silent) 320 all_ops_are_silent = 0; 321 if (rm->rdma.op_active && !rm->rdma.op_silent) 322 all_ops_are_silent = 0; 323 324 if (ops_present && all_ops_are_silent 325 && !rm->m_rdma_cookie) 326 rm->data.op_active = 0; 327 } 328 329 if (rm->data.op_active && !conn->c_xmit_data_sent) { 330 rm->m_final_op = &rm->data; 331 ret = conn->c_trans->xmit(conn, rm, 332 conn->c_xmit_hdr_off, 333 conn->c_xmit_sg, 334 conn->c_xmit_data_off); 335 if (ret <= 0) 336 break; 337 338 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) { 339 tmp = min_t(int, ret, 340 sizeof(struct rds_header) - 341 conn->c_xmit_hdr_off); 342 conn->c_xmit_hdr_off += tmp; 343 ret -= tmp; 344 } 345 346 sg = &rm->data.op_sg[conn->c_xmit_sg]; 347 while (ret) { 348 tmp = min_t(int, ret, sg->length - 349 conn->c_xmit_data_off); 350 conn->c_xmit_data_off += tmp; 351 ret -= tmp; 352 if (conn->c_xmit_data_off == sg->length) { 353 conn->c_xmit_data_off = 0; 354 sg++; 355 conn->c_xmit_sg++; 356 BUG_ON(ret != 0 && 357 conn->c_xmit_sg == rm->data.op_nents); 358 } 359 } 360 361 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) && 362 (conn->c_xmit_sg == rm->data.op_nents)) 363 conn->c_xmit_data_sent = 1; 364 } 365 366 /* 367 * A rm will only take multiple times through this loop 368 * if there is a data op. Thus, if the data is sent (or there was 369 * none), then we're done with the rm. 370 */ 371 if (!rm->data.op_active || conn->c_xmit_data_sent) { 372 conn->c_xmit_rm = NULL; 373 conn->c_xmit_sg = 0; 374 conn->c_xmit_hdr_off = 0; 375 conn->c_xmit_data_off = 0; 376 conn->c_xmit_rdma_sent = 0; 377 conn->c_xmit_atomic_sent = 0; 378 conn->c_xmit_data_sent = 0; 379 380 rds_message_put(rm); 381 } 382 } 383 384 over_batch: 385 if (conn->c_trans->xmit_complete) 386 conn->c_trans->xmit_complete(conn); 387 release_in_xmit(conn); 388 389 /* Nuke any messages we decided not to retransmit. */ 390 if (!list_empty(&to_be_dropped)) { 391 /* irqs on here, so we can put(), unlike above */ 392 list_for_each_entry(rm, &to_be_dropped, m_conn_item) 393 rds_message_put(rm); 394 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); 395 } 396 397 /* 398 * Other senders can queue a message after we last test the send queue 399 * but before we clear RDS_IN_XMIT. In that case they'd back off and 400 * not try and send their newly queued message. We need to check the 401 * send queue after having cleared RDS_IN_XMIT so that their message 402 * doesn't get stuck on the send queue. 403 * 404 * If the transport cannot continue (i.e ret != 0), then it must 405 * call us when more room is available, such as from the tx 406 * completion handler. 407 * 408 * We have an extra generation check here so that if someone manages 409 * to jump in after our release_in_xmit, we'll see that they have done 410 * some work and we will skip our goto 411 */ 412 if (ret == 0) { 413 smp_mb(); 414 if (!list_empty(&conn->c_send_queue) && 415 send_gen == conn->c_send_gen) { 416 rds_stats_inc(s_send_lock_queue_raced); 417 goto restart; 418 } 419 } 420 out: 421 return ret; 422 } 423 424 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) 425 { 426 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 427 428 assert_spin_locked(&rs->rs_lock); 429 430 BUG_ON(rs->rs_snd_bytes < len); 431 rs->rs_snd_bytes -= len; 432 433 if (rs->rs_snd_bytes == 0) 434 rds_stats_inc(s_send_queue_empty); 435 } 436 437 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, 438 is_acked_func is_acked) 439 { 440 if (is_acked) 441 return is_acked(rm, ack); 442 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; 443 } 444 445 /* 446 * This is pretty similar to what happens below in the ACK 447 * handling code - except that we call here as soon as we get 448 * the IB send completion on the RDMA op and the accompanying 449 * message. 450 */ 451 void rds_rdma_send_complete(struct rds_message *rm, int status) 452 { 453 struct rds_sock *rs = NULL; 454 struct rm_rdma_op *ro; 455 struct rds_notifier *notifier; 456 unsigned long flags; 457 458 spin_lock_irqsave(&rm->m_rs_lock, flags); 459 460 ro = &rm->rdma; 461 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && 462 ro->op_active && ro->op_notify && ro->op_notifier) { 463 notifier = ro->op_notifier; 464 rs = rm->m_rs; 465 sock_hold(rds_rs_to_sk(rs)); 466 467 notifier->n_status = status; 468 spin_lock(&rs->rs_lock); 469 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 470 spin_unlock(&rs->rs_lock); 471 472 ro->op_notifier = NULL; 473 } 474 475 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 476 477 if (rs) { 478 rds_wake_sk_sleep(rs); 479 sock_put(rds_rs_to_sk(rs)); 480 } 481 } 482 EXPORT_SYMBOL_GPL(rds_rdma_send_complete); 483 484 /* 485 * Just like above, except looks at atomic op 486 */ 487 void rds_atomic_send_complete(struct rds_message *rm, int status) 488 { 489 struct rds_sock *rs = NULL; 490 struct rm_atomic_op *ao; 491 struct rds_notifier *notifier; 492 unsigned long flags; 493 494 spin_lock_irqsave(&rm->m_rs_lock, flags); 495 496 ao = &rm->atomic; 497 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) 498 && ao->op_active && ao->op_notify && ao->op_notifier) { 499 notifier = ao->op_notifier; 500 rs = rm->m_rs; 501 sock_hold(rds_rs_to_sk(rs)); 502 503 notifier->n_status = status; 504 spin_lock(&rs->rs_lock); 505 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 506 spin_unlock(&rs->rs_lock); 507 508 ao->op_notifier = NULL; 509 } 510 511 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 512 513 if (rs) { 514 rds_wake_sk_sleep(rs); 515 sock_put(rds_rs_to_sk(rs)); 516 } 517 } 518 EXPORT_SYMBOL_GPL(rds_atomic_send_complete); 519 520 /* 521 * This is the same as rds_rdma_send_complete except we 522 * don't do any locking - we have all the ingredients (message, 523 * socket, socket lock) and can just move the notifier. 524 */ 525 static inline void 526 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) 527 { 528 struct rm_rdma_op *ro; 529 struct rm_atomic_op *ao; 530 531 ro = &rm->rdma; 532 if (ro->op_active && ro->op_notify && ro->op_notifier) { 533 ro->op_notifier->n_status = status; 534 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue); 535 ro->op_notifier = NULL; 536 } 537 538 ao = &rm->atomic; 539 if (ao->op_active && ao->op_notify && ao->op_notifier) { 540 ao->op_notifier->n_status = status; 541 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue); 542 ao->op_notifier = NULL; 543 } 544 545 /* No need to wake the app - caller does this */ 546 } 547 548 /* 549 * This is called from the IB send completion when we detect 550 * a RDMA operation that failed with remote access error. 551 * So speed is not an issue here. 552 */ 553 struct rds_message *rds_send_get_message(struct rds_connection *conn, 554 struct rm_rdma_op *op) 555 { 556 struct rds_message *rm, *tmp, *found = NULL; 557 unsigned long flags; 558 559 spin_lock_irqsave(&conn->c_lock, flags); 560 561 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { 562 if (&rm->rdma == op) { 563 atomic_inc(&rm->m_refcount); 564 found = rm; 565 goto out; 566 } 567 } 568 569 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) { 570 if (&rm->rdma == op) { 571 atomic_inc(&rm->m_refcount); 572 found = rm; 573 break; 574 } 575 } 576 577 out: 578 spin_unlock_irqrestore(&conn->c_lock, flags); 579 580 return found; 581 } 582 EXPORT_SYMBOL_GPL(rds_send_get_message); 583 584 /* 585 * This removes messages from the socket's list if they're on it. The list 586 * argument must be private to the caller, we must be able to modify it 587 * without locks. The messages must have a reference held for their 588 * position on the list. This function will drop that reference after 589 * removing the messages from the 'messages' list regardless of if it found 590 * the messages on the socket list or not. 591 */ 592 static void rds_send_remove_from_sock(struct list_head *messages, int status) 593 { 594 unsigned long flags; 595 struct rds_sock *rs = NULL; 596 struct rds_message *rm; 597 598 while (!list_empty(messages)) { 599 int was_on_sock = 0; 600 601 rm = list_entry(messages->next, struct rds_message, 602 m_conn_item); 603 list_del_init(&rm->m_conn_item); 604 605 /* 606 * If we see this flag cleared then we're *sure* that someone 607 * else beat us to removing it from the sock. If we race 608 * with their flag update we'll get the lock and then really 609 * see that the flag has been cleared. 610 * 611 * The message spinlock makes sure nobody clears rm->m_rs 612 * while we're messing with it. It does not prevent the 613 * message from being removed from the socket, though. 614 */ 615 spin_lock_irqsave(&rm->m_rs_lock, flags); 616 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) 617 goto unlock_and_drop; 618 619 if (rs != rm->m_rs) { 620 if (rs) { 621 rds_wake_sk_sleep(rs); 622 sock_put(rds_rs_to_sk(rs)); 623 } 624 rs = rm->m_rs; 625 if (rs) 626 sock_hold(rds_rs_to_sk(rs)); 627 } 628 if (!rs) 629 goto unlock_and_drop; 630 spin_lock(&rs->rs_lock); 631 632 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { 633 struct rm_rdma_op *ro = &rm->rdma; 634 struct rds_notifier *notifier; 635 636 list_del_init(&rm->m_sock_item); 637 rds_send_sndbuf_remove(rs, rm); 638 639 if (ro->op_active && ro->op_notifier && 640 (ro->op_notify || (ro->op_recverr && status))) { 641 notifier = ro->op_notifier; 642 list_add_tail(¬ifier->n_list, 643 &rs->rs_notify_queue); 644 if (!notifier->n_status) 645 notifier->n_status = status; 646 rm->rdma.op_notifier = NULL; 647 } 648 was_on_sock = 1; 649 rm->m_rs = NULL; 650 } 651 spin_unlock(&rs->rs_lock); 652 653 unlock_and_drop: 654 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 655 rds_message_put(rm); 656 if (was_on_sock) 657 rds_message_put(rm); 658 } 659 660 if (rs) { 661 rds_wake_sk_sleep(rs); 662 sock_put(rds_rs_to_sk(rs)); 663 } 664 } 665 666 /* 667 * Transports call here when they've determined that the receiver queued 668 * messages up to, and including, the given sequence number. Messages are 669 * moved to the retrans queue when rds_send_xmit picks them off the send 670 * queue. This means that in the TCP case, the message may not have been 671 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked 672 * checks the RDS_MSG_HAS_ACK_SEQ bit. 673 */ 674 void rds_send_drop_acked(struct rds_connection *conn, u64 ack, 675 is_acked_func is_acked) 676 { 677 struct rds_message *rm, *tmp; 678 unsigned long flags; 679 LIST_HEAD(list); 680 681 spin_lock_irqsave(&conn->c_lock, flags); 682 683 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { 684 if (!rds_send_is_acked(rm, ack, is_acked)) 685 break; 686 687 list_move(&rm->m_conn_item, &list); 688 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); 689 } 690 691 /* order flag updates with spin locks */ 692 if (!list_empty(&list)) 693 smp_mb__after_atomic(); 694 695 spin_unlock_irqrestore(&conn->c_lock, flags); 696 697 /* now remove the messages from the sock list as needed */ 698 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); 699 } 700 EXPORT_SYMBOL_GPL(rds_send_drop_acked); 701 702 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest) 703 { 704 struct rds_message *rm, *tmp; 705 struct rds_connection *conn; 706 unsigned long flags; 707 LIST_HEAD(list); 708 709 /* get all the messages we're dropping under the rs lock */ 710 spin_lock_irqsave(&rs->rs_lock, flags); 711 712 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { 713 if (dest && (dest->sin_addr.s_addr != rm->m_daddr || 714 dest->sin_port != rm->m_inc.i_hdr.h_dport)) 715 continue; 716 717 list_move(&rm->m_sock_item, &list); 718 rds_send_sndbuf_remove(rs, rm); 719 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 720 } 721 722 /* order flag updates with the rs lock */ 723 smp_mb__after_atomic(); 724 725 spin_unlock_irqrestore(&rs->rs_lock, flags); 726 727 if (list_empty(&list)) 728 return; 729 730 /* Remove the messages from the conn */ 731 list_for_each_entry(rm, &list, m_sock_item) { 732 733 conn = rm->m_inc.i_conn; 734 735 spin_lock_irqsave(&conn->c_lock, flags); 736 /* 737 * Maybe someone else beat us to removing rm from the conn. 738 * If we race with their flag update we'll get the lock and 739 * then really see that the flag has been cleared. 740 */ 741 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { 742 spin_unlock_irqrestore(&conn->c_lock, flags); 743 spin_lock_irqsave(&rm->m_rs_lock, flags); 744 rm->m_rs = NULL; 745 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 746 continue; 747 } 748 list_del_init(&rm->m_conn_item); 749 spin_unlock_irqrestore(&conn->c_lock, flags); 750 751 /* 752 * Couldn't grab m_rs_lock in top loop (lock ordering), 753 * but we can now. 754 */ 755 spin_lock_irqsave(&rm->m_rs_lock, flags); 756 757 spin_lock(&rs->rs_lock); 758 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 759 spin_unlock(&rs->rs_lock); 760 761 rm->m_rs = NULL; 762 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 763 764 rds_message_put(rm); 765 } 766 767 rds_wake_sk_sleep(rs); 768 769 while (!list_empty(&list)) { 770 rm = list_entry(list.next, struct rds_message, m_sock_item); 771 list_del_init(&rm->m_sock_item); 772 773 rds_message_wait(rm); 774 rds_message_put(rm); 775 } 776 } 777 778 /* 779 * we only want this to fire once so we use the callers 'queued'. It's 780 * possible that another thread can race with us and remove the 781 * message from the flow with RDS_CANCEL_SENT_TO. 782 */ 783 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, 784 struct rds_message *rm, __be16 sport, 785 __be16 dport, int *queued) 786 { 787 unsigned long flags; 788 u32 len; 789 790 if (*queued) 791 goto out; 792 793 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 794 795 /* this is the only place which holds both the socket's rs_lock 796 * and the connection's c_lock */ 797 spin_lock_irqsave(&rs->rs_lock, flags); 798 799 /* 800 * If there is a little space in sndbuf, we don't queue anything, 801 * and userspace gets -EAGAIN. But poll() indicates there's send 802 * room. This can lead to bad behavior (spinning) if snd_bytes isn't 803 * freed up by incoming acks. So we check the *old* value of 804 * rs_snd_bytes here to allow the last msg to exceed the buffer, 805 * and poll() now knows no more data can be sent. 806 */ 807 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { 808 rs->rs_snd_bytes += len; 809 810 /* let recv side know we are close to send space exhaustion. 811 * This is probably not the optimal way to do it, as this 812 * means we set the flag on *all* messages as soon as our 813 * throughput hits a certain threshold. 814 */ 815 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) 816 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 817 818 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); 819 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 820 rds_message_addref(rm); 821 rm->m_rs = rs; 822 823 /* The code ordering is a little weird, but we're 824 trying to minimize the time we hold c_lock */ 825 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); 826 rm->m_inc.i_conn = conn; 827 rds_message_addref(rm); 828 829 spin_lock(&conn->c_lock); 830 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++); 831 list_add_tail(&rm->m_conn_item, &conn->c_send_queue); 832 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 833 spin_unlock(&conn->c_lock); 834 835 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", 836 rm, len, rs, rs->rs_snd_bytes, 837 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); 838 839 *queued = 1; 840 } 841 842 spin_unlock_irqrestore(&rs->rs_lock, flags); 843 out: 844 return *queued; 845 } 846 847 /* 848 * rds_message is getting to be quite complicated, and we'd like to allocate 849 * it all in one go. This figures out how big it needs to be up front. 850 */ 851 static int rds_rm_size(struct msghdr *msg, int data_len) 852 { 853 struct cmsghdr *cmsg; 854 int size = 0; 855 int cmsg_groups = 0; 856 int retval; 857 858 for_each_cmsghdr(cmsg, msg) { 859 if (!CMSG_OK(msg, cmsg)) 860 return -EINVAL; 861 862 if (cmsg->cmsg_level != SOL_RDS) 863 continue; 864 865 switch (cmsg->cmsg_type) { 866 case RDS_CMSG_RDMA_ARGS: 867 cmsg_groups |= 1; 868 retval = rds_rdma_extra_size(CMSG_DATA(cmsg)); 869 if (retval < 0) 870 return retval; 871 size += retval; 872 873 break; 874 875 case RDS_CMSG_RDMA_DEST: 876 case RDS_CMSG_RDMA_MAP: 877 cmsg_groups |= 2; 878 /* these are valid but do no add any size */ 879 break; 880 881 case RDS_CMSG_ATOMIC_CSWP: 882 case RDS_CMSG_ATOMIC_FADD: 883 case RDS_CMSG_MASKED_ATOMIC_CSWP: 884 case RDS_CMSG_MASKED_ATOMIC_FADD: 885 cmsg_groups |= 1; 886 size += sizeof(struct scatterlist); 887 break; 888 889 default: 890 return -EINVAL; 891 } 892 893 } 894 895 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist); 896 897 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */ 898 if (cmsg_groups == 3) 899 return -EINVAL; 900 901 return size; 902 } 903 904 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, 905 struct msghdr *msg, int *allocated_mr) 906 { 907 struct cmsghdr *cmsg; 908 int ret = 0; 909 910 for_each_cmsghdr(cmsg, msg) { 911 if (!CMSG_OK(msg, cmsg)) 912 return -EINVAL; 913 914 if (cmsg->cmsg_level != SOL_RDS) 915 continue; 916 917 /* As a side effect, RDMA_DEST and RDMA_MAP will set 918 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr. 919 */ 920 switch (cmsg->cmsg_type) { 921 case RDS_CMSG_RDMA_ARGS: 922 ret = rds_cmsg_rdma_args(rs, rm, cmsg); 923 break; 924 925 case RDS_CMSG_RDMA_DEST: 926 ret = rds_cmsg_rdma_dest(rs, rm, cmsg); 927 break; 928 929 case RDS_CMSG_RDMA_MAP: 930 ret = rds_cmsg_rdma_map(rs, rm, cmsg); 931 if (!ret) 932 *allocated_mr = 1; 933 break; 934 case RDS_CMSG_ATOMIC_CSWP: 935 case RDS_CMSG_ATOMIC_FADD: 936 case RDS_CMSG_MASKED_ATOMIC_CSWP: 937 case RDS_CMSG_MASKED_ATOMIC_FADD: 938 ret = rds_cmsg_atomic(rs, rm, cmsg); 939 break; 940 941 default: 942 return -EINVAL; 943 } 944 945 if (ret) 946 break; 947 } 948 949 return ret; 950 } 951 952 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len) 953 { 954 struct sock *sk = sock->sk; 955 struct rds_sock *rs = rds_sk_to_rs(sk); 956 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 957 __be32 daddr; 958 __be16 dport; 959 struct rds_message *rm = NULL; 960 struct rds_connection *conn; 961 int ret = 0; 962 int queued = 0, allocated_mr = 0; 963 int nonblock = msg->msg_flags & MSG_DONTWAIT; 964 long timeo = sock_sndtimeo(sk, nonblock); 965 966 /* Mirror Linux UDP mirror of BSD error message compatibility */ 967 /* XXX: Perhaps MSG_MORE someday */ 968 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) { 969 ret = -EOPNOTSUPP; 970 goto out; 971 } 972 973 if (msg->msg_namelen) { 974 /* XXX fail non-unicast destination IPs? */ 975 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) { 976 ret = -EINVAL; 977 goto out; 978 } 979 daddr = usin->sin_addr.s_addr; 980 dport = usin->sin_port; 981 } else { 982 /* We only care about consistency with ->connect() */ 983 lock_sock(sk); 984 daddr = rs->rs_conn_addr; 985 dport = rs->rs_conn_port; 986 release_sock(sk); 987 } 988 989 /* racing with another thread binding seems ok here */ 990 if (daddr == 0 || rs->rs_bound_addr == 0) { 991 ret = -ENOTCONN; /* XXX not a great errno */ 992 goto out; 993 } 994 995 /* size of rm including all sgs */ 996 ret = rds_rm_size(msg, payload_len); 997 if (ret < 0) 998 goto out; 999 1000 rm = rds_message_alloc(ret, GFP_KERNEL); 1001 if (!rm) { 1002 ret = -ENOMEM; 1003 goto out; 1004 } 1005 1006 /* Attach data to the rm */ 1007 if (payload_len) { 1008 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE)); 1009 if (!rm->data.op_sg) { 1010 ret = -ENOMEM; 1011 goto out; 1012 } 1013 ret = rds_message_copy_from_user(rm, &msg->msg_iter); 1014 if (ret) 1015 goto out; 1016 } 1017 rm->data.op_active = 1; 1018 1019 rm->m_daddr = daddr; 1020 1021 /* rds_conn_create has a spinlock that runs with IRQ off. 1022 * Caching the conn in the socket helps a lot. */ 1023 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr) 1024 conn = rs->rs_conn; 1025 else { 1026 conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr, 1027 rs->rs_transport, 1028 sock->sk->sk_allocation); 1029 if (IS_ERR(conn)) { 1030 ret = PTR_ERR(conn); 1031 goto out; 1032 } 1033 rs->rs_conn = conn; 1034 } 1035 1036 /* Parse any control messages the user may have included. */ 1037 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr); 1038 if (ret) 1039 goto out; 1040 1041 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) { 1042 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", 1043 &rm->rdma, conn->c_trans->xmit_rdma); 1044 ret = -EOPNOTSUPP; 1045 goto out; 1046 } 1047 1048 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) { 1049 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n", 1050 &rm->atomic, conn->c_trans->xmit_atomic); 1051 ret = -EOPNOTSUPP; 1052 goto out; 1053 } 1054 1055 rds_conn_connect_if_down(conn); 1056 1057 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); 1058 if (ret) { 1059 rs->rs_seen_congestion = 1; 1060 goto out; 1061 } 1062 1063 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port, 1064 dport, &queued)) { 1065 rds_stats_inc(s_send_queue_full); 1066 /* XXX make sure this is reasonable */ 1067 if (payload_len > rds_sk_sndbuf(rs)) { 1068 ret = -EMSGSIZE; 1069 goto out; 1070 } 1071 if (nonblock) { 1072 ret = -EAGAIN; 1073 goto out; 1074 } 1075 1076 timeo = wait_event_interruptible_timeout(*sk_sleep(sk), 1077 rds_send_queue_rm(rs, conn, rm, 1078 rs->rs_bound_port, 1079 dport, 1080 &queued), 1081 timeo); 1082 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); 1083 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) 1084 continue; 1085 1086 ret = timeo; 1087 if (ret == 0) 1088 ret = -ETIMEDOUT; 1089 goto out; 1090 } 1091 1092 /* 1093 * By now we've committed to the send. We reuse rds_send_worker() 1094 * to retry sends in the rds thread if the transport asks us to. 1095 */ 1096 rds_stats_inc(s_send_queued); 1097 1098 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags)) 1099 rds_send_xmit(conn); 1100 1101 rds_message_put(rm); 1102 return payload_len; 1103 1104 out: 1105 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. 1106 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN 1107 * or in any other way, we need to destroy the MR again */ 1108 if (allocated_mr) 1109 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); 1110 1111 if (rm) 1112 rds_message_put(rm); 1113 return ret; 1114 } 1115 1116 /* 1117 * Reply to a ping packet. 1118 */ 1119 int 1120 rds_send_pong(struct rds_connection *conn, __be16 dport) 1121 { 1122 struct rds_message *rm; 1123 unsigned long flags; 1124 int ret = 0; 1125 1126 rm = rds_message_alloc(0, GFP_ATOMIC); 1127 if (!rm) { 1128 ret = -ENOMEM; 1129 goto out; 1130 } 1131 1132 rm->m_daddr = conn->c_faddr; 1133 rm->data.op_active = 1; 1134 1135 rds_conn_connect_if_down(conn); 1136 1137 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL); 1138 if (ret) 1139 goto out; 1140 1141 spin_lock_irqsave(&conn->c_lock, flags); 1142 list_add_tail(&rm->m_conn_item, &conn->c_send_queue); 1143 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 1144 rds_message_addref(rm); 1145 rm->m_inc.i_conn = conn; 1146 1147 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport, 1148 conn->c_next_tx_seq); 1149 conn->c_next_tx_seq++; 1150 spin_unlock_irqrestore(&conn->c_lock, flags); 1151 1152 rds_stats_inc(s_send_queued); 1153 rds_stats_inc(s_send_pong); 1154 1155 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags)) 1156 queue_delayed_work(rds_wq, &conn->c_send_w, 0); 1157 1158 rds_message_put(rm); 1159 return 0; 1160 1161 out: 1162 if (rm) 1163 rds_message_put(rm); 1164 return ret; 1165 } 1166