xref: /openbmc/linux/net/rds/send.c (revision 4bce6fce)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 
42 #include "rds.h"
43 
44 /* When transmitting messages in rds_send_xmit, we need to emerge from
45  * time to time and briefly release the CPU. Otherwise the softlock watchdog
46  * will kick our shin.
47  * Also, it seems fairer to not let one busy connection stall all the
48  * others.
49  *
50  * send_batch_count is the number of times we'll loop in send_xmit. Setting
51  * it to 0 will restore the old behavior (where we looped until we had
52  * drained the queue).
53  */
54 static int send_batch_count = 64;
55 module_param(send_batch_count, int, 0444);
56 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
57 
58 static void rds_send_remove_from_sock(struct list_head *messages, int status);
59 
60 /*
61  * Reset the send state.  Callers must ensure that this doesn't race with
62  * rds_send_xmit().
63  */
64 void rds_send_reset(struct rds_connection *conn)
65 {
66 	struct rds_message *rm, *tmp;
67 	unsigned long flags;
68 
69 	if (conn->c_xmit_rm) {
70 		rm = conn->c_xmit_rm;
71 		conn->c_xmit_rm = NULL;
72 		/* Tell the user the RDMA op is no longer mapped by the
73 		 * transport. This isn't entirely true (it's flushed out
74 		 * independently) but as the connection is down, there's
75 		 * no ongoing RDMA to/from that memory */
76 		rds_message_unmapped(rm);
77 		rds_message_put(rm);
78 	}
79 
80 	conn->c_xmit_sg = 0;
81 	conn->c_xmit_hdr_off = 0;
82 	conn->c_xmit_data_off = 0;
83 	conn->c_xmit_atomic_sent = 0;
84 	conn->c_xmit_rdma_sent = 0;
85 	conn->c_xmit_data_sent = 0;
86 
87 	conn->c_map_queued = 0;
88 
89 	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
90 	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
91 
92 	/* Mark messages as retransmissions, and move them to the send q */
93 	spin_lock_irqsave(&conn->c_lock, flags);
94 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
95 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
96 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
97 	}
98 	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
99 	spin_unlock_irqrestore(&conn->c_lock, flags);
100 }
101 
102 static int acquire_in_xmit(struct rds_connection *conn)
103 {
104 	return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
105 }
106 
107 static void release_in_xmit(struct rds_connection *conn)
108 {
109 	clear_bit(RDS_IN_XMIT, &conn->c_flags);
110 	smp_mb__after_atomic();
111 	/*
112 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
113 	 * hot path and finding waiters is very rare.  We don't want to walk
114 	 * the system-wide hashed waitqueue buckets in the fast path only to
115 	 * almost never find waiters.
116 	 */
117 	if (waitqueue_active(&conn->c_waitq))
118 		wake_up_all(&conn->c_waitq);
119 }
120 
121 /*
122  * We're making the conscious trade-off here to only send one message
123  * down the connection at a time.
124  *   Pro:
125  *      - tx queueing is a simple fifo list
126  *   	- reassembly is optional and easily done by transports per conn
127  *      - no per flow rx lookup at all, straight to the socket
128  *   	- less per-frag memory and wire overhead
129  *   Con:
130  *      - queued acks can be delayed behind large messages
131  *   Depends:
132  *      - small message latency is higher behind queued large messages
133  *      - large message latency isn't starved by intervening small sends
134  */
135 int rds_send_xmit(struct rds_connection *conn)
136 {
137 	struct rds_message *rm;
138 	unsigned long flags;
139 	unsigned int tmp;
140 	struct scatterlist *sg;
141 	int ret = 0;
142 	LIST_HEAD(to_be_dropped);
143 	int batch_count;
144 	unsigned long send_gen = 0;
145 
146 restart:
147 	batch_count = 0;
148 
149 	/*
150 	 * sendmsg calls here after having queued its message on the send
151 	 * queue.  We only have one task feeding the connection at a time.  If
152 	 * another thread is already feeding the queue then we back off.  This
153 	 * avoids blocking the caller and trading per-connection data between
154 	 * caches per message.
155 	 */
156 	if (!acquire_in_xmit(conn)) {
157 		rds_stats_inc(s_send_lock_contention);
158 		ret = -ENOMEM;
159 		goto out;
160 	}
161 
162 	/*
163 	 * we record the send generation after doing the xmit acquire.
164 	 * if someone else manages to jump in and do some work, we'll use
165 	 * this to avoid a goto restart farther down.
166 	 *
167 	 * The acquire_in_xmit() check above ensures that only one
168 	 * caller can increment c_send_gen at any time.
169 	 */
170 	conn->c_send_gen++;
171 	send_gen = conn->c_send_gen;
172 
173 	/*
174 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
175 	 * we do the opposite to avoid races.
176 	 */
177 	if (!rds_conn_up(conn)) {
178 		release_in_xmit(conn);
179 		ret = 0;
180 		goto out;
181 	}
182 
183 	if (conn->c_trans->xmit_prepare)
184 		conn->c_trans->xmit_prepare(conn);
185 
186 	/*
187 	 * spin trying to push headers and data down the connection until
188 	 * the connection doesn't make forward progress.
189 	 */
190 	while (1) {
191 
192 		rm = conn->c_xmit_rm;
193 
194 		/*
195 		 * If between sending messages, we can send a pending congestion
196 		 * map update.
197 		 */
198 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
199 			rm = rds_cong_update_alloc(conn);
200 			if (IS_ERR(rm)) {
201 				ret = PTR_ERR(rm);
202 				break;
203 			}
204 			rm->data.op_active = 1;
205 
206 			conn->c_xmit_rm = rm;
207 		}
208 
209 		/*
210 		 * If not already working on one, grab the next message.
211 		 *
212 		 * c_xmit_rm holds a ref while we're sending this message down
213 		 * the connction.  We can use this ref while holding the
214 		 * send_sem.. rds_send_reset() is serialized with it.
215 		 */
216 		if (!rm) {
217 			unsigned int len;
218 
219 			batch_count++;
220 
221 			/* we want to process as big a batch as we can, but
222 			 * we also want to avoid softlockups.  If we've been
223 			 * through a lot of messages, lets back off and see
224 			 * if anyone else jumps in
225 			 */
226 			if (batch_count >= 1024)
227 				goto over_batch;
228 
229 			spin_lock_irqsave(&conn->c_lock, flags);
230 
231 			if (!list_empty(&conn->c_send_queue)) {
232 				rm = list_entry(conn->c_send_queue.next,
233 						struct rds_message,
234 						m_conn_item);
235 				rds_message_addref(rm);
236 
237 				/*
238 				 * Move the message from the send queue to the retransmit
239 				 * list right away.
240 				 */
241 				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
242 			}
243 
244 			spin_unlock_irqrestore(&conn->c_lock, flags);
245 
246 			if (!rm)
247 				break;
248 
249 			/* Unfortunately, the way Infiniband deals with
250 			 * RDMA to a bad MR key is by moving the entire
251 			 * queue pair to error state. We cold possibly
252 			 * recover from that, but right now we drop the
253 			 * connection.
254 			 * Therefore, we never retransmit messages with RDMA ops.
255 			 */
256 			if (rm->rdma.op_active &&
257 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
258 				spin_lock_irqsave(&conn->c_lock, flags);
259 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
260 					list_move(&rm->m_conn_item, &to_be_dropped);
261 				spin_unlock_irqrestore(&conn->c_lock, flags);
262 				continue;
263 			}
264 
265 			/* Require an ACK every once in a while */
266 			len = ntohl(rm->m_inc.i_hdr.h_len);
267 			if (conn->c_unacked_packets == 0 ||
268 			    conn->c_unacked_bytes < len) {
269 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
270 
271 				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
272 				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
273 				rds_stats_inc(s_send_ack_required);
274 			} else {
275 				conn->c_unacked_bytes -= len;
276 				conn->c_unacked_packets--;
277 			}
278 
279 			conn->c_xmit_rm = rm;
280 		}
281 
282 		/* The transport either sends the whole rdma or none of it */
283 		if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
284 			rm->m_final_op = &rm->rdma;
285 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
286 			if (ret)
287 				break;
288 			conn->c_xmit_rdma_sent = 1;
289 
290 			/* The transport owns the mapped memory for now.
291 			 * You can't unmap it while it's on the send queue */
292 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
293 		}
294 
295 		if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
296 			rm->m_final_op = &rm->atomic;
297 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
298 			if (ret)
299 				break;
300 			conn->c_xmit_atomic_sent = 1;
301 
302 			/* The transport owns the mapped memory for now.
303 			 * You can't unmap it while it's on the send queue */
304 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
305 		}
306 
307 		/*
308 		 * A number of cases require an RDS header to be sent
309 		 * even if there is no data.
310 		 * We permit 0-byte sends; rds-ping depends on this.
311 		 * However, if there are exclusively attached silent ops,
312 		 * we skip the hdr/data send, to enable silent operation.
313 		 */
314 		if (rm->data.op_nents == 0) {
315 			int ops_present;
316 			int all_ops_are_silent = 1;
317 
318 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
319 			if (rm->atomic.op_active && !rm->atomic.op_silent)
320 				all_ops_are_silent = 0;
321 			if (rm->rdma.op_active && !rm->rdma.op_silent)
322 				all_ops_are_silent = 0;
323 
324 			if (ops_present && all_ops_are_silent
325 			    && !rm->m_rdma_cookie)
326 				rm->data.op_active = 0;
327 		}
328 
329 		if (rm->data.op_active && !conn->c_xmit_data_sent) {
330 			rm->m_final_op = &rm->data;
331 			ret = conn->c_trans->xmit(conn, rm,
332 						  conn->c_xmit_hdr_off,
333 						  conn->c_xmit_sg,
334 						  conn->c_xmit_data_off);
335 			if (ret <= 0)
336 				break;
337 
338 			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
339 				tmp = min_t(int, ret,
340 					    sizeof(struct rds_header) -
341 					    conn->c_xmit_hdr_off);
342 				conn->c_xmit_hdr_off += tmp;
343 				ret -= tmp;
344 			}
345 
346 			sg = &rm->data.op_sg[conn->c_xmit_sg];
347 			while (ret) {
348 				tmp = min_t(int, ret, sg->length -
349 						      conn->c_xmit_data_off);
350 				conn->c_xmit_data_off += tmp;
351 				ret -= tmp;
352 				if (conn->c_xmit_data_off == sg->length) {
353 					conn->c_xmit_data_off = 0;
354 					sg++;
355 					conn->c_xmit_sg++;
356 					BUG_ON(ret != 0 &&
357 					       conn->c_xmit_sg == rm->data.op_nents);
358 				}
359 			}
360 
361 			if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
362 			    (conn->c_xmit_sg == rm->data.op_nents))
363 				conn->c_xmit_data_sent = 1;
364 		}
365 
366 		/*
367 		 * A rm will only take multiple times through this loop
368 		 * if there is a data op. Thus, if the data is sent (or there was
369 		 * none), then we're done with the rm.
370 		 */
371 		if (!rm->data.op_active || conn->c_xmit_data_sent) {
372 			conn->c_xmit_rm = NULL;
373 			conn->c_xmit_sg = 0;
374 			conn->c_xmit_hdr_off = 0;
375 			conn->c_xmit_data_off = 0;
376 			conn->c_xmit_rdma_sent = 0;
377 			conn->c_xmit_atomic_sent = 0;
378 			conn->c_xmit_data_sent = 0;
379 
380 			rds_message_put(rm);
381 		}
382 	}
383 
384 over_batch:
385 	if (conn->c_trans->xmit_complete)
386 		conn->c_trans->xmit_complete(conn);
387 	release_in_xmit(conn);
388 
389 	/* Nuke any messages we decided not to retransmit. */
390 	if (!list_empty(&to_be_dropped)) {
391 		/* irqs on here, so we can put(), unlike above */
392 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
393 			rds_message_put(rm);
394 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
395 	}
396 
397 	/*
398 	 * Other senders can queue a message after we last test the send queue
399 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
400 	 * not try and send their newly queued message.  We need to check the
401 	 * send queue after having cleared RDS_IN_XMIT so that their message
402 	 * doesn't get stuck on the send queue.
403 	 *
404 	 * If the transport cannot continue (i.e ret != 0), then it must
405 	 * call us when more room is available, such as from the tx
406 	 * completion handler.
407 	 *
408 	 * We have an extra generation check here so that if someone manages
409 	 * to jump in after our release_in_xmit, we'll see that they have done
410 	 * some work and we will skip our goto
411 	 */
412 	if (ret == 0) {
413 		smp_mb();
414 		if (!list_empty(&conn->c_send_queue) &&
415 		    send_gen == conn->c_send_gen) {
416 			rds_stats_inc(s_send_lock_queue_raced);
417 			goto restart;
418 		}
419 	}
420 out:
421 	return ret;
422 }
423 
424 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
425 {
426 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
427 
428 	assert_spin_locked(&rs->rs_lock);
429 
430 	BUG_ON(rs->rs_snd_bytes < len);
431 	rs->rs_snd_bytes -= len;
432 
433 	if (rs->rs_snd_bytes == 0)
434 		rds_stats_inc(s_send_queue_empty);
435 }
436 
437 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
438 				    is_acked_func is_acked)
439 {
440 	if (is_acked)
441 		return is_acked(rm, ack);
442 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
443 }
444 
445 /*
446  * This is pretty similar to what happens below in the ACK
447  * handling code - except that we call here as soon as we get
448  * the IB send completion on the RDMA op and the accompanying
449  * message.
450  */
451 void rds_rdma_send_complete(struct rds_message *rm, int status)
452 {
453 	struct rds_sock *rs = NULL;
454 	struct rm_rdma_op *ro;
455 	struct rds_notifier *notifier;
456 	unsigned long flags;
457 
458 	spin_lock_irqsave(&rm->m_rs_lock, flags);
459 
460 	ro = &rm->rdma;
461 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
462 	    ro->op_active && ro->op_notify && ro->op_notifier) {
463 		notifier = ro->op_notifier;
464 		rs = rm->m_rs;
465 		sock_hold(rds_rs_to_sk(rs));
466 
467 		notifier->n_status = status;
468 		spin_lock(&rs->rs_lock);
469 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
470 		spin_unlock(&rs->rs_lock);
471 
472 		ro->op_notifier = NULL;
473 	}
474 
475 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
476 
477 	if (rs) {
478 		rds_wake_sk_sleep(rs);
479 		sock_put(rds_rs_to_sk(rs));
480 	}
481 }
482 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
483 
484 /*
485  * Just like above, except looks at atomic op
486  */
487 void rds_atomic_send_complete(struct rds_message *rm, int status)
488 {
489 	struct rds_sock *rs = NULL;
490 	struct rm_atomic_op *ao;
491 	struct rds_notifier *notifier;
492 	unsigned long flags;
493 
494 	spin_lock_irqsave(&rm->m_rs_lock, flags);
495 
496 	ao = &rm->atomic;
497 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
498 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
499 		notifier = ao->op_notifier;
500 		rs = rm->m_rs;
501 		sock_hold(rds_rs_to_sk(rs));
502 
503 		notifier->n_status = status;
504 		spin_lock(&rs->rs_lock);
505 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
506 		spin_unlock(&rs->rs_lock);
507 
508 		ao->op_notifier = NULL;
509 	}
510 
511 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
512 
513 	if (rs) {
514 		rds_wake_sk_sleep(rs);
515 		sock_put(rds_rs_to_sk(rs));
516 	}
517 }
518 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
519 
520 /*
521  * This is the same as rds_rdma_send_complete except we
522  * don't do any locking - we have all the ingredients (message,
523  * socket, socket lock) and can just move the notifier.
524  */
525 static inline void
526 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
527 {
528 	struct rm_rdma_op *ro;
529 	struct rm_atomic_op *ao;
530 
531 	ro = &rm->rdma;
532 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
533 		ro->op_notifier->n_status = status;
534 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
535 		ro->op_notifier = NULL;
536 	}
537 
538 	ao = &rm->atomic;
539 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
540 		ao->op_notifier->n_status = status;
541 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
542 		ao->op_notifier = NULL;
543 	}
544 
545 	/* No need to wake the app - caller does this */
546 }
547 
548 /*
549  * This is called from the IB send completion when we detect
550  * a RDMA operation that failed with remote access error.
551  * So speed is not an issue here.
552  */
553 struct rds_message *rds_send_get_message(struct rds_connection *conn,
554 					 struct rm_rdma_op *op)
555 {
556 	struct rds_message *rm, *tmp, *found = NULL;
557 	unsigned long flags;
558 
559 	spin_lock_irqsave(&conn->c_lock, flags);
560 
561 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
562 		if (&rm->rdma == op) {
563 			atomic_inc(&rm->m_refcount);
564 			found = rm;
565 			goto out;
566 		}
567 	}
568 
569 	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
570 		if (&rm->rdma == op) {
571 			atomic_inc(&rm->m_refcount);
572 			found = rm;
573 			break;
574 		}
575 	}
576 
577 out:
578 	spin_unlock_irqrestore(&conn->c_lock, flags);
579 
580 	return found;
581 }
582 EXPORT_SYMBOL_GPL(rds_send_get_message);
583 
584 /*
585  * This removes messages from the socket's list if they're on it.  The list
586  * argument must be private to the caller, we must be able to modify it
587  * without locks.  The messages must have a reference held for their
588  * position on the list.  This function will drop that reference after
589  * removing the messages from the 'messages' list regardless of if it found
590  * the messages on the socket list or not.
591  */
592 static void rds_send_remove_from_sock(struct list_head *messages, int status)
593 {
594 	unsigned long flags;
595 	struct rds_sock *rs = NULL;
596 	struct rds_message *rm;
597 
598 	while (!list_empty(messages)) {
599 		int was_on_sock = 0;
600 
601 		rm = list_entry(messages->next, struct rds_message,
602 				m_conn_item);
603 		list_del_init(&rm->m_conn_item);
604 
605 		/*
606 		 * If we see this flag cleared then we're *sure* that someone
607 		 * else beat us to removing it from the sock.  If we race
608 		 * with their flag update we'll get the lock and then really
609 		 * see that the flag has been cleared.
610 		 *
611 		 * The message spinlock makes sure nobody clears rm->m_rs
612 		 * while we're messing with it. It does not prevent the
613 		 * message from being removed from the socket, though.
614 		 */
615 		spin_lock_irqsave(&rm->m_rs_lock, flags);
616 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
617 			goto unlock_and_drop;
618 
619 		if (rs != rm->m_rs) {
620 			if (rs) {
621 				rds_wake_sk_sleep(rs);
622 				sock_put(rds_rs_to_sk(rs));
623 			}
624 			rs = rm->m_rs;
625 			if (rs)
626 				sock_hold(rds_rs_to_sk(rs));
627 		}
628 		if (!rs)
629 			goto unlock_and_drop;
630 		spin_lock(&rs->rs_lock);
631 
632 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
633 			struct rm_rdma_op *ro = &rm->rdma;
634 			struct rds_notifier *notifier;
635 
636 			list_del_init(&rm->m_sock_item);
637 			rds_send_sndbuf_remove(rs, rm);
638 
639 			if (ro->op_active && ro->op_notifier &&
640 			       (ro->op_notify || (ro->op_recverr && status))) {
641 				notifier = ro->op_notifier;
642 				list_add_tail(&notifier->n_list,
643 						&rs->rs_notify_queue);
644 				if (!notifier->n_status)
645 					notifier->n_status = status;
646 				rm->rdma.op_notifier = NULL;
647 			}
648 			was_on_sock = 1;
649 			rm->m_rs = NULL;
650 		}
651 		spin_unlock(&rs->rs_lock);
652 
653 unlock_and_drop:
654 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
655 		rds_message_put(rm);
656 		if (was_on_sock)
657 			rds_message_put(rm);
658 	}
659 
660 	if (rs) {
661 		rds_wake_sk_sleep(rs);
662 		sock_put(rds_rs_to_sk(rs));
663 	}
664 }
665 
666 /*
667  * Transports call here when they've determined that the receiver queued
668  * messages up to, and including, the given sequence number.  Messages are
669  * moved to the retrans queue when rds_send_xmit picks them off the send
670  * queue. This means that in the TCP case, the message may not have been
671  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
672  * checks the RDS_MSG_HAS_ACK_SEQ bit.
673  */
674 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
675 			 is_acked_func is_acked)
676 {
677 	struct rds_message *rm, *tmp;
678 	unsigned long flags;
679 	LIST_HEAD(list);
680 
681 	spin_lock_irqsave(&conn->c_lock, flags);
682 
683 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
684 		if (!rds_send_is_acked(rm, ack, is_acked))
685 			break;
686 
687 		list_move(&rm->m_conn_item, &list);
688 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
689 	}
690 
691 	/* order flag updates with spin locks */
692 	if (!list_empty(&list))
693 		smp_mb__after_atomic();
694 
695 	spin_unlock_irqrestore(&conn->c_lock, flags);
696 
697 	/* now remove the messages from the sock list as needed */
698 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
699 }
700 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
701 
702 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
703 {
704 	struct rds_message *rm, *tmp;
705 	struct rds_connection *conn;
706 	unsigned long flags;
707 	LIST_HEAD(list);
708 
709 	/* get all the messages we're dropping under the rs lock */
710 	spin_lock_irqsave(&rs->rs_lock, flags);
711 
712 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
713 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
714 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
715 			continue;
716 
717 		list_move(&rm->m_sock_item, &list);
718 		rds_send_sndbuf_remove(rs, rm);
719 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
720 	}
721 
722 	/* order flag updates with the rs lock */
723 	smp_mb__after_atomic();
724 
725 	spin_unlock_irqrestore(&rs->rs_lock, flags);
726 
727 	if (list_empty(&list))
728 		return;
729 
730 	/* Remove the messages from the conn */
731 	list_for_each_entry(rm, &list, m_sock_item) {
732 
733 		conn = rm->m_inc.i_conn;
734 
735 		spin_lock_irqsave(&conn->c_lock, flags);
736 		/*
737 		 * Maybe someone else beat us to removing rm from the conn.
738 		 * If we race with their flag update we'll get the lock and
739 		 * then really see that the flag has been cleared.
740 		 */
741 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
742 			spin_unlock_irqrestore(&conn->c_lock, flags);
743 			spin_lock_irqsave(&rm->m_rs_lock, flags);
744 			rm->m_rs = NULL;
745 			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
746 			continue;
747 		}
748 		list_del_init(&rm->m_conn_item);
749 		spin_unlock_irqrestore(&conn->c_lock, flags);
750 
751 		/*
752 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
753 		 * but we can now.
754 		 */
755 		spin_lock_irqsave(&rm->m_rs_lock, flags);
756 
757 		spin_lock(&rs->rs_lock);
758 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
759 		spin_unlock(&rs->rs_lock);
760 
761 		rm->m_rs = NULL;
762 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
763 
764 		rds_message_put(rm);
765 	}
766 
767 	rds_wake_sk_sleep(rs);
768 
769 	while (!list_empty(&list)) {
770 		rm = list_entry(list.next, struct rds_message, m_sock_item);
771 		list_del_init(&rm->m_sock_item);
772 
773 		rds_message_wait(rm);
774 		rds_message_put(rm);
775 	}
776 }
777 
778 /*
779  * we only want this to fire once so we use the callers 'queued'.  It's
780  * possible that another thread can race with us and remove the
781  * message from the flow with RDS_CANCEL_SENT_TO.
782  */
783 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
784 			     struct rds_message *rm, __be16 sport,
785 			     __be16 dport, int *queued)
786 {
787 	unsigned long flags;
788 	u32 len;
789 
790 	if (*queued)
791 		goto out;
792 
793 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
794 
795 	/* this is the only place which holds both the socket's rs_lock
796 	 * and the connection's c_lock */
797 	spin_lock_irqsave(&rs->rs_lock, flags);
798 
799 	/*
800 	 * If there is a little space in sndbuf, we don't queue anything,
801 	 * and userspace gets -EAGAIN. But poll() indicates there's send
802 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
803 	 * freed up by incoming acks. So we check the *old* value of
804 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
805 	 * and poll() now knows no more data can be sent.
806 	 */
807 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
808 		rs->rs_snd_bytes += len;
809 
810 		/* let recv side know we are close to send space exhaustion.
811 		 * This is probably not the optimal way to do it, as this
812 		 * means we set the flag on *all* messages as soon as our
813 		 * throughput hits a certain threshold.
814 		 */
815 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
816 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
817 
818 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
819 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
820 		rds_message_addref(rm);
821 		rm->m_rs = rs;
822 
823 		/* The code ordering is a little weird, but we're
824 		   trying to minimize the time we hold c_lock */
825 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
826 		rm->m_inc.i_conn = conn;
827 		rds_message_addref(rm);
828 
829 		spin_lock(&conn->c_lock);
830 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
831 		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
832 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
833 		spin_unlock(&conn->c_lock);
834 
835 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
836 			 rm, len, rs, rs->rs_snd_bytes,
837 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
838 
839 		*queued = 1;
840 	}
841 
842 	spin_unlock_irqrestore(&rs->rs_lock, flags);
843 out:
844 	return *queued;
845 }
846 
847 /*
848  * rds_message is getting to be quite complicated, and we'd like to allocate
849  * it all in one go. This figures out how big it needs to be up front.
850  */
851 static int rds_rm_size(struct msghdr *msg, int data_len)
852 {
853 	struct cmsghdr *cmsg;
854 	int size = 0;
855 	int cmsg_groups = 0;
856 	int retval;
857 
858 	for_each_cmsghdr(cmsg, msg) {
859 		if (!CMSG_OK(msg, cmsg))
860 			return -EINVAL;
861 
862 		if (cmsg->cmsg_level != SOL_RDS)
863 			continue;
864 
865 		switch (cmsg->cmsg_type) {
866 		case RDS_CMSG_RDMA_ARGS:
867 			cmsg_groups |= 1;
868 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
869 			if (retval < 0)
870 				return retval;
871 			size += retval;
872 
873 			break;
874 
875 		case RDS_CMSG_RDMA_DEST:
876 		case RDS_CMSG_RDMA_MAP:
877 			cmsg_groups |= 2;
878 			/* these are valid but do no add any size */
879 			break;
880 
881 		case RDS_CMSG_ATOMIC_CSWP:
882 		case RDS_CMSG_ATOMIC_FADD:
883 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
884 		case RDS_CMSG_MASKED_ATOMIC_FADD:
885 			cmsg_groups |= 1;
886 			size += sizeof(struct scatterlist);
887 			break;
888 
889 		default:
890 			return -EINVAL;
891 		}
892 
893 	}
894 
895 	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
896 
897 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
898 	if (cmsg_groups == 3)
899 		return -EINVAL;
900 
901 	return size;
902 }
903 
904 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
905 			 struct msghdr *msg, int *allocated_mr)
906 {
907 	struct cmsghdr *cmsg;
908 	int ret = 0;
909 
910 	for_each_cmsghdr(cmsg, msg) {
911 		if (!CMSG_OK(msg, cmsg))
912 			return -EINVAL;
913 
914 		if (cmsg->cmsg_level != SOL_RDS)
915 			continue;
916 
917 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
918 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
919 		 */
920 		switch (cmsg->cmsg_type) {
921 		case RDS_CMSG_RDMA_ARGS:
922 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
923 			break;
924 
925 		case RDS_CMSG_RDMA_DEST:
926 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
927 			break;
928 
929 		case RDS_CMSG_RDMA_MAP:
930 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
931 			if (!ret)
932 				*allocated_mr = 1;
933 			break;
934 		case RDS_CMSG_ATOMIC_CSWP:
935 		case RDS_CMSG_ATOMIC_FADD:
936 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
937 		case RDS_CMSG_MASKED_ATOMIC_FADD:
938 			ret = rds_cmsg_atomic(rs, rm, cmsg);
939 			break;
940 
941 		default:
942 			return -EINVAL;
943 		}
944 
945 		if (ret)
946 			break;
947 	}
948 
949 	return ret;
950 }
951 
952 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
953 {
954 	struct sock *sk = sock->sk;
955 	struct rds_sock *rs = rds_sk_to_rs(sk);
956 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
957 	__be32 daddr;
958 	__be16 dport;
959 	struct rds_message *rm = NULL;
960 	struct rds_connection *conn;
961 	int ret = 0;
962 	int queued = 0, allocated_mr = 0;
963 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
964 	long timeo = sock_sndtimeo(sk, nonblock);
965 
966 	/* Mirror Linux UDP mirror of BSD error message compatibility */
967 	/* XXX: Perhaps MSG_MORE someday */
968 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
969 		ret = -EOPNOTSUPP;
970 		goto out;
971 	}
972 
973 	if (msg->msg_namelen) {
974 		/* XXX fail non-unicast destination IPs? */
975 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
976 			ret = -EINVAL;
977 			goto out;
978 		}
979 		daddr = usin->sin_addr.s_addr;
980 		dport = usin->sin_port;
981 	} else {
982 		/* We only care about consistency with ->connect() */
983 		lock_sock(sk);
984 		daddr = rs->rs_conn_addr;
985 		dport = rs->rs_conn_port;
986 		release_sock(sk);
987 	}
988 
989 	/* racing with another thread binding seems ok here */
990 	if (daddr == 0 || rs->rs_bound_addr == 0) {
991 		ret = -ENOTCONN; /* XXX not a great errno */
992 		goto out;
993 	}
994 
995 	/* size of rm including all sgs */
996 	ret = rds_rm_size(msg, payload_len);
997 	if (ret < 0)
998 		goto out;
999 
1000 	rm = rds_message_alloc(ret, GFP_KERNEL);
1001 	if (!rm) {
1002 		ret = -ENOMEM;
1003 		goto out;
1004 	}
1005 
1006 	/* Attach data to the rm */
1007 	if (payload_len) {
1008 		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1009 		if (!rm->data.op_sg) {
1010 			ret = -ENOMEM;
1011 			goto out;
1012 		}
1013 		ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1014 		if (ret)
1015 			goto out;
1016 	}
1017 	rm->data.op_active = 1;
1018 
1019 	rm->m_daddr = daddr;
1020 
1021 	/* rds_conn_create has a spinlock that runs with IRQ off.
1022 	 * Caching the conn in the socket helps a lot. */
1023 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1024 		conn = rs->rs_conn;
1025 	else {
1026 		conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
1027 					rs->rs_transport,
1028 					sock->sk->sk_allocation);
1029 		if (IS_ERR(conn)) {
1030 			ret = PTR_ERR(conn);
1031 			goto out;
1032 		}
1033 		rs->rs_conn = conn;
1034 	}
1035 
1036 	/* Parse any control messages the user may have included. */
1037 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1038 	if (ret)
1039 		goto out;
1040 
1041 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1042 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1043 			       &rm->rdma, conn->c_trans->xmit_rdma);
1044 		ret = -EOPNOTSUPP;
1045 		goto out;
1046 	}
1047 
1048 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1049 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1050 			       &rm->atomic, conn->c_trans->xmit_atomic);
1051 		ret = -EOPNOTSUPP;
1052 		goto out;
1053 	}
1054 
1055 	rds_conn_connect_if_down(conn);
1056 
1057 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1058 	if (ret) {
1059 		rs->rs_seen_congestion = 1;
1060 		goto out;
1061 	}
1062 
1063 	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1064 				  dport, &queued)) {
1065 		rds_stats_inc(s_send_queue_full);
1066 		/* XXX make sure this is reasonable */
1067 		if (payload_len > rds_sk_sndbuf(rs)) {
1068 			ret = -EMSGSIZE;
1069 			goto out;
1070 		}
1071 		if (nonblock) {
1072 			ret = -EAGAIN;
1073 			goto out;
1074 		}
1075 
1076 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1077 					rds_send_queue_rm(rs, conn, rm,
1078 							  rs->rs_bound_port,
1079 							  dport,
1080 							  &queued),
1081 					timeo);
1082 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1083 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1084 			continue;
1085 
1086 		ret = timeo;
1087 		if (ret == 0)
1088 			ret = -ETIMEDOUT;
1089 		goto out;
1090 	}
1091 
1092 	/*
1093 	 * By now we've committed to the send.  We reuse rds_send_worker()
1094 	 * to retry sends in the rds thread if the transport asks us to.
1095 	 */
1096 	rds_stats_inc(s_send_queued);
1097 
1098 	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1099 		rds_send_xmit(conn);
1100 
1101 	rds_message_put(rm);
1102 	return payload_len;
1103 
1104 out:
1105 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1106 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1107 	 * or in any other way, we need to destroy the MR again */
1108 	if (allocated_mr)
1109 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1110 
1111 	if (rm)
1112 		rds_message_put(rm);
1113 	return ret;
1114 }
1115 
1116 /*
1117  * Reply to a ping packet.
1118  */
1119 int
1120 rds_send_pong(struct rds_connection *conn, __be16 dport)
1121 {
1122 	struct rds_message *rm;
1123 	unsigned long flags;
1124 	int ret = 0;
1125 
1126 	rm = rds_message_alloc(0, GFP_ATOMIC);
1127 	if (!rm) {
1128 		ret = -ENOMEM;
1129 		goto out;
1130 	}
1131 
1132 	rm->m_daddr = conn->c_faddr;
1133 	rm->data.op_active = 1;
1134 
1135 	rds_conn_connect_if_down(conn);
1136 
1137 	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1138 	if (ret)
1139 		goto out;
1140 
1141 	spin_lock_irqsave(&conn->c_lock, flags);
1142 	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1143 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1144 	rds_message_addref(rm);
1145 	rm->m_inc.i_conn = conn;
1146 
1147 	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1148 				    conn->c_next_tx_seq);
1149 	conn->c_next_tx_seq++;
1150 	spin_unlock_irqrestore(&conn->c_lock, flags);
1151 
1152 	rds_stats_inc(s_send_queued);
1153 	rds_stats_inc(s_send_pong);
1154 
1155 	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1156 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
1157 
1158 	rds_message_put(rm);
1159 	return 0;
1160 
1161 out:
1162 	if (rm)
1163 		rds_message_put(rm);
1164 	return ret;
1165 }
1166