1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/moduleparam.h> 35 #include <linux/gfp.h> 36 #include <net/sock.h> 37 #include <linux/in.h> 38 #include <linux/list.h> 39 #include <linux/ratelimit.h> 40 #include <linux/export.h> 41 #include <linux/sizes.h> 42 43 #include "rds.h" 44 45 /* When transmitting messages in rds_send_xmit, we need to emerge from 46 * time to time and briefly release the CPU. Otherwise the softlock watchdog 47 * will kick our shin. 48 * Also, it seems fairer to not let one busy connection stall all the 49 * others. 50 * 51 * send_batch_count is the number of times we'll loop in send_xmit. Setting 52 * it to 0 will restore the old behavior (where we looped until we had 53 * drained the queue). 54 */ 55 static int send_batch_count = SZ_1K; 56 module_param(send_batch_count, int, 0444); 57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); 58 59 static void rds_send_remove_from_sock(struct list_head *messages, int status); 60 61 /* 62 * Reset the send state. Callers must ensure that this doesn't race with 63 * rds_send_xmit(). 64 */ 65 void rds_send_path_reset(struct rds_conn_path *cp) 66 { 67 struct rds_message *rm, *tmp; 68 unsigned long flags; 69 70 if (cp->cp_xmit_rm) { 71 rm = cp->cp_xmit_rm; 72 cp->cp_xmit_rm = NULL; 73 /* Tell the user the RDMA op is no longer mapped by the 74 * transport. This isn't entirely true (it's flushed out 75 * independently) but as the connection is down, there's 76 * no ongoing RDMA to/from that memory */ 77 rds_message_unmapped(rm); 78 rds_message_put(rm); 79 } 80 81 cp->cp_xmit_sg = 0; 82 cp->cp_xmit_hdr_off = 0; 83 cp->cp_xmit_data_off = 0; 84 cp->cp_xmit_atomic_sent = 0; 85 cp->cp_xmit_rdma_sent = 0; 86 cp->cp_xmit_data_sent = 0; 87 88 cp->cp_conn->c_map_queued = 0; 89 90 cp->cp_unacked_packets = rds_sysctl_max_unacked_packets; 91 cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes; 92 93 /* Mark messages as retransmissions, and move them to the send q */ 94 spin_lock_irqsave(&cp->cp_lock, flags); 95 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { 96 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 97 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); 98 } 99 list_splice_init(&cp->cp_retrans, &cp->cp_send_queue); 100 spin_unlock_irqrestore(&cp->cp_lock, flags); 101 } 102 EXPORT_SYMBOL_GPL(rds_send_path_reset); 103 104 static int acquire_in_xmit(struct rds_conn_path *cp) 105 { 106 return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0; 107 } 108 109 static void release_in_xmit(struct rds_conn_path *cp) 110 { 111 clear_bit(RDS_IN_XMIT, &cp->cp_flags); 112 smp_mb__after_atomic(); 113 /* 114 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a 115 * hot path and finding waiters is very rare. We don't want to walk 116 * the system-wide hashed waitqueue buckets in the fast path only to 117 * almost never find waiters. 118 */ 119 if (waitqueue_active(&cp->cp_waitq)) 120 wake_up_all(&cp->cp_waitq); 121 } 122 123 /* 124 * We're making the conscious trade-off here to only send one message 125 * down the connection at a time. 126 * Pro: 127 * - tx queueing is a simple fifo list 128 * - reassembly is optional and easily done by transports per conn 129 * - no per flow rx lookup at all, straight to the socket 130 * - less per-frag memory and wire overhead 131 * Con: 132 * - queued acks can be delayed behind large messages 133 * Depends: 134 * - small message latency is higher behind queued large messages 135 * - large message latency isn't starved by intervening small sends 136 */ 137 int rds_send_xmit(struct rds_conn_path *cp) 138 { 139 struct rds_connection *conn = cp->cp_conn; 140 struct rds_message *rm; 141 unsigned long flags; 142 unsigned int tmp; 143 struct scatterlist *sg; 144 int ret = 0; 145 LIST_HEAD(to_be_dropped); 146 int batch_count; 147 unsigned long send_gen = 0; 148 149 restart: 150 batch_count = 0; 151 152 /* 153 * sendmsg calls here after having queued its message on the send 154 * queue. We only have one task feeding the connection at a time. If 155 * another thread is already feeding the queue then we back off. This 156 * avoids blocking the caller and trading per-connection data between 157 * caches per message. 158 */ 159 if (!acquire_in_xmit(cp)) { 160 rds_stats_inc(s_send_lock_contention); 161 ret = -ENOMEM; 162 goto out; 163 } 164 165 /* 166 * we record the send generation after doing the xmit acquire. 167 * if someone else manages to jump in and do some work, we'll use 168 * this to avoid a goto restart farther down. 169 * 170 * The acquire_in_xmit() check above ensures that only one 171 * caller can increment c_send_gen at any time. 172 */ 173 cp->cp_send_gen++; 174 send_gen = cp->cp_send_gen; 175 176 /* 177 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT, 178 * we do the opposite to avoid races. 179 */ 180 if (!rds_conn_path_up(cp)) { 181 release_in_xmit(cp); 182 ret = 0; 183 goto out; 184 } 185 186 if (conn->c_trans->xmit_path_prepare) 187 conn->c_trans->xmit_path_prepare(cp); 188 189 /* 190 * spin trying to push headers and data down the connection until 191 * the connection doesn't make forward progress. 192 */ 193 while (1) { 194 195 rm = cp->cp_xmit_rm; 196 197 /* 198 * If between sending messages, we can send a pending congestion 199 * map update. 200 */ 201 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { 202 rm = rds_cong_update_alloc(conn); 203 if (IS_ERR(rm)) { 204 ret = PTR_ERR(rm); 205 break; 206 } 207 rm->data.op_active = 1; 208 rm->m_inc.i_conn_path = cp; 209 rm->m_inc.i_conn = cp->cp_conn; 210 211 cp->cp_xmit_rm = rm; 212 } 213 214 /* 215 * If not already working on one, grab the next message. 216 * 217 * cp_xmit_rm holds a ref while we're sending this message down 218 * the connction. We can use this ref while holding the 219 * send_sem.. rds_send_reset() is serialized with it. 220 */ 221 if (!rm) { 222 unsigned int len; 223 224 batch_count++; 225 226 /* we want to process as big a batch as we can, but 227 * we also want to avoid softlockups. If we've been 228 * through a lot of messages, lets back off and see 229 * if anyone else jumps in 230 */ 231 if (batch_count >= send_batch_count) 232 goto over_batch; 233 234 spin_lock_irqsave(&cp->cp_lock, flags); 235 236 if (!list_empty(&cp->cp_send_queue)) { 237 rm = list_entry(cp->cp_send_queue.next, 238 struct rds_message, 239 m_conn_item); 240 rds_message_addref(rm); 241 242 /* 243 * Move the message from the send queue to the retransmit 244 * list right away. 245 */ 246 list_move_tail(&rm->m_conn_item, 247 &cp->cp_retrans); 248 } 249 250 spin_unlock_irqrestore(&cp->cp_lock, flags); 251 252 if (!rm) 253 break; 254 255 /* Unfortunately, the way Infiniband deals with 256 * RDMA to a bad MR key is by moving the entire 257 * queue pair to error state. We cold possibly 258 * recover from that, but right now we drop the 259 * connection. 260 * Therefore, we never retransmit messages with RDMA ops. 261 */ 262 if (rm->rdma.op_active && 263 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) { 264 spin_lock_irqsave(&cp->cp_lock, flags); 265 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) 266 list_move(&rm->m_conn_item, &to_be_dropped); 267 spin_unlock_irqrestore(&cp->cp_lock, flags); 268 continue; 269 } 270 271 /* Require an ACK every once in a while */ 272 len = ntohl(rm->m_inc.i_hdr.h_len); 273 if (cp->cp_unacked_packets == 0 || 274 cp->cp_unacked_bytes < len) { 275 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 276 277 cp->cp_unacked_packets = 278 rds_sysctl_max_unacked_packets; 279 cp->cp_unacked_bytes = 280 rds_sysctl_max_unacked_bytes; 281 rds_stats_inc(s_send_ack_required); 282 } else { 283 cp->cp_unacked_bytes -= len; 284 cp->cp_unacked_packets--; 285 } 286 287 cp->cp_xmit_rm = rm; 288 } 289 290 /* The transport either sends the whole rdma or none of it */ 291 if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) { 292 rm->m_final_op = &rm->rdma; 293 /* The transport owns the mapped memory for now. 294 * You can't unmap it while it's on the send queue 295 */ 296 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 297 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma); 298 if (ret) { 299 clear_bit(RDS_MSG_MAPPED, &rm->m_flags); 300 wake_up_interruptible(&rm->m_flush_wait); 301 break; 302 } 303 cp->cp_xmit_rdma_sent = 1; 304 305 } 306 307 if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) { 308 rm->m_final_op = &rm->atomic; 309 /* The transport owns the mapped memory for now. 310 * You can't unmap it while it's on the send queue 311 */ 312 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 313 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic); 314 if (ret) { 315 clear_bit(RDS_MSG_MAPPED, &rm->m_flags); 316 wake_up_interruptible(&rm->m_flush_wait); 317 break; 318 } 319 cp->cp_xmit_atomic_sent = 1; 320 321 } 322 323 /* 324 * A number of cases require an RDS header to be sent 325 * even if there is no data. 326 * We permit 0-byte sends; rds-ping depends on this. 327 * However, if there are exclusively attached silent ops, 328 * we skip the hdr/data send, to enable silent operation. 329 */ 330 if (rm->data.op_nents == 0) { 331 int ops_present; 332 int all_ops_are_silent = 1; 333 334 ops_present = (rm->atomic.op_active || rm->rdma.op_active); 335 if (rm->atomic.op_active && !rm->atomic.op_silent) 336 all_ops_are_silent = 0; 337 if (rm->rdma.op_active && !rm->rdma.op_silent) 338 all_ops_are_silent = 0; 339 340 if (ops_present && all_ops_are_silent 341 && !rm->m_rdma_cookie) 342 rm->data.op_active = 0; 343 } 344 345 if (rm->data.op_active && !cp->cp_xmit_data_sent) { 346 rm->m_final_op = &rm->data; 347 348 ret = conn->c_trans->xmit(conn, rm, 349 cp->cp_xmit_hdr_off, 350 cp->cp_xmit_sg, 351 cp->cp_xmit_data_off); 352 if (ret <= 0) 353 break; 354 355 if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) { 356 tmp = min_t(int, ret, 357 sizeof(struct rds_header) - 358 cp->cp_xmit_hdr_off); 359 cp->cp_xmit_hdr_off += tmp; 360 ret -= tmp; 361 } 362 363 sg = &rm->data.op_sg[cp->cp_xmit_sg]; 364 while (ret) { 365 tmp = min_t(int, ret, sg->length - 366 cp->cp_xmit_data_off); 367 cp->cp_xmit_data_off += tmp; 368 ret -= tmp; 369 if (cp->cp_xmit_data_off == sg->length) { 370 cp->cp_xmit_data_off = 0; 371 sg++; 372 cp->cp_xmit_sg++; 373 BUG_ON(ret != 0 && cp->cp_xmit_sg == 374 rm->data.op_nents); 375 } 376 } 377 378 if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) && 379 (cp->cp_xmit_sg == rm->data.op_nents)) 380 cp->cp_xmit_data_sent = 1; 381 } 382 383 /* 384 * A rm will only take multiple times through this loop 385 * if there is a data op. Thus, if the data is sent (or there was 386 * none), then we're done with the rm. 387 */ 388 if (!rm->data.op_active || cp->cp_xmit_data_sent) { 389 cp->cp_xmit_rm = NULL; 390 cp->cp_xmit_sg = 0; 391 cp->cp_xmit_hdr_off = 0; 392 cp->cp_xmit_data_off = 0; 393 cp->cp_xmit_rdma_sent = 0; 394 cp->cp_xmit_atomic_sent = 0; 395 cp->cp_xmit_data_sent = 0; 396 397 rds_message_put(rm); 398 } 399 } 400 401 over_batch: 402 if (conn->c_trans->xmit_path_complete) 403 conn->c_trans->xmit_path_complete(cp); 404 release_in_xmit(cp); 405 406 /* Nuke any messages we decided not to retransmit. */ 407 if (!list_empty(&to_be_dropped)) { 408 /* irqs on here, so we can put(), unlike above */ 409 list_for_each_entry(rm, &to_be_dropped, m_conn_item) 410 rds_message_put(rm); 411 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); 412 } 413 414 /* 415 * Other senders can queue a message after we last test the send queue 416 * but before we clear RDS_IN_XMIT. In that case they'd back off and 417 * not try and send their newly queued message. We need to check the 418 * send queue after having cleared RDS_IN_XMIT so that their message 419 * doesn't get stuck on the send queue. 420 * 421 * If the transport cannot continue (i.e ret != 0), then it must 422 * call us when more room is available, such as from the tx 423 * completion handler. 424 * 425 * We have an extra generation check here so that if someone manages 426 * to jump in after our release_in_xmit, we'll see that they have done 427 * some work and we will skip our goto 428 */ 429 if (ret == 0) { 430 smp_mb(); 431 if ((test_bit(0, &conn->c_map_queued) || 432 !list_empty(&cp->cp_send_queue)) && 433 send_gen == cp->cp_send_gen) { 434 rds_stats_inc(s_send_lock_queue_raced); 435 if (batch_count < send_batch_count) 436 goto restart; 437 queue_delayed_work(rds_wq, &cp->cp_send_w, 1); 438 } 439 } 440 out: 441 return ret; 442 } 443 EXPORT_SYMBOL_GPL(rds_send_xmit); 444 445 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) 446 { 447 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 448 449 assert_spin_locked(&rs->rs_lock); 450 451 BUG_ON(rs->rs_snd_bytes < len); 452 rs->rs_snd_bytes -= len; 453 454 if (rs->rs_snd_bytes == 0) 455 rds_stats_inc(s_send_queue_empty); 456 } 457 458 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, 459 is_acked_func is_acked) 460 { 461 if (is_acked) 462 return is_acked(rm, ack); 463 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; 464 } 465 466 /* 467 * This is pretty similar to what happens below in the ACK 468 * handling code - except that we call here as soon as we get 469 * the IB send completion on the RDMA op and the accompanying 470 * message. 471 */ 472 void rds_rdma_send_complete(struct rds_message *rm, int status) 473 { 474 struct rds_sock *rs = NULL; 475 struct rm_rdma_op *ro; 476 struct rds_notifier *notifier; 477 unsigned long flags; 478 479 spin_lock_irqsave(&rm->m_rs_lock, flags); 480 481 ro = &rm->rdma; 482 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && 483 ro->op_active && ro->op_notify && ro->op_notifier) { 484 notifier = ro->op_notifier; 485 rs = rm->m_rs; 486 sock_hold(rds_rs_to_sk(rs)); 487 488 notifier->n_status = status; 489 spin_lock(&rs->rs_lock); 490 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 491 spin_unlock(&rs->rs_lock); 492 493 ro->op_notifier = NULL; 494 } 495 496 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 497 498 if (rs) { 499 rds_wake_sk_sleep(rs); 500 sock_put(rds_rs_to_sk(rs)); 501 } 502 } 503 EXPORT_SYMBOL_GPL(rds_rdma_send_complete); 504 505 /* 506 * Just like above, except looks at atomic op 507 */ 508 void rds_atomic_send_complete(struct rds_message *rm, int status) 509 { 510 struct rds_sock *rs = NULL; 511 struct rm_atomic_op *ao; 512 struct rds_notifier *notifier; 513 unsigned long flags; 514 515 spin_lock_irqsave(&rm->m_rs_lock, flags); 516 517 ao = &rm->atomic; 518 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) 519 && ao->op_active && ao->op_notify && ao->op_notifier) { 520 notifier = ao->op_notifier; 521 rs = rm->m_rs; 522 sock_hold(rds_rs_to_sk(rs)); 523 524 notifier->n_status = status; 525 spin_lock(&rs->rs_lock); 526 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 527 spin_unlock(&rs->rs_lock); 528 529 ao->op_notifier = NULL; 530 } 531 532 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 533 534 if (rs) { 535 rds_wake_sk_sleep(rs); 536 sock_put(rds_rs_to_sk(rs)); 537 } 538 } 539 EXPORT_SYMBOL_GPL(rds_atomic_send_complete); 540 541 /* 542 * This is the same as rds_rdma_send_complete except we 543 * don't do any locking - we have all the ingredients (message, 544 * socket, socket lock) and can just move the notifier. 545 */ 546 static inline void 547 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) 548 { 549 struct rm_rdma_op *ro; 550 struct rm_atomic_op *ao; 551 552 ro = &rm->rdma; 553 if (ro->op_active && ro->op_notify && ro->op_notifier) { 554 ro->op_notifier->n_status = status; 555 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue); 556 ro->op_notifier = NULL; 557 } 558 559 ao = &rm->atomic; 560 if (ao->op_active && ao->op_notify && ao->op_notifier) { 561 ao->op_notifier->n_status = status; 562 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue); 563 ao->op_notifier = NULL; 564 } 565 566 /* No need to wake the app - caller does this */ 567 } 568 569 /* 570 * This removes messages from the socket's list if they're on it. The list 571 * argument must be private to the caller, we must be able to modify it 572 * without locks. The messages must have a reference held for their 573 * position on the list. This function will drop that reference after 574 * removing the messages from the 'messages' list regardless of if it found 575 * the messages on the socket list or not. 576 */ 577 static void rds_send_remove_from_sock(struct list_head *messages, int status) 578 { 579 unsigned long flags; 580 struct rds_sock *rs = NULL; 581 struct rds_message *rm; 582 583 while (!list_empty(messages)) { 584 int was_on_sock = 0; 585 586 rm = list_entry(messages->next, struct rds_message, 587 m_conn_item); 588 list_del_init(&rm->m_conn_item); 589 590 /* 591 * If we see this flag cleared then we're *sure* that someone 592 * else beat us to removing it from the sock. If we race 593 * with their flag update we'll get the lock and then really 594 * see that the flag has been cleared. 595 * 596 * The message spinlock makes sure nobody clears rm->m_rs 597 * while we're messing with it. It does not prevent the 598 * message from being removed from the socket, though. 599 */ 600 spin_lock_irqsave(&rm->m_rs_lock, flags); 601 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) 602 goto unlock_and_drop; 603 604 if (rs != rm->m_rs) { 605 if (rs) { 606 rds_wake_sk_sleep(rs); 607 sock_put(rds_rs_to_sk(rs)); 608 } 609 rs = rm->m_rs; 610 if (rs) 611 sock_hold(rds_rs_to_sk(rs)); 612 } 613 if (!rs) 614 goto unlock_and_drop; 615 spin_lock(&rs->rs_lock); 616 617 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { 618 struct rm_rdma_op *ro = &rm->rdma; 619 struct rds_notifier *notifier; 620 621 list_del_init(&rm->m_sock_item); 622 rds_send_sndbuf_remove(rs, rm); 623 624 if (ro->op_active && ro->op_notifier && 625 (ro->op_notify || (ro->op_recverr && status))) { 626 notifier = ro->op_notifier; 627 list_add_tail(¬ifier->n_list, 628 &rs->rs_notify_queue); 629 if (!notifier->n_status) 630 notifier->n_status = status; 631 rm->rdma.op_notifier = NULL; 632 } 633 was_on_sock = 1; 634 rm->m_rs = NULL; 635 } 636 spin_unlock(&rs->rs_lock); 637 638 unlock_and_drop: 639 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 640 rds_message_put(rm); 641 if (was_on_sock) 642 rds_message_put(rm); 643 } 644 645 if (rs) { 646 rds_wake_sk_sleep(rs); 647 sock_put(rds_rs_to_sk(rs)); 648 } 649 } 650 651 /* 652 * Transports call here when they've determined that the receiver queued 653 * messages up to, and including, the given sequence number. Messages are 654 * moved to the retrans queue when rds_send_xmit picks them off the send 655 * queue. This means that in the TCP case, the message may not have been 656 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked 657 * checks the RDS_MSG_HAS_ACK_SEQ bit. 658 */ 659 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack, 660 is_acked_func is_acked) 661 { 662 struct rds_message *rm, *tmp; 663 unsigned long flags; 664 LIST_HEAD(list); 665 666 spin_lock_irqsave(&cp->cp_lock, flags); 667 668 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { 669 if (!rds_send_is_acked(rm, ack, is_acked)) 670 break; 671 672 list_move(&rm->m_conn_item, &list); 673 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); 674 } 675 676 /* order flag updates with spin locks */ 677 if (!list_empty(&list)) 678 smp_mb__after_atomic(); 679 680 spin_unlock_irqrestore(&cp->cp_lock, flags); 681 682 /* now remove the messages from the sock list as needed */ 683 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); 684 } 685 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked); 686 687 void rds_send_drop_acked(struct rds_connection *conn, u64 ack, 688 is_acked_func is_acked) 689 { 690 WARN_ON(conn->c_trans->t_mp_capable); 691 rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked); 692 } 693 EXPORT_SYMBOL_GPL(rds_send_drop_acked); 694 695 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest) 696 { 697 struct rds_message *rm, *tmp; 698 struct rds_connection *conn; 699 struct rds_conn_path *cp; 700 unsigned long flags; 701 LIST_HEAD(list); 702 703 /* get all the messages we're dropping under the rs lock */ 704 spin_lock_irqsave(&rs->rs_lock, flags); 705 706 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { 707 if (dest && (dest->sin_addr.s_addr != rm->m_daddr || 708 dest->sin_port != rm->m_inc.i_hdr.h_dport)) 709 continue; 710 711 list_move(&rm->m_sock_item, &list); 712 rds_send_sndbuf_remove(rs, rm); 713 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 714 } 715 716 /* order flag updates with the rs lock */ 717 smp_mb__after_atomic(); 718 719 spin_unlock_irqrestore(&rs->rs_lock, flags); 720 721 if (list_empty(&list)) 722 return; 723 724 /* Remove the messages from the conn */ 725 list_for_each_entry(rm, &list, m_sock_item) { 726 727 conn = rm->m_inc.i_conn; 728 if (conn->c_trans->t_mp_capable) 729 cp = rm->m_inc.i_conn_path; 730 else 731 cp = &conn->c_path[0]; 732 733 spin_lock_irqsave(&cp->cp_lock, flags); 734 /* 735 * Maybe someone else beat us to removing rm from the conn. 736 * If we race with their flag update we'll get the lock and 737 * then really see that the flag has been cleared. 738 */ 739 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { 740 spin_unlock_irqrestore(&cp->cp_lock, flags); 741 spin_lock_irqsave(&rm->m_rs_lock, flags); 742 rm->m_rs = NULL; 743 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 744 continue; 745 } 746 list_del_init(&rm->m_conn_item); 747 spin_unlock_irqrestore(&cp->cp_lock, flags); 748 749 /* 750 * Couldn't grab m_rs_lock in top loop (lock ordering), 751 * but we can now. 752 */ 753 spin_lock_irqsave(&rm->m_rs_lock, flags); 754 755 spin_lock(&rs->rs_lock); 756 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 757 spin_unlock(&rs->rs_lock); 758 759 rm->m_rs = NULL; 760 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 761 762 rds_message_put(rm); 763 } 764 765 rds_wake_sk_sleep(rs); 766 767 while (!list_empty(&list)) { 768 rm = list_entry(list.next, struct rds_message, m_sock_item); 769 list_del_init(&rm->m_sock_item); 770 rds_message_wait(rm); 771 772 /* just in case the code above skipped this message 773 * because RDS_MSG_ON_CONN wasn't set, run it again here 774 * taking m_rs_lock is the only thing that keeps us 775 * from racing with ack processing. 776 */ 777 spin_lock_irqsave(&rm->m_rs_lock, flags); 778 779 spin_lock(&rs->rs_lock); 780 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 781 spin_unlock(&rs->rs_lock); 782 783 rm->m_rs = NULL; 784 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 785 786 rds_message_put(rm); 787 } 788 } 789 790 /* 791 * we only want this to fire once so we use the callers 'queued'. It's 792 * possible that another thread can race with us and remove the 793 * message from the flow with RDS_CANCEL_SENT_TO. 794 */ 795 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, 796 struct rds_conn_path *cp, 797 struct rds_message *rm, __be16 sport, 798 __be16 dport, int *queued) 799 { 800 unsigned long flags; 801 u32 len; 802 803 if (*queued) 804 goto out; 805 806 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 807 808 /* this is the only place which holds both the socket's rs_lock 809 * and the connection's c_lock */ 810 spin_lock_irqsave(&rs->rs_lock, flags); 811 812 /* 813 * If there is a little space in sndbuf, we don't queue anything, 814 * and userspace gets -EAGAIN. But poll() indicates there's send 815 * room. This can lead to bad behavior (spinning) if snd_bytes isn't 816 * freed up by incoming acks. So we check the *old* value of 817 * rs_snd_bytes here to allow the last msg to exceed the buffer, 818 * and poll() now knows no more data can be sent. 819 */ 820 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { 821 rs->rs_snd_bytes += len; 822 823 /* let recv side know we are close to send space exhaustion. 824 * This is probably not the optimal way to do it, as this 825 * means we set the flag on *all* messages as soon as our 826 * throughput hits a certain threshold. 827 */ 828 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) 829 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 830 831 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); 832 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 833 rds_message_addref(rm); 834 rm->m_rs = rs; 835 836 /* The code ordering is a little weird, but we're 837 trying to minimize the time we hold c_lock */ 838 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); 839 rm->m_inc.i_conn = conn; 840 rm->m_inc.i_conn_path = cp; 841 rds_message_addref(rm); 842 843 spin_lock(&cp->cp_lock); 844 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++); 845 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); 846 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 847 spin_unlock(&cp->cp_lock); 848 849 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", 850 rm, len, rs, rs->rs_snd_bytes, 851 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); 852 853 *queued = 1; 854 } 855 856 spin_unlock_irqrestore(&rs->rs_lock, flags); 857 out: 858 return *queued; 859 } 860 861 /* 862 * rds_message is getting to be quite complicated, and we'd like to allocate 863 * it all in one go. This figures out how big it needs to be up front. 864 */ 865 static int rds_rm_size(struct msghdr *msg, int data_len) 866 { 867 struct cmsghdr *cmsg; 868 int size = 0; 869 int cmsg_groups = 0; 870 int retval; 871 872 for_each_cmsghdr(cmsg, msg) { 873 if (!CMSG_OK(msg, cmsg)) 874 return -EINVAL; 875 876 if (cmsg->cmsg_level != SOL_RDS) 877 continue; 878 879 switch (cmsg->cmsg_type) { 880 case RDS_CMSG_RDMA_ARGS: 881 cmsg_groups |= 1; 882 retval = rds_rdma_extra_size(CMSG_DATA(cmsg)); 883 if (retval < 0) 884 return retval; 885 size += retval; 886 887 break; 888 889 case RDS_CMSG_RDMA_DEST: 890 case RDS_CMSG_RDMA_MAP: 891 cmsg_groups |= 2; 892 /* these are valid but do no add any size */ 893 break; 894 895 case RDS_CMSG_ATOMIC_CSWP: 896 case RDS_CMSG_ATOMIC_FADD: 897 case RDS_CMSG_MASKED_ATOMIC_CSWP: 898 case RDS_CMSG_MASKED_ATOMIC_FADD: 899 cmsg_groups |= 1; 900 size += sizeof(struct scatterlist); 901 break; 902 903 default: 904 return -EINVAL; 905 } 906 907 } 908 909 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist); 910 911 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */ 912 if (cmsg_groups == 3) 913 return -EINVAL; 914 915 return size; 916 } 917 918 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, 919 struct msghdr *msg, int *allocated_mr) 920 { 921 struct cmsghdr *cmsg; 922 int ret = 0; 923 924 for_each_cmsghdr(cmsg, msg) { 925 if (!CMSG_OK(msg, cmsg)) 926 return -EINVAL; 927 928 if (cmsg->cmsg_level != SOL_RDS) 929 continue; 930 931 /* As a side effect, RDMA_DEST and RDMA_MAP will set 932 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr. 933 */ 934 switch (cmsg->cmsg_type) { 935 case RDS_CMSG_RDMA_ARGS: 936 ret = rds_cmsg_rdma_args(rs, rm, cmsg); 937 break; 938 939 case RDS_CMSG_RDMA_DEST: 940 ret = rds_cmsg_rdma_dest(rs, rm, cmsg); 941 break; 942 943 case RDS_CMSG_RDMA_MAP: 944 ret = rds_cmsg_rdma_map(rs, rm, cmsg); 945 if (!ret) 946 *allocated_mr = 1; 947 break; 948 case RDS_CMSG_ATOMIC_CSWP: 949 case RDS_CMSG_ATOMIC_FADD: 950 case RDS_CMSG_MASKED_ATOMIC_CSWP: 951 case RDS_CMSG_MASKED_ATOMIC_FADD: 952 ret = rds_cmsg_atomic(rs, rm, cmsg); 953 break; 954 955 default: 956 return -EINVAL; 957 } 958 959 if (ret) 960 break; 961 } 962 963 return ret; 964 } 965 966 static void rds_send_ping(struct rds_connection *conn); 967 968 static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn) 969 { 970 int hash; 971 972 if (conn->c_npaths == 0) 973 hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS); 974 else 975 hash = RDS_MPATH_HASH(rs, conn->c_npaths); 976 if (conn->c_npaths == 0 && hash != 0) { 977 rds_send_ping(conn); 978 979 if (conn->c_npaths == 0) { 980 wait_event_interruptible(conn->c_hs_waitq, 981 (conn->c_npaths != 0)); 982 } 983 if (conn->c_npaths == 1) 984 hash = 0; 985 } 986 return hash; 987 } 988 989 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len) 990 { 991 struct sock *sk = sock->sk; 992 struct rds_sock *rs = rds_sk_to_rs(sk); 993 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 994 __be32 daddr; 995 __be16 dport; 996 struct rds_message *rm = NULL; 997 struct rds_connection *conn; 998 int ret = 0; 999 int queued = 0, allocated_mr = 0; 1000 int nonblock = msg->msg_flags & MSG_DONTWAIT; 1001 long timeo = sock_sndtimeo(sk, nonblock); 1002 struct rds_conn_path *cpath; 1003 1004 /* Mirror Linux UDP mirror of BSD error message compatibility */ 1005 /* XXX: Perhaps MSG_MORE someday */ 1006 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) { 1007 ret = -EOPNOTSUPP; 1008 goto out; 1009 } 1010 1011 if (msg->msg_namelen) { 1012 /* XXX fail non-unicast destination IPs? */ 1013 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) { 1014 ret = -EINVAL; 1015 goto out; 1016 } 1017 daddr = usin->sin_addr.s_addr; 1018 dport = usin->sin_port; 1019 } else { 1020 /* We only care about consistency with ->connect() */ 1021 lock_sock(sk); 1022 daddr = rs->rs_conn_addr; 1023 dport = rs->rs_conn_port; 1024 release_sock(sk); 1025 } 1026 1027 lock_sock(sk); 1028 if (daddr == 0 || rs->rs_bound_addr == 0) { 1029 release_sock(sk); 1030 ret = -ENOTCONN; /* XXX not a great errno */ 1031 goto out; 1032 } 1033 release_sock(sk); 1034 1035 if (payload_len > rds_sk_sndbuf(rs)) { 1036 ret = -EMSGSIZE; 1037 goto out; 1038 } 1039 1040 /* size of rm including all sgs */ 1041 ret = rds_rm_size(msg, payload_len); 1042 if (ret < 0) 1043 goto out; 1044 1045 rm = rds_message_alloc(ret, GFP_KERNEL); 1046 if (!rm) { 1047 ret = -ENOMEM; 1048 goto out; 1049 } 1050 1051 /* Attach data to the rm */ 1052 if (payload_len) { 1053 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE)); 1054 if (!rm->data.op_sg) { 1055 ret = -ENOMEM; 1056 goto out; 1057 } 1058 ret = rds_message_copy_from_user(rm, &msg->msg_iter); 1059 if (ret) 1060 goto out; 1061 } 1062 rm->data.op_active = 1; 1063 1064 rm->m_daddr = daddr; 1065 1066 /* rds_conn_create has a spinlock that runs with IRQ off. 1067 * Caching the conn in the socket helps a lot. */ 1068 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr) 1069 conn = rs->rs_conn; 1070 else { 1071 conn = rds_conn_create_outgoing(sock_net(sock->sk), 1072 rs->rs_bound_addr, daddr, 1073 rs->rs_transport, 1074 sock->sk->sk_allocation); 1075 if (IS_ERR(conn)) { 1076 ret = PTR_ERR(conn); 1077 goto out; 1078 } 1079 rs->rs_conn = conn; 1080 } 1081 1082 /* Parse any control messages the user may have included. */ 1083 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr); 1084 if (ret) 1085 goto out; 1086 1087 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) { 1088 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", 1089 &rm->rdma, conn->c_trans->xmit_rdma); 1090 ret = -EOPNOTSUPP; 1091 goto out; 1092 } 1093 1094 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) { 1095 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n", 1096 &rm->atomic, conn->c_trans->xmit_atomic); 1097 ret = -EOPNOTSUPP; 1098 goto out; 1099 } 1100 1101 if (conn->c_trans->t_mp_capable) 1102 cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)]; 1103 else 1104 cpath = &conn->c_path[0]; 1105 1106 rds_conn_path_connect_if_down(cpath); 1107 1108 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); 1109 if (ret) { 1110 rs->rs_seen_congestion = 1; 1111 goto out; 1112 } 1113 while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port, 1114 dport, &queued)) { 1115 rds_stats_inc(s_send_queue_full); 1116 1117 if (nonblock) { 1118 ret = -EAGAIN; 1119 goto out; 1120 } 1121 1122 timeo = wait_event_interruptible_timeout(*sk_sleep(sk), 1123 rds_send_queue_rm(rs, conn, cpath, rm, 1124 rs->rs_bound_port, 1125 dport, 1126 &queued), 1127 timeo); 1128 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); 1129 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) 1130 continue; 1131 1132 ret = timeo; 1133 if (ret == 0) 1134 ret = -ETIMEDOUT; 1135 goto out; 1136 } 1137 1138 /* 1139 * By now we've committed to the send. We reuse rds_send_worker() 1140 * to retry sends in the rds thread if the transport asks us to. 1141 */ 1142 rds_stats_inc(s_send_queued); 1143 1144 ret = rds_send_xmit(cpath); 1145 if (ret == -ENOMEM || ret == -EAGAIN) 1146 queue_delayed_work(rds_wq, &cpath->cp_send_w, 1); 1147 1148 rds_message_put(rm); 1149 return payload_len; 1150 1151 out: 1152 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. 1153 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN 1154 * or in any other way, we need to destroy the MR again */ 1155 if (allocated_mr) 1156 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); 1157 1158 if (rm) 1159 rds_message_put(rm); 1160 return ret; 1161 } 1162 1163 /* 1164 * send out a probe. Can be shared by rds_send_ping, 1165 * rds_send_pong, rds_send_hb. 1166 * rds_send_hb should use h_flags 1167 * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED 1168 * or 1169 * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED 1170 */ 1171 int 1172 rds_send_probe(struct rds_conn_path *cp, __be16 sport, 1173 __be16 dport, u8 h_flags) 1174 { 1175 struct rds_message *rm; 1176 unsigned long flags; 1177 int ret = 0; 1178 1179 rm = rds_message_alloc(0, GFP_ATOMIC); 1180 if (!rm) { 1181 ret = -ENOMEM; 1182 goto out; 1183 } 1184 1185 rm->m_daddr = cp->cp_conn->c_faddr; 1186 rm->data.op_active = 1; 1187 1188 rds_conn_path_connect_if_down(cp); 1189 1190 ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL); 1191 if (ret) 1192 goto out; 1193 1194 spin_lock_irqsave(&cp->cp_lock, flags); 1195 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); 1196 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 1197 rds_message_addref(rm); 1198 rm->m_inc.i_conn = cp->cp_conn; 1199 rm->m_inc.i_conn_path = cp; 1200 1201 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 1202 cp->cp_next_tx_seq); 1203 rm->m_inc.i_hdr.h_flags |= h_flags; 1204 cp->cp_next_tx_seq++; 1205 1206 if (RDS_HS_PROBE(sport, dport) && cp->cp_conn->c_trans->t_mp_capable) { 1207 u16 npaths = RDS_MPATH_WORKERS; 1208 1209 rds_message_add_extension(&rm->m_inc.i_hdr, 1210 RDS_EXTHDR_NPATHS, &npaths, 1211 sizeof(npaths)); 1212 } 1213 spin_unlock_irqrestore(&cp->cp_lock, flags); 1214 1215 rds_stats_inc(s_send_queued); 1216 rds_stats_inc(s_send_pong); 1217 1218 /* schedule the send work on rds_wq */ 1219 queue_delayed_work(rds_wq, &cp->cp_send_w, 1); 1220 1221 rds_message_put(rm); 1222 return 0; 1223 1224 out: 1225 if (rm) 1226 rds_message_put(rm); 1227 return ret; 1228 } 1229 1230 int 1231 rds_send_pong(struct rds_conn_path *cp, __be16 dport) 1232 { 1233 return rds_send_probe(cp, 0, dport, 0); 1234 } 1235 1236 void 1237 rds_send_ping(struct rds_connection *conn) 1238 { 1239 unsigned long flags; 1240 struct rds_conn_path *cp = &conn->c_path[0]; 1241 1242 spin_lock_irqsave(&cp->cp_lock, flags); 1243 if (conn->c_ping_triggered) { 1244 spin_unlock_irqrestore(&cp->cp_lock, flags); 1245 return; 1246 } 1247 conn->c_ping_triggered = 1; 1248 spin_unlock_irqrestore(&cp->cp_lock, flags); 1249 rds_send_probe(&conn->c_path[0], RDS_FLAG_PROBE_PORT, 0, 0); 1250 } 1251