xref: /openbmc/linux/net/rds/send.c (revision 293d5b43)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42 
43 #include "rds.h"
44 
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46  * time to time and briefly release the CPU. Otherwise the softlock watchdog
47  * will kick our shin.
48  * Also, it seems fairer to not let one busy connection stall all the
49  * others.
50  *
51  * send_batch_count is the number of times we'll loop in send_xmit. Setting
52  * it to 0 will restore the old behavior (where we looped until we had
53  * drained the queue).
54  */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58 
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60 
61 /*
62  * Reset the send state.  Callers must ensure that this doesn't race with
63  * rds_send_xmit().
64  */
65 void rds_send_path_reset(struct rds_conn_path *cp)
66 {
67 	struct rds_message *rm, *tmp;
68 	unsigned long flags;
69 
70 	if (cp->cp_xmit_rm) {
71 		rm = cp->cp_xmit_rm;
72 		cp->cp_xmit_rm = NULL;
73 		/* Tell the user the RDMA op is no longer mapped by the
74 		 * transport. This isn't entirely true (it's flushed out
75 		 * independently) but as the connection is down, there's
76 		 * no ongoing RDMA to/from that memory */
77 		rds_message_unmapped(rm);
78 		rds_message_put(rm);
79 	}
80 
81 	cp->cp_xmit_sg = 0;
82 	cp->cp_xmit_hdr_off = 0;
83 	cp->cp_xmit_data_off = 0;
84 	cp->cp_xmit_atomic_sent = 0;
85 	cp->cp_xmit_rdma_sent = 0;
86 	cp->cp_xmit_data_sent = 0;
87 
88 	cp->cp_conn->c_map_queued = 0;
89 
90 	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 
93 	/* Mark messages as retransmissions, and move them to the send q */
94 	spin_lock_irqsave(&cp->cp_lock, flags);
95 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 	}
99 	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 	spin_unlock_irqrestore(&cp->cp_lock, flags);
101 }
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
103 
104 static int acquire_in_xmit(struct rds_conn_path *cp)
105 {
106 	return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
107 }
108 
109 static void release_in_xmit(struct rds_conn_path *cp)
110 {
111 	clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 	smp_mb__after_atomic();
113 	/*
114 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 	 * hot path and finding waiters is very rare.  We don't want to walk
116 	 * the system-wide hashed waitqueue buckets in the fast path only to
117 	 * almost never find waiters.
118 	 */
119 	if (waitqueue_active(&cp->cp_waitq))
120 		wake_up_all(&cp->cp_waitq);
121 }
122 
123 /*
124  * We're making the conscious trade-off here to only send one message
125  * down the connection at a time.
126  *   Pro:
127  *      - tx queueing is a simple fifo list
128  *   	- reassembly is optional and easily done by transports per conn
129  *      - no per flow rx lookup at all, straight to the socket
130  *   	- less per-frag memory and wire overhead
131  *   Con:
132  *      - queued acks can be delayed behind large messages
133  *   Depends:
134  *      - small message latency is higher behind queued large messages
135  *      - large message latency isn't starved by intervening small sends
136  */
137 int rds_send_xmit(struct rds_conn_path *cp)
138 {
139 	struct rds_connection *conn = cp->cp_conn;
140 	struct rds_message *rm;
141 	unsigned long flags;
142 	unsigned int tmp;
143 	struct scatterlist *sg;
144 	int ret = 0;
145 	LIST_HEAD(to_be_dropped);
146 	int batch_count;
147 	unsigned long send_gen = 0;
148 
149 restart:
150 	batch_count = 0;
151 
152 	/*
153 	 * sendmsg calls here after having queued its message on the send
154 	 * queue.  We only have one task feeding the connection at a time.  If
155 	 * another thread is already feeding the queue then we back off.  This
156 	 * avoids blocking the caller and trading per-connection data between
157 	 * caches per message.
158 	 */
159 	if (!acquire_in_xmit(cp)) {
160 		rds_stats_inc(s_send_lock_contention);
161 		ret = -ENOMEM;
162 		goto out;
163 	}
164 
165 	/*
166 	 * we record the send generation after doing the xmit acquire.
167 	 * if someone else manages to jump in and do some work, we'll use
168 	 * this to avoid a goto restart farther down.
169 	 *
170 	 * The acquire_in_xmit() check above ensures that only one
171 	 * caller can increment c_send_gen at any time.
172 	 */
173 	cp->cp_send_gen++;
174 	send_gen = cp->cp_send_gen;
175 
176 	/*
177 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
178 	 * we do the opposite to avoid races.
179 	 */
180 	if (!rds_conn_path_up(cp)) {
181 		release_in_xmit(cp);
182 		ret = 0;
183 		goto out;
184 	}
185 
186 	if (conn->c_trans->xmit_path_prepare)
187 		conn->c_trans->xmit_path_prepare(cp);
188 
189 	/*
190 	 * spin trying to push headers and data down the connection until
191 	 * the connection doesn't make forward progress.
192 	 */
193 	while (1) {
194 
195 		rm = cp->cp_xmit_rm;
196 
197 		/*
198 		 * If between sending messages, we can send a pending congestion
199 		 * map update.
200 		 */
201 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
202 			rm = rds_cong_update_alloc(conn);
203 			if (IS_ERR(rm)) {
204 				ret = PTR_ERR(rm);
205 				break;
206 			}
207 			rm->data.op_active = 1;
208 			rm->m_inc.i_conn_path = cp;
209 			rm->m_inc.i_conn = cp->cp_conn;
210 
211 			cp->cp_xmit_rm = rm;
212 		}
213 
214 		/*
215 		 * If not already working on one, grab the next message.
216 		 *
217 		 * cp_xmit_rm holds a ref while we're sending this message down
218 		 * the connction.  We can use this ref while holding the
219 		 * send_sem.. rds_send_reset() is serialized with it.
220 		 */
221 		if (!rm) {
222 			unsigned int len;
223 
224 			batch_count++;
225 
226 			/* we want to process as big a batch as we can, but
227 			 * we also want to avoid softlockups.  If we've been
228 			 * through a lot of messages, lets back off and see
229 			 * if anyone else jumps in
230 			 */
231 			if (batch_count >= send_batch_count)
232 				goto over_batch;
233 
234 			spin_lock_irqsave(&cp->cp_lock, flags);
235 
236 			if (!list_empty(&cp->cp_send_queue)) {
237 				rm = list_entry(cp->cp_send_queue.next,
238 						struct rds_message,
239 						m_conn_item);
240 				rds_message_addref(rm);
241 
242 				/*
243 				 * Move the message from the send queue to the retransmit
244 				 * list right away.
245 				 */
246 				list_move_tail(&rm->m_conn_item,
247 					       &cp->cp_retrans);
248 			}
249 
250 			spin_unlock_irqrestore(&cp->cp_lock, flags);
251 
252 			if (!rm)
253 				break;
254 
255 			/* Unfortunately, the way Infiniband deals with
256 			 * RDMA to a bad MR key is by moving the entire
257 			 * queue pair to error state. We cold possibly
258 			 * recover from that, but right now we drop the
259 			 * connection.
260 			 * Therefore, we never retransmit messages with RDMA ops.
261 			 */
262 			if (rm->rdma.op_active &&
263 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
264 				spin_lock_irqsave(&cp->cp_lock, flags);
265 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
266 					list_move(&rm->m_conn_item, &to_be_dropped);
267 				spin_unlock_irqrestore(&cp->cp_lock, flags);
268 				continue;
269 			}
270 
271 			/* Require an ACK every once in a while */
272 			len = ntohl(rm->m_inc.i_hdr.h_len);
273 			if (cp->cp_unacked_packets == 0 ||
274 			    cp->cp_unacked_bytes < len) {
275 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
276 
277 				cp->cp_unacked_packets =
278 					rds_sysctl_max_unacked_packets;
279 				cp->cp_unacked_bytes =
280 					rds_sysctl_max_unacked_bytes;
281 				rds_stats_inc(s_send_ack_required);
282 			} else {
283 				cp->cp_unacked_bytes -= len;
284 				cp->cp_unacked_packets--;
285 			}
286 
287 			cp->cp_xmit_rm = rm;
288 		}
289 
290 		/* The transport either sends the whole rdma or none of it */
291 		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
292 			rm->m_final_op = &rm->rdma;
293 			/* The transport owns the mapped memory for now.
294 			 * You can't unmap it while it's on the send queue
295 			 */
296 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
297 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
298 			if (ret) {
299 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
300 				wake_up_interruptible(&rm->m_flush_wait);
301 				break;
302 			}
303 			cp->cp_xmit_rdma_sent = 1;
304 
305 		}
306 
307 		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
308 			rm->m_final_op = &rm->atomic;
309 			/* The transport owns the mapped memory for now.
310 			 * You can't unmap it while it's on the send queue
311 			 */
312 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
313 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
314 			if (ret) {
315 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
316 				wake_up_interruptible(&rm->m_flush_wait);
317 				break;
318 			}
319 			cp->cp_xmit_atomic_sent = 1;
320 
321 		}
322 
323 		/*
324 		 * A number of cases require an RDS header to be sent
325 		 * even if there is no data.
326 		 * We permit 0-byte sends; rds-ping depends on this.
327 		 * However, if there are exclusively attached silent ops,
328 		 * we skip the hdr/data send, to enable silent operation.
329 		 */
330 		if (rm->data.op_nents == 0) {
331 			int ops_present;
332 			int all_ops_are_silent = 1;
333 
334 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
335 			if (rm->atomic.op_active && !rm->atomic.op_silent)
336 				all_ops_are_silent = 0;
337 			if (rm->rdma.op_active && !rm->rdma.op_silent)
338 				all_ops_are_silent = 0;
339 
340 			if (ops_present && all_ops_are_silent
341 			    && !rm->m_rdma_cookie)
342 				rm->data.op_active = 0;
343 		}
344 
345 		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
346 			rm->m_final_op = &rm->data;
347 
348 			ret = conn->c_trans->xmit(conn, rm,
349 						  cp->cp_xmit_hdr_off,
350 						  cp->cp_xmit_sg,
351 						  cp->cp_xmit_data_off);
352 			if (ret <= 0)
353 				break;
354 
355 			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
356 				tmp = min_t(int, ret,
357 					    sizeof(struct rds_header) -
358 					    cp->cp_xmit_hdr_off);
359 				cp->cp_xmit_hdr_off += tmp;
360 				ret -= tmp;
361 			}
362 
363 			sg = &rm->data.op_sg[cp->cp_xmit_sg];
364 			while (ret) {
365 				tmp = min_t(int, ret, sg->length -
366 						      cp->cp_xmit_data_off);
367 				cp->cp_xmit_data_off += tmp;
368 				ret -= tmp;
369 				if (cp->cp_xmit_data_off == sg->length) {
370 					cp->cp_xmit_data_off = 0;
371 					sg++;
372 					cp->cp_xmit_sg++;
373 					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
374 					       rm->data.op_nents);
375 				}
376 			}
377 
378 			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
379 			    (cp->cp_xmit_sg == rm->data.op_nents))
380 				cp->cp_xmit_data_sent = 1;
381 		}
382 
383 		/*
384 		 * A rm will only take multiple times through this loop
385 		 * if there is a data op. Thus, if the data is sent (or there was
386 		 * none), then we're done with the rm.
387 		 */
388 		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
389 			cp->cp_xmit_rm = NULL;
390 			cp->cp_xmit_sg = 0;
391 			cp->cp_xmit_hdr_off = 0;
392 			cp->cp_xmit_data_off = 0;
393 			cp->cp_xmit_rdma_sent = 0;
394 			cp->cp_xmit_atomic_sent = 0;
395 			cp->cp_xmit_data_sent = 0;
396 
397 			rds_message_put(rm);
398 		}
399 	}
400 
401 over_batch:
402 	if (conn->c_trans->xmit_path_complete)
403 		conn->c_trans->xmit_path_complete(cp);
404 	release_in_xmit(cp);
405 
406 	/* Nuke any messages we decided not to retransmit. */
407 	if (!list_empty(&to_be_dropped)) {
408 		/* irqs on here, so we can put(), unlike above */
409 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
410 			rds_message_put(rm);
411 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
412 	}
413 
414 	/*
415 	 * Other senders can queue a message after we last test the send queue
416 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
417 	 * not try and send their newly queued message.  We need to check the
418 	 * send queue after having cleared RDS_IN_XMIT so that their message
419 	 * doesn't get stuck on the send queue.
420 	 *
421 	 * If the transport cannot continue (i.e ret != 0), then it must
422 	 * call us when more room is available, such as from the tx
423 	 * completion handler.
424 	 *
425 	 * We have an extra generation check here so that if someone manages
426 	 * to jump in after our release_in_xmit, we'll see that they have done
427 	 * some work and we will skip our goto
428 	 */
429 	if (ret == 0) {
430 		smp_mb();
431 		if ((test_bit(0, &conn->c_map_queued) ||
432 		     !list_empty(&cp->cp_send_queue)) &&
433 		    send_gen == cp->cp_send_gen) {
434 			rds_stats_inc(s_send_lock_queue_raced);
435 			if (batch_count < send_batch_count)
436 				goto restart;
437 			queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
438 		}
439 	}
440 out:
441 	return ret;
442 }
443 EXPORT_SYMBOL_GPL(rds_send_xmit);
444 
445 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
446 {
447 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
448 
449 	assert_spin_locked(&rs->rs_lock);
450 
451 	BUG_ON(rs->rs_snd_bytes < len);
452 	rs->rs_snd_bytes -= len;
453 
454 	if (rs->rs_snd_bytes == 0)
455 		rds_stats_inc(s_send_queue_empty);
456 }
457 
458 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
459 				    is_acked_func is_acked)
460 {
461 	if (is_acked)
462 		return is_acked(rm, ack);
463 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
464 }
465 
466 /*
467  * This is pretty similar to what happens below in the ACK
468  * handling code - except that we call here as soon as we get
469  * the IB send completion on the RDMA op and the accompanying
470  * message.
471  */
472 void rds_rdma_send_complete(struct rds_message *rm, int status)
473 {
474 	struct rds_sock *rs = NULL;
475 	struct rm_rdma_op *ro;
476 	struct rds_notifier *notifier;
477 	unsigned long flags;
478 
479 	spin_lock_irqsave(&rm->m_rs_lock, flags);
480 
481 	ro = &rm->rdma;
482 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
483 	    ro->op_active && ro->op_notify && ro->op_notifier) {
484 		notifier = ro->op_notifier;
485 		rs = rm->m_rs;
486 		sock_hold(rds_rs_to_sk(rs));
487 
488 		notifier->n_status = status;
489 		spin_lock(&rs->rs_lock);
490 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
491 		spin_unlock(&rs->rs_lock);
492 
493 		ro->op_notifier = NULL;
494 	}
495 
496 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
497 
498 	if (rs) {
499 		rds_wake_sk_sleep(rs);
500 		sock_put(rds_rs_to_sk(rs));
501 	}
502 }
503 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
504 
505 /*
506  * Just like above, except looks at atomic op
507  */
508 void rds_atomic_send_complete(struct rds_message *rm, int status)
509 {
510 	struct rds_sock *rs = NULL;
511 	struct rm_atomic_op *ao;
512 	struct rds_notifier *notifier;
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&rm->m_rs_lock, flags);
516 
517 	ao = &rm->atomic;
518 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
519 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
520 		notifier = ao->op_notifier;
521 		rs = rm->m_rs;
522 		sock_hold(rds_rs_to_sk(rs));
523 
524 		notifier->n_status = status;
525 		spin_lock(&rs->rs_lock);
526 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
527 		spin_unlock(&rs->rs_lock);
528 
529 		ao->op_notifier = NULL;
530 	}
531 
532 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
533 
534 	if (rs) {
535 		rds_wake_sk_sleep(rs);
536 		sock_put(rds_rs_to_sk(rs));
537 	}
538 }
539 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
540 
541 /*
542  * This is the same as rds_rdma_send_complete except we
543  * don't do any locking - we have all the ingredients (message,
544  * socket, socket lock) and can just move the notifier.
545  */
546 static inline void
547 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
548 {
549 	struct rm_rdma_op *ro;
550 	struct rm_atomic_op *ao;
551 
552 	ro = &rm->rdma;
553 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
554 		ro->op_notifier->n_status = status;
555 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
556 		ro->op_notifier = NULL;
557 	}
558 
559 	ao = &rm->atomic;
560 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
561 		ao->op_notifier->n_status = status;
562 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
563 		ao->op_notifier = NULL;
564 	}
565 
566 	/* No need to wake the app - caller does this */
567 }
568 
569 /*
570  * This removes messages from the socket's list if they're on it.  The list
571  * argument must be private to the caller, we must be able to modify it
572  * without locks.  The messages must have a reference held for their
573  * position on the list.  This function will drop that reference after
574  * removing the messages from the 'messages' list regardless of if it found
575  * the messages on the socket list or not.
576  */
577 static void rds_send_remove_from_sock(struct list_head *messages, int status)
578 {
579 	unsigned long flags;
580 	struct rds_sock *rs = NULL;
581 	struct rds_message *rm;
582 
583 	while (!list_empty(messages)) {
584 		int was_on_sock = 0;
585 
586 		rm = list_entry(messages->next, struct rds_message,
587 				m_conn_item);
588 		list_del_init(&rm->m_conn_item);
589 
590 		/*
591 		 * If we see this flag cleared then we're *sure* that someone
592 		 * else beat us to removing it from the sock.  If we race
593 		 * with their flag update we'll get the lock and then really
594 		 * see that the flag has been cleared.
595 		 *
596 		 * The message spinlock makes sure nobody clears rm->m_rs
597 		 * while we're messing with it. It does not prevent the
598 		 * message from being removed from the socket, though.
599 		 */
600 		spin_lock_irqsave(&rm->m_rs_lock, flags);
601 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
602 			goto unlock_and_drop;
603 
604 		if (rs != rm->m_rs) {
605 			if (rs) {
606 				rds_wake_sk_sleep(rs);
607 				sock_put(rds_rs_to_sk(rs));
608 			}
609 			rs = rm->m_rs;
610 			if (rs)
611 				sock_hold(rds_rs_to_sk(rs));
612 		}
613 		if (!rs)
614 			goto unlock_and_drop;
615 		spin_lock(&rs->rs_lock);
616 
617 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
618 			struct rm_rdma_op *ro = &rm->rdma;
619 			struct rds_notifier *notifier;
620 
621 			list_del_init(&rm->m_sock_item);
622 			rds_send_sndbuf_remove(rs, rm);
623 
624 			if (ro->op_active && ro->op_notifier &&
625 			       (ro->op_notify || (ro->op_recverr && status))) {
626 				notifier = ro->op_notifier;
627 				list_add_tail(&notifier->n_list,
628 						&rs->rs_notify_queue);
629 				if (!notifier->n_status)
630 					notifier->n_status = status;
631 				rm->rdma.op_notifier = NULL;
632 			}
633 			was_on_sock = 1;
634 			rm->m_rs = NULL;
635 		}
636 		spin_unlock(&rs->rs_lock);
637 
638 unlock_and_drop:
639 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
640 		rds_message_put(rm);
641 		if (was_on_sock)
642 			rds_message_put(rm);
643 	}
644 
645 	if (rs) {
646 		rds_wake_sk_sleep(rs);
647 		sock_put(rds_rs_to_sk(rs));
648 	}
649 }
650 
651 /*
652  * Transports call here when they've determined that the receiver queued
653  * messages up to, and including, the given sequence number.  Messages are
654  * moved to the retrans queue when rds_send_xmit picks them off the send
655  * queue. This means that in the TCP case, the message may not have been
656  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
657  * checks the RDS_MSG_HAS_ACK_SEQ bit.
658  */
659 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
660 			      is_acked_func is_acked)
661 {
662 	struct rds_message *rm, *tmp;
663 	unsigned long flags;
664 	LIST_HEAD(list);
665 
666 	spin_lock_irqsave(&cp->cp_lock, flags);
667 
668 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
669 		if (!rds_send_is_acked(rm, ack, is_acked))
670 			break;
671 
672 		list_move(&rm->m_conn_item, &list);
673 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
674 	}
675 
676 	/* order flag updates with spin locks */
677 	if (!list_empty(&list))
678 		smp_mb__after_atomic();
679 
680 	spin_unlock_irqrestore(&cp->cp_lock, flags);
681 
682 	/* now remove the messages from the sock list as needed */
683 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
684 }
685 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
686 
687 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
688 			 is_acked_func is_acked)
689 {
690 	WARN_ON(conn->c_trans->t_mp_capable);
691 	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
692 }
693 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
694 
695 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
696 {
697 	struct rds_message *rm, *tmp;
698 	struct rds_connection *conn;
699 	struct rds_conn_path *cp;
700 	unsigned long flags;
701 	LIST_HEAD(list);
702 
703 	/* get all the messages we're dropping under the rs lock */
704 	spin_lock_irqsave(&rs->rs_lock, flags);
705 
706 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
707 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
708 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
709 			continue;
710 
711 		list_move(&rm->m_sock_item, &list);
712 		rds_send_sndbuf_remove(rs, rm);
713 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
714 	}
715 
716 	/* order flag updates with the rs lock */
717 	smp_mb__after_atomic();
718 
719 	spin_unlock_irqrestore(&rs->rs_lock, flags);
720 
721 	if (list_empty(&list))
722 		return;
723 
724 	/* Remove the messages from the conn */
725 	list_for_each_entry(rm, &list, m_sock_item) {
726 
727 		conn = rm->m_inc.i_conn;
728 		if (conn->c_trans->t_mp_capable)
729 			cp = rm->m_inc.i_conn_path;
730 		else
731 			cp = &conn->c_path[0];
732 
733 		spin_lock_irqsave(&cp->cp_lock, flags);
734 		/*
735 		 * Maybe someone else beat us to removing rm from the conn.
736 		 * If we race with their flag update we'll get the lock and
737 		 * then really see that the flag has been cleared.
738 		 */
739 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
740 			spin_unlock_irqrestore(&cp->cp_lock, flags);
741 			spin_lock_irqsave(&rm->m_rs_lock, flags);
742 			rm->m_rs = NULL;
743 			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
744 			continue;
745 		}
746 		list_del_init(&rm->m_conn_item);
747 		spin_unlock_irqrestore(&cp->cp_lock, flags);
748 
749 		/*
750 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
751 		 * but we can now.
752 		 */
753 		spin_lock_irqsave(&rm->m_rs_lock, flags);
754 
755 		spin_lock(&rs->rs_lock);
756 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
757 		spin_unlock(&rs->rs_lock);
758 
759 		rm->m_rs = NULL;
760 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
761 
762 		rds_message_put(rm);
763 	}
764 
765 	rds_wake_sk_sleep(rs);
766 
767 	while (!list_empty(&list)) {
768 		rm = list_entry(list.next, struct rds_message, m_sock_item);
769 		list_del_init(&rm->m_sock_item);
770 		rds_message_wait(rm);
771 
772 		/* just in case the code above skipped this message
773 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
774 		 * taking m_rs_lock is the only thing that keeps us
775 		 * from racing with ack processing.
776 		 */
777 		spin_lock_irqsave(&rm->m_rs_lock, flags);
778 
779 		spin_lock(&rs->rs_lock);
780 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
781 		spin_unlock(&rs->rs_lock);
782 
783 		rm->m_rs = NULL;
784 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
785 
786 		rds_message_put(rm);
787 	}
788 }
789 
790 /*
791  * we only want this to fire once so we use the callers 'queued'.  It's
792  * possible that another thread can race with us and remove the
793  * message from the flow with RDS_CANCEL_SENT_TO.
794  */
795 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
796 			     struct rds_conn_path *cp,
797 			     struct rds_message *rm, __be16 sport,
798 			     __be16 dport, int *queued)
799 {
800 	unsigned long flags;
801 	u32 len;
802 
803 	if (*queued)
804 		goto out;
805 
806 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
807 
808 	/* this is the only place which holds both the socket's rs_lock
809 	 * and the connection's c_lock */
810 	spin_lock_irqsave(&rs->rs_lock, flags);
811 
812 	/*
813 	 * If there is a little space in sndbuf, we don't queue anything,
814 	 * and userspace gets -EAGAIN. But poll() indicates there's send
815 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
816 	 * freed up by incoming acks. So we check the *old* value of
817 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
818 	 * and poll() now knows no more data can be sent.
819 	 */
820 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
821 		rs->rs_snd_bytes += len;
822 
823 		/* let recv side know we are close to send space exhaustion.
824 		 * This is probably not the optimal way to do it, as this
825 		 * means we set the flag on *all* messages as soon as our
826 		 * throughput hits a certain threshold.
827 		 */
828 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
829 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
830 
831 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
832 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
833 		rds_message_addref(rm);
834 		rm->m_rs = rs;
835 
836 		/* The code ordering is a little weird, but we're
837 		   trying to minimize the time we hold c_lock */
838 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
839 		rm->m_inc.i_conn = conn;
840 		rm->m_inc.i_conn_path = cp;
841 		rds_message_addref(rm);
842 
843 		spin_lock(&cp->cp_lock);
844 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
845 		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
846 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
847 		spin_unlock(&cp->cp_lock);
848 
849 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
850 			 rm, len, rs, rs->rs_snd_bytes,
851 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
852 
853 		*queued = 1;
854 	}
855 
856 	spin_unlock_irqrestore(&rs->rs_lock, flags);
857 out:
858 	return *queued;
859 }
860 
861 /*
862  * rds_message is getting to be quite complicated, and we'd like to allocate
863  * it all in one go. This figures out how big it needs to be up front.
864  */
865 static int rds_rm_size(struct msghdr *msg, int data_len)
866 {
867 	struct cmsghdr *cmsg;
868 	int size = 0;
869 	int cmsg_groups = 0;
870 	int retval;
871 
872 	for_each_cmsghdr(cmsg, msg) {
873 		if (!CMSG_OK(msg, cmsg))
874 			return -EINVAL;
875 
876 		if (cmsg->cmsg_level != SOL_RDS)
877 			continue;
878 
879 		switch (cmsg->cmsg_type) {
880 		case RDS_CMSG_RDMA_ARGS:
881 			cmsg_groups |= 1;
882 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
883 			if (retval < 0)
884 				return retval;
885 			size += retval;
886 
887 			break;
888 
889 		case RDS_CMSG_RDMA_DEST:
890 		case RDS_CMSG_RDMA_MAP:
891 			cmsg_groups |= 2;
892 			/* these are valid but do no add any size */
893 			break;
894 
895 		case RDS_CMSG_ATOMIC_CSWP:
896 		case RDS_CMSG_ATOMIC_FADD:
897 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
898 		case RDS_CMSG_MASKED_ATOMIC_FADD:
899 			cmsg_groups |= 1;
900 			size += sizeof(struct scatterlist);
901 			break;
902 
903 		default:
904 			return -EINVAL;
905 		}
906 
907 	}
908 
909 	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
910 
911 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
912 	if (cmsg_groups == 3)
913 		return -EINVAL;
914 
915 	return size;
916 }
917 
918 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
919 			 struct msghdr *msg, int *allocated_mr)
920 {
921 	struct cmsghdr *cmsg;
922 	int ret = 0;
923 
924 	for_each_cmsghdr(cmsg, msg) {
925 		if (!CMSG_OK(msg, cmsg))
926 			return -EINVAL;
927 
928 		if (cmsg->cmsg_level != SOL_RDS)
929 			continue;
930 
931 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
932 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
933 		 */
934 		switch (cmsg->cmsg_type) {
935 		case RDS_CMSG_RDMA_ARGS:
936 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
937 			break;
938 
939 		case RDS_CMSG_RDMA_DEST:
940 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
941 			break;
942 
943 		case RDS_CMSG_RDMA_MAP:
944 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
945 			if (!ret)
946 				*allocated_mr = 1;
947 			break;
948 		case RDS_CMSG_ATOMIC_CSWP:
949 		case RDS_CMSG_ATOMIC_FADD:
950 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
951 		case RDS_CMSG_MASKED_ATOMIC_FADD:
952 			ret = rds_cmsg_atomic(rs, rm, cmsg);
953 			break;
954 
955 		default:
956 			return -EINVAL;
957 		}
958 
959 		if (ret)
960 			break;
961 	}
962 
963 	return ret;
964 }
965 
966 static void rds_send_ping(struct rds_connection *conn);
967 
968 static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn)
969 {
970 	int hash;
971 
972 	if (conn->c_npaths == 0)
973 		hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
974 	else
975 		hash = RDS_MPATH_HASH(rs, conn->c_npaths);
976 	if (conn->c_npaths == 0 && hash != 0) {
977 		rds_send_ping(conn);
978 
979 		if (conn->c_npaths == 0) {
980 			wait_event_interruptible(conn->c_hs_waitq,
981 						 (conn->c_npaths != 0));
982 		}
983 		if (conn->c_npaths == 1)
984 			hash = 0;
985 	}
986 	return hash;
987 }
988 
989 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
990 {
991 	struct sock *sk = sock->sk;
992 	struct rds_sock *rs = rds_sk_to_rs(sk);
993 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
994 	__be32 daddr;
995 	__be16 dport;
996 	struct rds_message *rm = NULL;
997 	struct rds_connection *conn;
998 	int ret = 0;
999 	int queued = 0, allocated_mr = 0;
1000 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
1001 	long timeo = sock_sndtimeo(sk, nonblock);
1002 	struct rds_conn_path *cpath;
1003 
1004 	/* Mirror Linux UDP mirror of BSD error message compatibility */
1005 	/* XXX: Perhaps MSG_MORE someday */
1006 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
1007 		ret = -EOPNOTSUPP;
1008 		goto out;
1009 	}
1010 
1011 	if (msg->msg_namelen) {
1012 		/* XXX fail non-unicast destination IPs? */
1013 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
1014 			ret = -EINVAL;
1015 			goto out;
1016 		}
1017 		daddr = usin->sin_addr.s_addr;
1018 		dport = usin->sin_port;
1019 	} else {
1020 		/* We only care about consistency with ->connect() */
1021 		lock_sock(sk);
1022 		daddr = rs->rs_conn_addr;
1023 		dport = rs->rs_conn_port;
1024 		release_sock(sk);
1025 	}
1026 
1027 	lock_sock(sk);
1028 	if (daddr == 0 || rs->rs_bound_addr == 0) {
1029 		release_sock(sk);
1030 		ret = -ENOTCONN; /* XXX not a great errno */
1031 		goto out;
1032 	}
1033 	release_sock(sk);
1034 
1035 	if (payload_len > rds_sk_sndbuf(rs)) {
1036 		ret = -EMSGSIZE;
1037 		goto out;
1038 	}
1039 
1040 	/* size of rm including all sgs */
1041 	ret = rds_rm_size(msg, payload_len);
1042 	if (ret < 0)
1043 		goto out;
1044 
1045 	rm = rds_message_alloc(ret, GFP_KERNEL);
1046 	if (!rm) {
1047 		ret = -ENOMEM;
1048 		goto out;
1049 	}
1050 
1051 	/* Attach data to the rm */
1052 	if (payload_len) {
1053 		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1054 		if (!rm->data.op_sg) {
1055 			ret = -ENOMEM;
1056 			goto out;
1057 		}
1058 		ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1059 		if (ret)
1060 			goto out;
1061 	}
1062 	rm->data.op_active = 1;
1063 
1064 	rm->m_daddr = daddr;
1065 
1066 	/* rds_conn_create has a spinlock that runs with IRQ off.
1067 	 * Caching the conn in the socket helps a lot. */
1068 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1069 		conn = rs->rs_conn;
1070 	else {
1071 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1072 						rs->rs_bound_addr, daddr,
1073 					rs->rs_transport,
1074 					sock->sk->sk_allocation);
1075 		if (IS_ERR(conn)) {
1076 			ret = PTR_ERR(conn);
1077 			goto out;
1078 		}
1079 		rs->rs_conn = conn;
1080 	}
1081 
1082 	/* Parse any control messages the user may have included. */
1083 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1084 	if (ret)
1085 		goto out;
1086 
1087 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1088 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1089 			       &rm->rdma, conn->c_trans->xmit_rdma);
1090 		ret = -EOPNOTSUPP;
1091 		goto out;
1092 	}
1093 
1094 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1095 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1096 			       &rm->atomic, conn->c_trans->xmit_atomic);
1097 		ret = -EOPNOTSUPP;
1098 		goto out;
1099 	}
1100 
1101 	if (conn->c_trans->t_mp_capable)
1102 		cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)];
1103 	else
1104 		cpath = &conn->c_path[0];
1105 
1106 	rds_conn_path_connect_if_down(cpath);
1107 
1108 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1109 	if (ret) {
1110 		rs->rs_seen_congestion = 1;
1111 		goto out;
1112 	}
1113 	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1114 				  dport, &queued)) {
1115 		rds_stats_inc(s_send_queue_full);
1116 
1117 		if (nonblock) {
1118 			ret = -EAGAIN;
1119 			goto out;
1120 		}
1121 
1122 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1123 					rds_send_queue_rm(rs, conn, cpath, rm,
1124 							  rs->rs_bound_port,
1125 							  dport,
1126 							  &queued),
1127 					timeo);
1128 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1129 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1130 			continue;
1131 
1132 		ret = timeo;
1133 		if (ret == 0)
1134 			ret = -ETIMEDOUT;
1135 		goto out;
1136 	}
1137 
1138 	/*
1139 	 * By now we've committed to the send.  We reuse rds_send_worker()
1140 	 * to retry sends in the rds thread if the transport asks us to.
1141 	 */
1142 	rds_stats_inc(s_send_queued);
1143 
1144 	ret = rds_send_xmit(cpath);
1145 	if (ret == -ENOMEM || ret == -EAGAIN)
1146 		queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1147 
1148 	rds_message_put(rm);
1149 	return payload_len;
1150 
1151 out:
1152 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1153 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1154 	 * or in any other way, we need to destroy the MR again */
1155 	if (allocated_mr)
1156 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1157 
1158 	if (rm)
1159 		rds_message_put(rm);
1160 	return ret;
1161 }
1162 
1163 /*
1164  * send out a probe. Can be shared by rds_send_ping,
1165  * rds_send_pong, rds_send_hb.
1166  * rds_send_hb should use h_flags
1167  *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1168  * or
1169  *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1170  */
1171 int
1172 rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1173 	       __be16 dport, u8 h_flags)
1174 {
1175 	struct rds_message *rm;
1176 	unsigned long flags;
1177 	int ret = 0;
1178 
1179 	rm = rds_message_alloc(0, GFP_ATOMIC);
1180 	if (!rm) {
1181 		ret = -ENOMEM;
1182 		goto out;
1183 	}
1184 
1185 	rm->m_daddr = cp->cp_conn->c_faddr;
1186 	rm->data.op_active = 1;
1187 
1188 	rds_conn_path_connect_if_down(cp);
1189 
1190 	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1191 	if (ret)
1192 		goto out;
1193 
1194 	spin_lock_irqsave(&cp->cp_lock, flags);
1195 	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1196 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1197 	rds_message_addref(rm);
1198 	rm->m_inc.i_conn = cp->cp_conn;
1199 	rm->m_inc.i_conn_path = cp;
1200 
1201 	rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1202 				    cp->cp_next_tx_seq);
1203 	rm->m_inc.i_hdr.h_flags |= h_flags;
1204 	cp->cp_next_tx_seq++;
1205 
1206 	if (RDS_HS_PROBE(sport, dport) && cp->cp_conn->c_trans->t_mp_capable) {
1207 		u16 npaths = RDS_MPATH_WORKERS;
1208 
1209 		rds_message_add_extension(&rm->m_inc.i_hdr,
1210 					  RDS_EXTHDR_NPATHS, &npaths,
1211 					  sizeof(npaths));
1212 	}
1213 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1214 
1215 	rds_stats_inc(s_send_queued);
1216 	rds_stats_inc(s_send_pong);
1217 
1218 	/* schedule the send work on rds_wq */
1219 	queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1220 
1221 	rds_message_put(rm);
1222 	return 0;
1223 
1224 out:
1225 	if (rm)
1226 		rds_message_put(rm);
1227 	return ret;
1228 }
1229 
1230 int
1231 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1232 {
1233 	return rds_send_probe(cp, 0, dport, 0);
1234 }
1235 
1236 void
1237 rds_send_ping(struct rds_connection *conn)
1238 {
1239 	unsigned long flags;
1240 	struct rds_conn_path *cp = &conn->c_path[0];
1241 
1242 	spin_lock_irqsave(&cp->cp_lock, flags);
1243 	if (conn->c_ping_triggered) {
1244 		spin_unlock_irqrestore(&cp->cp_lock, flags);
1245 		return;
1246 	}
1247 	conn->c_ping_triggered = 1;
1248 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1249 	rds_send_probe(&conn->c_path[0], RDS_FLAG_PROBE_PORT, 0, 0);
1250 }
1251