xref: /openbmc/linux/net/rds/send.c (revision 26b8f996)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 
42 #include "rds.h"
43 
44 /* When transmitting messages in rds_send_xmit, we need to emerge from
45  * time to time and briefly release the CPU. Otherwise the softlock watchdog
46  * will kick our shin.
47  * Also, it seems fairer to not let one busy connection stall all the
48  * others.
49  *
50  * send_batch_count is the number of times we'll loop in send_xmit. Setting
51  * it to 0 will restore the old behavior (where we looped until we had
52  * drained the queue).
53  */
54 static int send_batch_count = 64;
55 module_param(send_batch_count, int, 0444);
56 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
57 
58 static void rds_send_remove_from_sock(struct list_head *messages, int status);
59 
60 /*
61  * Reset the send state.  Callers must ensure that this doesn't race with
62  * rds_send_xmit().
63  */
64 void rds_send_reset(struct rds_connection *conn)
65 {
66 	struct rds_message *rm, *tmp;
67 	unsigned long flags;
68 
69 	if (conn->c_xmit_rm) {
70 		rm = conn->c_xmit_rm;
71 		conn->c_xmit_rm = NULL;
72 		/* Tell the user the RDMA op is no longer mapped by the
73 		 * transport. This isn't entirely true (it's flushed out
74 		 * independently) but as the connection is down, there's
75 		 * no ongoing RDMA to/from that memory */
76 		rds_message_unmapped(rm);
77 		rds_message_put(rm);
78 	}
79 
80 	conn->c_xmit_sg = 0;
81 	conn->c_xmit_hdr_off = 0;
82 	conn->c_xmit_data_off = 0;
83 	conn->c_xmit_atomic_sent = 0;
84 	conn->c_xmit_rdma_sent = 0;
85 	conn->c_xmit_data_sent = 0;
86 
87 	conn->c_map_queued = 0;
88 
89 	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
90 	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
91 
92 	/* Mark messages as retransmissions, and move them to the send q */
93 	spin_lock_irqsave(&conn->c_lock, flags);
94 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
95 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
96 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
97 	}
98 	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
99 	spin_unlock_irqrestore(&conn->c_lock, flags);
100 }
101 
102 static int acquire_in_xmit(struct rds_connection *conn)
103 {
104 	return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
105 }
106 
107 static void release_in_xmit(struct rds_connection *conn)
108 {
109 	clear_bit(RDS_IN_XMIT, &conn->c_flags);
110 	smp_mb__after_atomic();
111 	/*
112 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
113 	 * hot path and finding waiters is very rare.  We don't want to walk
114 	 * the system-wide hashed waitqueue buckets in the fast path only to
115 	 * almost never find waiters.
116 	 */
117 	if (waitqueue_active(&conn->c_waitq))
118 		wake_up_all(&conn->c_waitq);
119 }
120 
121 /*
122  * We're making the conscious trade-off here to only send one message
123  * down the connection at a time.
124  *   Pro:
125  *      - tx queueing is a simple fifo list
126  *   	- reassembly is optional and easily done by transports per conn
127  *      - no per flow rx lookup at all, straight to the socket
128  *   	- less per-frag memory and wire overhead
129  *   Con:
130  *      - queued acks can be delayed behind large messages
131  *   Depends:
132  *      - small message latency is higher behind queued large messages
133  *      - large message latency isn't starved by intervening small sends
134  */
135 int rds_send_xmit(struct rds_connection *conn)
136 {
137 	struct rds_message *rm;
138 	unsigned long flags;
139 	unsigned int tmp;
140 	struct scatterlist *sg;
141 	int ret = 0;
142 	LIST_HEAD(to_be_dropped);
143 	int batch_count;
144 	unsigned long send_gen = 0;
145 
146 restart:
147 	batch_count = 0;
148 
149 	/*
150 	 * sendmsg calls here after having queued its message on the send
151 	 * queue.  We only have one task feeding the connection at a time.  If
152 	 * another thread is already feeding the queue then we back off.  This
153 	 * avoids blocking the caller and trading per-connection data between
154 	 * caches per message.
155 	 */
156 	if (!acquire_in_xmit(conn)) {
157 		rds_stats_inc(s_send_lock_contention);
158 		ret = -ENOMEM;
159 		goto out;
160 	}
161 
162 	/*
163 	 * we record the send generation after doing the xmit acquire.
164 	 * if someone else manages to jump in and do some work, we'll use
165 	 * this to avoid a goto restart farther down.
166 	 *
167 	 * The acquire_in_xmit() check above ensures that only one
168 	 * caller can increment c_send_gen at any time.
169 	 */
170 	conn->c_send_gen++;
171 	send_gen = conn->c_send_gen;
172 
173 	/*
174 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
175 	 * we do the opposite to avoid races.
176 	 */
177 	if (!rds_conn_up(conn)) {
178 		release_in_xmit(conn);
179 		ret = 0;
180 		goto out;
181 	}
182 
183 	if (conn->c_trans->xmit_prepare)
184 		conn->c_trans->xmit_prepare(conn);
185 
186 	/*
187 	 * spin trying to push headers and data down the connection until
188 	 * the connection doesn't make forward progress.
189 	 */
190 	while (1) {
191 
192 		rm = conn->c_xmit_rm;
193 
194 		/*
195 		 * If between sending messages, we can send a pending congestion
196 		 * map update.
197 		 */
198 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
199 			rm = rds_cong_update_alloc(conn);
200 			if (IS_ERR(rm)) {
201 				ret = PTR_ERR(rm);
202 				break;
203 			}
204 			rm->data.op_active = 1;
205 
206 			conn->c_xmit_rm = rm;
207 		}
208 
209 		/*
210 		 * If not already working on one, grab the next message.
211 		 *
212 		 * c_xmit_rm holds a ref while we're sending this message down
213 		 * the connction.  We can use this ref while holding the
214 		 * send_sem.. rds_send_reset() is serialized with it.
215 		 */
216 		if (!rm) {
217 			unsigned int len;
218 
219 			batch_count++;
220 
221 			/* we want to process as big a batch as we can, but
222 			 * we also want to avoid softlockups.  If we've been
223 			 * through a lot of messages, lets back off and see
224 			 * if anyone else jumps in
225 			 */
226 			if (batch_count >= 1024)
227 				goto over_batch;
228 
229 			spin_lock_irqsave(&conn->c_lock, flags);
230 
231 			if (!list_empty(&conn->c_send_queue)) {
232 				rm = list_entry(conn->c_send_queue.next,
233 						struct rds_message,
234 						m_conn_item);
235 				rds_message_addref(rm);
236 
237 				/*
238 				 * Move the message from the send queue to the retransmit
239 				 * list right away.
240 				 */
241 				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
242 			}
243 
244 			spin_unlock_irqrestore(&conn->c_lock, flags);
245 
246 			if (!rm)
247 				break;
248 
249 			/* Unfortunately, the way Infiniband deals with
250 			 * RDMA to a bad MR key is by moving the entire
251 			 * queue pair to error state. We cold possibly
252 			 * recover from that, but right now we drop the
253 			 * connection.
254 			 * Therefore, we never retransmit messages with RDMA ops.
255 			 */
256 			if (rm->rdma.op_active &&
257 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
258 				spin_lock_irqsave(&conn->c_lock, flags);
259 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
260 					list_move(&rm->m_conn_item, &to_be_dropped);
261 				spin_unlock_irqrestore(&conn->c_lock, flags);
262 				continue;
263 			}
264 
265 			/* Require an ACK every once in a while */
266 			len = ntohl(rm->m_inc.i_hdr.h_len);
267 			if (conn->c_unacked_packets == 0 ||
268 			    conn->c_unacked_bytes < len) {
269 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
270 
271 				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
272 				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
273 				rds_stats_inc(s_send_ack_required);
274 			} else {
275 				conn->c_unacked_bytes -= len;
276 				conn->c_unacked_packets--;
277 			}
278 
279 			conn->c_xmit_rm = rm;
280 		}
281 
282 		/* The transport either sends the whole rdma or none of it */
283 		if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
284 			rm->m_final_op = &rm->rdma;
285 			/* The transport owns the mapped memory for now.
286 			 * You can't unmap it while it's on the send queue
287 			 */
288 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
289 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
290 			if (ret) {
291 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
292 				wake_up_interruptible(&rm->m_flush_wait);
293 				break;
294 			}
295 			conn->c_xmit_rdma_sent = 1;
296 
297 		}
298 
299 		if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
300 			rm->m_final_op = &rm->atomic;
301 			/* The transport owns the mapped memory for now.
302 			 * You can't unmap it while it's on the send queue
303 			 */
304 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
305 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
306 			if (ret) {
307 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
308 				wake_up_interruptible(&rm->m_flush_wait);
309 				break;
310 			}
311 			conn->c_xmit_atomic_sent = 1;
312 
313 		}
314 
315 		/*
316 		 * A number of cases require an RDS header to be sent
317 		 * even if there is no data.
318 		 * We permit 0-byte sends; rds-ping depends on this.
319 		 * However, if there are exclusively attached silent ops,
320 		 * we skip the hdr/data send, to enable silent operation.
321 		 */
322 		if (rm->data.op_nents == 0) {
323 			int ops_present;
324 			int all_ops_are_silent = 1;
325 
326 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
327 			if (rm->atomic.op_active && !rm->atomic.op_silent)
328 				all_ops_are_silent = 0;
329 			if (rm->rdma.op_active && !rm->rdma.op_silent)
330 				all_ops_are_silent = 0;
331 
332 			if (ops_present && all_ops_are_silent
333 			    && !rm->m_rdma_cookie)
334 				rm->data.op_active = 0;
335 		}
336 
337 		if (rm->data.op_active && !conn->c_xmit_data_sent) {
338 			rm->m_final_op = &rm->data;
339 			ret = conn->c_trans->xmit(conn, rm,
340 						  conn->c_xmit_hdr_off,
341 						  conn->c_xmit_sg,
342 						  conn->c_xmit_data_off);
343 			if (ret <= 0)
344 				break;
345 
346 			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
347 				tmp = min_t(int, ret,
348 					    sizeof(struct rds_header) -
349 					    conn->c_xmit_hdr_off);
350 				conn->c_xmit_hdr_off += tmp;
351 				ret -= tmp;
352 			}
353 
354 			sg = &rm->data.op_sg[conn->c_xmit_sg];
355 			while (ret) {
356 				tmp = min_t(int, ret, sg->length -
357 						      conn->c_xmit_data_off);
358 				conn->c_xmit_data_off += tmp;
359 				ret -= tmp;
360 				if (conn->c_xmit_data_off == sg->length) {
361 					conn->c_xmit_data_off = 0;
362 					sg++;
363 					conn->c_xmit_sg++;
364 					BUG_ON(ret != 0 &&
365 					       conn->c_xmit_sg == rm->data.op_nents);
366 				}
367 			}
368 
369 			if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
370 			    (conn->c_xmit_sg == rm->data.op_nents))
371 				conn->c_xmit_data_sent = 1;
372 		}
373 
374 		/*
375 		 * A rm will only take multiple times through this loop
376 		 * if there is a data op. Thus, if the data is sent (or there was
377 		 * none), then we're done with the rm.
378 		 */
379 		if (!rm->data.op_active || conn->c_xmit_data_sent) {
380 			conn->c_xmit_rm = NULL;
381 			conn->c_xmit_sg = 0;
382 			conn->c_xmit_hdr_off = 0;
383 			conn->c_xmit_data_off = 0;
384 			conn->c_xmit_rdma_sent = 0;
385 			conn->c_xmit_atomic_sent = 0;
386 			conn->c_xmit_data_sent = 0;
387 
388 			rds_message_put(rm);
389 		}
390 	}
391 
392 over_batch:
393 	if (conn->c_trans->xmit_complete)
394 		conn->c_trans->xmit_complete(conn);
395 	release_in_xmit(conn);
396 
397 	/* Nuke any messages we decided not to retransmit. */
398 	if (!list_empty(&to_be_dropped)) {
399 		/* irqs on here, so we can put(), unlike above */
400 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
401 			rds_message_put(rm);
402 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
403 	}
404 
405 	/*
406 	 * Other senders can queue a message after we last test the send queue
407 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
408 	 * not try and send their newly queued message.  We need to check the
409 	 * send queue after having cleared RDS_IN_XMIT so that their message
410 	 * doesn't get stuck on the send queue.
411 	 *
412 	 * If the transport cannot continue (i.e ret != 0), then it must
413 	 * call us when more room is available, such as from the tx
414 	 * completion handler.
415 	 *
416 	 * We have an extra generation check here so that if someone manages
417 	 * to jump in after our release_in_xmit, we'll see that they have done
418 	 * some work and we will skip our goto
419 	 */
420 	if (ret == 0) {
421 		smp_mb();
422 		if ((test_bit(0, &conn->c_map_queued) ||
423 		     !list_empty(&conn->c_send_queue)) &&
424 		    send_gen == conn->c_send_gen) {
425 			rds_stats_inc(s_send_lock_queue_raced);
426 			goto restart;
427 		}
428 	}
429 out:
430 	return ret;
431 }
432 
433 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
434 {
435 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
436 
437 	assert_spin_locked(&rs->rs_lock);
438 
439 	BUG_ON(rs->rs_snd_bytes < len);
440 	rs->rs_snd_bytes -= len;
441 
442 	if (rs->rs_snd_bytes == 0)
443 		rds_stats_inc(s_send_queue_empty);
444 }
445 
446 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
447 				    is_acked_func is_acked)
448 {
449 	if (is_acked)
450 		return is_acked(rm, ack);
451 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
452 }
453 
454 /*
455  * This is pretty similar to what happens below in the ACK
456  * handling code - except that we call here as soon as we get
457  * the IB send completion on the RDMA op and the accompanying
458  * message.
459  */
460 void rds_rdma_send_complete(struct rds_message *rm, int status)
461 {
462 	struct rds_sock *rs = NULL;
463 	struct rm_rdma_op *ro;
464 	struct rds_notifier *notifier;
465 	unsigned long flags;
466 
467 	spin_lock_irqsave(&rm->m_rs_lock, flags);
468 
469 	ro = &rm->rdma;
470 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
471 	    ro->op_active && ro->op_notify && ro->op_notifier) {
472 		notifier = ro->op_notifier;
473 		rs = rm->m_rs;
474 		sock_hold(rds_rs_to_sk(rs));
475 
476 		notifier->n_status = status;
477 		spin_lock(&rs->rs_lock);
478 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
479 		spin_unlock(&rs->rs_lock);
480 
481 		ro->op_notifier = NULL;
482 	}
483 
484 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
485 
486 	if (rs) {
487 		rds_wake_sk_sleep(rs);
488 		sock_put(rds_rs_to_sk(rs));
489 	}
490 }
491 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
492 
493 /*
494  * Just like above, except looks at atomic op
495  */
496 void rds_atomic_send_complete(struct rds_message *rm, int status)
497 {
498 	struct rds_sock *rs = NULL;
499 	struct rm_atomic_op *ao;
500 	struct rds_notifier *notifier;
501 	unsigned long flags;
502 
503 	spin_lock_irqsave(&rm->m_rs_lock, flags);
504 
505 	ao = &rm->atomic;
506 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
507 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
508 		notifier = ao->op_notifier;
509 		rs = rm->m_rs;
510 		sock_hold(rds_rs_to_sk(rs));
511 
512 		notifier->n_status = status;
513 		spin_lock(&rs->rs_lock);
514 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
515 		spin_unlock(&rs->rs_lock);
516 
517 		ao->op_notifier = NULL;
518 	}
519 
520 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
521 
522 	if (rs) {
523 		rds_wake_sk_sleep(rs);
524 		sock_put(rds_rs_to_sk(rs));
525 	}
526 }
527 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
528 
529 /*
530  * This is the same as rds_rdma_send_complete except we
531  * don't do any locking - we have all the ingredients (message,
532  * socket, socket lock) and can just move the notifier.
533  */
534 static inline void
535 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
536 {
537 	struct rm_rdma_op *ro;
538 	struct rm_atomic_op *ao;
539 
540 	ro = &rm->rdma;
541 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
542 		ro->op_notifier->n_status = status;
543 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
544 		ro->op_notifier = NULL;
545 	}
546 
547 	ao = &rm->atomic;
548 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
549 		ao->op_notifier->n_status = status;
550 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
551 		ao->op_notifier = NULL;
552 	}
553 
554 	/* No need to wake the app - caller does this */
555 }
556 
557 /*
558  * This is called from the IB send completion when we detect
559  * a RDMA operation that failed with remote access error.
560  * So speed is not an issue here.
561  */
562 struct rds_message *rds_send_get_message(struct rds_connection *conn,
563 					 struct rm_rdma_op *op)
564 {
565 	struct rds_message *rm, *tmp, *found = NULL;
566 	unsigned long flags;
567 
568 	spin_lock_irqsave(&conn->c_lock, flags);
569 
570 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
571 		if (&rm->rdma == op) {
572 			atomic_inc(&rm->m_refcount);
573 			found = rm;
574 			goto out;
575 		}
576 	}
577 
578 	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
579 		if (&rm->rdma == op) {
580 			atomic_inc(&rm->m_refcount);
581 			found = rm;
582 			break;
583 		}
584 	}
585 
586 out:
587 	spin_unlock_irqrestore(&conn->c_lock, flags);
588 
589 	return found;
590 }
591 EXPORT_SYMBOL_GPL(rds_send_get_message);
592 
593 /*
594  * This removes messages from the socket's list if they're on it.  The list
595  * argument must be private to the caller, we must be able to modify it
596  * without locks.  The messages must have a reference held for their
597  * position on the list.  This function will drop that reference after
598  * removing the messages from the 'messages' list regardless of if it found
599  * the messages on the socket list or not.
600  */
601 static void rds_send_remove_from_sock(struct list_head *messages, int status)
602 {
603 	unsigned long flags;
604 	struct rds_sock *rs = NULL;
605 	struct rds_message *rm;
606 
607 	while (!list_empty(messages)) {
608 		int was_on_sock = 0;
609 
610 		rm = list_entry(messages->next, struct rds_message,
611 				m_conn_item);
612 		list_del_init(&rm->m_conn_item);
613 
614 		/*
615 		 * If we see this flag cleared then we're *sure* that someone
616 		 * else beat us to removing it from the sock.  If we race
617 		 * with their flag update we'll get the lock and then really
618 		 * see that the flag has been cleared.
619 		 *
620 		 * The message spinlock makes sure nobody clears rm->m_rs
621 		 * while we're messing with it. It does not prevent the
622 		 * message from being removed from the socket, though.
623 		 */
624 		spin_lock_irqsave(&rm->m_rs_lock, flags);
625 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
626 			goto unlock_and_drop;
627 
628 		if (rs != rm->m_rs) {
629 			if (rs) {
630 				rds_wake_sk_sleep(rs);
631 				sock_put(rds_rs_to_sk(rs));
632 			}
633 			rs = rm->m_rs;
634 			if (rs)
635 				sock_hold(rds_rs_to_sk(rs));
636 		}
637 		if (!rs)
638 			goto unlock_and_drop;
639 		spin_lock(&rs->rs_lock);
640 
641 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
642 			struct rm_rdma_op *ro = &rm->rdma;
643 			struct rds_notifier *notifier;
644 
645 			list_del_init(&rm->m_sock_item);
646 			rds_send_sndbuf_remove(rs, rm);
647 
648 			if (ro->op_active && ro->op_notifier &&
649 			       (ro->op_notify || (ro->op_recverr && status))) {
650 				notifier = ro->op_notifier;
651 				list_add_tail(&notifier->n_list,
652 						&rs->rs_notify_queue);
653 				if (!notifier->n_status)
654 					notifier->n_status = status;
655 				rm->rdma.op_notifier = NULL;
656 			}
657 			was_on_sock = 1;
658 			rm->m_rs = NULL;
659 		}
660 		spin_unlock(&rs->rs_lock);
661 
662 unlock_and_drop:
663 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
664 		rds_message_put(rm);
665 		if (was_on_sock)
666 			rds_message_put(rm);
667 	}
668 
669 	if (rs) {
670 		rds_wake_sk_sleep(rs);
671 		sock_put(rds_rs_to_sk(rs));
672 	}
673 }
674 
675 /*
676  * Transports call here when they've determined that the receiver queued
677  * messages up to, and including, the given sequence number.  Messages are
678  * moved to the retrans queue when rds_send_xmit picks them off the send
679  * queue. This means that in the TCP case, the message may not have been
680  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
681  * checks the RDS_MSG_HAS_ACK_SEQ bit.
682  */
683 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
684 			 is_acked_func is_acked)
685 {
686 	struct rds_message *rm, *tmp;
687 	unsigned long flags;
688 	LIST_HEAD(list);
689 
690 	spin_lock_irqsave(&conn->c_lock, flags);
691 
692 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
693 		if (!rds_send_is_acked(rm, ack, is_acked))
694 			break;
695 
696 		list_move(&rm->m_conn_item, &list);
697 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
698 	}
699 
700 	/* order flag updates with spin locks */
701 	if (!list_empty(&list))
702 		smp_mb__after_atomic();
703 
704 	spin_unlock_irqrestore(&conn->c_lock, flags);
705 
706 	/* now remove the messages from the sock list as needed */
707 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
708 }
709 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
710 
711 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
712 {
713 	struct rds_message *rm, *tmp;
714 	struct rds_connection *conn;
715 	unsigned long flags;
716 	LIST_HEAD(list);
717 
718 	/* get all the messages we're dropping under the rs lock */
719 	spin_lock_irqsave(&rs->rs_lock, flags);
720 
721 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
722 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
723 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
724 			continue;
725 
726 		list_move(&rm->m_sock_item, &list);
727 		rds_send_sndbuf_remove(rs, rm);
728 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
729 	}
730 
731 	/* order flag updates with the rs lock */
732 	smp_mb__after_atomic();
733 
734 	spin_unlock_irqrestore(&rs->rs_lock, flags);
735 
736 	if (list_empty(&list))
737 		return;
738 
739 	/* Remove the messages from the conn */
740 	list_for_each_entry(rm, &list, m_sock_item) {
741 
742 		conn = rm->m_inc.i_conn;
743 
744 		spin_lock_irqsave(&conn->c_lock, flags);
745 		/*
746 		 * Maybe someone else beat us to removing rm from the conn.
747 		 * If we race with their flag update we'll get the lock and
748 		 * then really see that the flag has been cleared.
749 		 */
750 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
751 			spin_unlock_irqrestore(&conn->c_lock, flags);
752 			spin_lock_irqsave(&rm->m_rs_lock, flags);
753 			rm->m_rs = NULL;
754 			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
755 			continue;
756 		}
757 		list_del_init(&rm->m_conn_item);
758 		spin_unlock_irqrestore(&conn->c_lock, flags);
759 
760 		/*
761 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
762 		 * but we can now.
763 		 */
764 		spin_lock_irqsave(&rm->m_rs_lock, flags);
765 
766 		spin_lock(&rs->rs_lock);
767 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
768 		spin_unlock(&rs->rs_lock);
769 
770 		rm->m_rs = NULL;
771 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
772 
773 		rds_message_put(rm);
774 	}
775 
776 	rds_wake_sk_sleep(rs);
777 
778 	while (!list_empty(&list)) {
779 		rm = list_entry(list.next, struct rds_message, m_sock_item);
780 		list_del_init(&rm->m_sock_item);
781 		rds_message_wait(rm);
782 
783 		/* just in case the code above skipped this message
784 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
785 		 * taking m_rs_lock is the only thing that keeps us
786 		 * from racing with ack processing.
787 		 */
788 		spin_lock_irqsave(&rm->m_rs_lock, flags);
789 
790 		spin_lock(&rs->rs_lock);
791 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
792 		spin_unlock(&rs->rs_lock);
793 
794 		rm->m_rs = NULL;
795 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
796 
797 		rds_message_put(rm);
798 	}
799 }
800 
801 /*
802  * we only want this to fire once so we use the callers 'queued'.  It's
803  * possible that another thread can race with us and remove the
804  * message from the flow with RDS_CANCEL_SENT_TO.
805  */
806 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
807 			     struct rds_message *rm, __be16 sport,
808 			     __be16 dport, int *queued)
809 {
810 	unsigned long flags;
811 	u32 len;
812 
813 	if (*queued)
814 		goto out;
815 
816 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
817 
818 	/* this is the only place which holds both the socket's rs_lock
819 	 * and the connection's c_lock */
820 	spin_lock_irqsave(&rs->rs_lock, flags);
821 
822 	/*
823 	 * If there is a little space in sndbuf, we don't queue anything,
824 	 * and userspace gets -EAGAIN. But poll() indicates there's send
825 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
826 	 * freed up by incoming acks. So we check the *old* value of
827 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
828 	 * and poll() now knows no more data can be sent.
829 	 */
830 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
831 		rs->rs_snd_bytes += len;
832 
833 		/* let recv side know we are close to send space exhaustion.
834 		 * This is probably not the optimal way to do it, as this
835 		 * means we set the flag on *all* messages as soon as our
836 		 * throughput hits a certain threshold.
837 		 */
838 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
839 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
840 
841 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
842 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
843 		rds_message_addref(rm);
844 		rm->m_rs = rs;
845 
846 		/* The code ordering is a little weird, but we're
847 		   trying to minimize the time we hold c_lock */
848 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
849 		rm->m_inc.i_conn = conn;
850 		rds_message_addref(rm);
851 
852 		spin_lock(&conn->c_lock);
853 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
854 		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
855 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
856 		spin_unlock(&conn->c_lock);
857 
858 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
859 			 rm, len, rs, rs->rs_snd_bytes,
860 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
861 
862 		*queued = 1;
863 	}
864 
865 	spin_unlock_irqrestore(&rs->rs_lock, flags);
866 out:
867 	return *queued;
868 }
869 
870 /*
871  * rds_message is getting to be quite complicated, and we'd like to allocate
872  * it all in one go. This figures out how big it needs to be up front.
873  */
874 static int rds_rm_size(struct msghdr *msg, int data_len)
875 {
876 	struct cmsghdr *cmsg;
877 	int size = 0;
878 	int cmsg_groups = 0;
879 	int retval;
880 
881 	for_each_cmsghdr(cmsg, msg) {
882 		if (!CMSG_OK(msg, cmsg))
883 			return -EINVAL;
884 
885 		if (cmsg->cmsg_level != SOL_RDS)
886 			continue;
887 
888 		switch (cmsg->cmsg_type) {
889 		case RDS_CMSG_RDMA_ARGS:
890 			cmsg_groups |= 1;
891 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
892 			if (retval < 0)
893 				return retval;
894 			size += retval;
895 
896 			break;
897 
898 		case RDS_CMSG_RDMA_DEST:
899 		case RDS_CMSG_RDMA_MAP:
900 			cmsg_groups |= 2;
901 			/* these are valid but do no add any size */
902 			break;
903 
904 		case RDS_CMSG_ATOMIC_CSWP:
905 		case RDS_CMSG_ATOMIC_FADD:
906 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
907 		case RDS_CMSG_MASKED_ATOMIC_FADD:
908 			cmsg_groups |= 1;
909 			size += sizeof(struct scatterlist);
910 			break;
911 
912 		default:
913 			return -EINVAL;
914 		}
915 
916 	}
917 
918 	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
919 
920 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
921 	if (cmsg_groups == 3)
922 		return -EINVAL;
923 
924 	return size;
925 }
926 
927 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
928 			 struct msghdr *msg, int *allocated_mr)
929 {
930 	struct cmsghdr *cmsg;
931 	int ret = 0;
932 
933 	for_each_cmsghdr(cmsg, msg) {
934 		if (!CMSG_OK(msg, cmsg))
935 			return -EINVAL;
936 
937 		if (cmsg->cmsg_level != SOL_RDS)
938 			continue;
939 
940 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
941 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
942 		 */
943 		switch (cmsg->cmsg_type) {
944 		case RDS_CMSG_RDMA_ARGS:
945 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
946 			break;
947 
948 		case RDS_CMSG_RDMA_DEST:
949 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
950 			break;
951 
952 		case RDS_CMSG_RDMA_MAP:
953 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
954 			if (!ret)
955 				*allocated_mr = 1;
956 			break;
957 		case RDS_CMSG_ATOMIC_CSWP:
958 		case RDS_CMSG_ATOMIC_FADD:
959 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
960 		case RDS_CMSG_MASKED_ATOMIC_FADD:
961 			ret = rds_cmsg_atomic(rs, rm, cmsg);
962 			break;
963 
964 		default:
965 			return -EINVAL;
966 		}
967 
968 		if (ret)
969 			break;
970 	}
971 
972 	return ret;
973 }
974 
975 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
976 {
977 	struct sock *sk = sock->sk;
978 	struct rds_sock *rs = rds_sk_to_rs(sk);
979 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
980 	__be32 daddr;
981 	__be16 dport;
982 	struct rds_message *rm = NULL;
983 	struct rds_connection *conn;
984 	int ret = 0;
985 	int queued = 0, allocated_mr = 0;
986 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
987 	long timeo = sock_sndtimeo(sk, nonblock);
988 
989 	/* Mirror Linux UDP mirror of BSD error message compatibility */
990 	/* XXX: Perhaps MSG_MORE someday */
991 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
992 		ret = -EOPNOTSUPP;
993 		goto out;
994 	}
995 
996 	if (msg->msg_namelen) {
997 		/* XXX fail non-unicast destination IPs? */
998 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
999 			ret = -EINVAL;
1000 			goto out;
1001 		}
1002 		daddr = usin->sin_addr.s_addr;
1003 		dport = usin->sin_port;
1004 	} else {
1005 		/* We only care about consistency with ->connect() */
1006 		lock_sock(sk);
1007 		daddr = rs->rs_conn_addr;
1008 		dport = rs->rs_conn_port;
1009 		release_sock(sk);
1010 	}
1011 
1012 	/* racing with another thread binding seems ok here */
1013 	if (daddr == 0 || rs->rs_bound_addr == 0) {
1014 		ret = -ENOTCONN; /* XXX not a great errno */
1015 		goto out;
1016 	}
1017 
1018 	if (payload_len > rds_sk_sndbuf(rs)) {
1019 		ret = -EMSGSIZE;
1020 		goto out;
1021 	}
1022 
1023 	/* size of rm including all sgs */
1024 	ret = rds_rm_size(msg, payload_len);
1025 	if (ret < 0)
1026 		goto out;
1027 
1028 	rm = rds_message_alloc(ret, GFP_KERNEL);
1029 	if (!rm) {
1030 		ret = -ENOMEM;
1031 		goto out;
1032 	}
1033 
1034 	/* Attach data to the rm */
1035 	if (payload_len) {
1036 		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1037 		if (!rm->data.op_sg) {
1038 			ret = -ENOMEM;
1039 			goto out;
1040 		}
1041 		ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1042 		if (ret)
1043 			goto out;
1044 	}
1045 	rm->data.op_active = 1;
1046 
1047 	rm->m_daddr = daddr;
1048 
1049 	/* rds_conn_create has a spinlock that runs with IRQ off.
1050 	 * Caching the conn in the socket helps a lot. */
1051 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1052 		conn = rs->rs_conn;
1053 	else {
1054 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1055 						rs->rs_bound_addr, daddr,
1056 					rs->rs_transport,
1057 					sock->sk->sk_allocation);
1058 		if (IS_ERR(conn)) {
1059 			ret = PTR_ERR(conn);
1060 			goto out;
1061 		}
1062 		rs->rs_conn = conn;
1063 	}
1064 
1065 	/* Parse any control messages the user may have included. */
1066 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1067 	if (ret)
1068 		goto out;
1069 
1070 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1071 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1072 			       &rm->rdma, conn->c_trans->xmit_rdma);
1073 		ret = -EOPNOTSUPP;
1074 		goto out;
1075 	}
1076 
1077 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1078 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1079 			       &rm->atomic, conn->c_trans->xmit_atomic);
1080 		ret = -EOPNOTSUPP;
1081 		goto out;
1082 	}
1083 
1084 	rds_conn_connect_if_down(conn);
1085 
1086 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1087 	if (ret) {
1088 		rs->rs_seen_congestion = 1;
1089 		goto out;
1090 	}
1091 
1092 	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1093 				  dport, &queued)) {
1094 		rds_stats_inc(s_send_queue_full);
1095 
1096 		if (nonblock) {
1097 			ret = -EAGAIN;
1098 			goto out;
1099 		}
1100 
1101 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1102 					rds_send_queue_rm(rs, conn, rm,
1103 							  rs->rs_bound_port,
1104 							  dport,
1105 							  &queued),
1106 					timeo);
1107 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1108 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1109 			continue;
1110 
1111 		ret = timeo;
1112 		if (ret == 0)
1113 			ret = -ETIMEDOUT;
1114 		goto out;
1115 	}
1116 
1117 	/*
1118 	 * By now we've committed to the send.  We reuse rds_send_worker()
1119 	 * to retry sends in the rds thread if the transport asks us to.
1120 	 */
1121 	rds_stats_inc(s_send_queued);
1122 
1123 	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1124 		rds_send_xmit(conn);
1125 
1126 	rds_message_put(rm);
1127 	return payload_len;
1128 
1129 out:
1130 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1131 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1132 	 * or in any other way, we need to destroy the MR again */
1133 	if (allocated_mr)
1134 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1135 
1136 	if (rm)
1137 		rds_message_put(rm);
1138 	return ret;
1139 }
1140 
1141 /*
1142  * Reply to a ping packet.
1143  */
1144 int
1145 rds_send_pong(struct rds_connection *conn, __be16 dport)
1146 {
1147 	struct rds_message *rm;
1148 	unsigned long flags;
1149 	int ret = 0;
1150 
1151 	rm = rds_message_alloc(0, GFP_ATOMIC);
1152 	if (!rm) {
1153 		ret = -ENOMEM;
1154 		goto out;
1155 	}
1156 
1157 	rm->m_daddr = conn->c_faddr;
1158 	rm->data.op_active = 1;
1159 
1160 	rds_conn_connect_if_down(conn);
1161 
1162 	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1163 	if (ret)
1164 		goto out;
1165 
1166 	spin_lock_irqsave(&conn->c_lock, flags);
1167 	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1168 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1169 	rds_message_addref(rm);
1170 	rm->m_inc.i_conn = conn;
1171 
1172 	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1173 				    conn->c_next_tx_seq);
1174 	conn->c_next_tx_seq++;
1175 	spin_unlock_irqrestore(&conn->c_lock, flags);
1176 
1177 	rds_stats_inc(s_send_queued);
1178 	rds_stats_inc(s_send_pong);
1179 
1180 	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1181 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
1182 
1183 	rds_message_put(rm);
1184 	return 0;
1185 
1186 out:
1187 	if (rm)
1188 		rds_message_put(rm);
1189 	return ret;
1190 }
1191