1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <net/sock.h> 36 #include <linux/in.h> 37 #include <linux/export.h> 38 #include <linux/time.h> 39 #include <linux/rds.h> 40 41 #include "rds.h" 42 43 void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn, 44 __be32 saddr) 45 { 46 int i; 47 48 atomic_set(&inc->i_refcount, 1); 49 INIT_LIST_HEAD(&inc->i_item); 50 inc->i_conn = conn; 51 inc->i_saddr = saddr; 52 inc->i_rdma_cookie = 0; 53 inc->i_rx_tstamp.tv_sec = 0; 54 inc->i_rx_tstamp.tv_usec = 0; 55 56 for (i = 0; i < RDS_RX_MAX_TRACES; i++) 57 inc->i_rx_lat_trace[i] = 0; 58 } 59 EXPORT_SYMBOL_GPL(rds_inc_init); 60 61 void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *cp, 62 __be32 saddr) 63 { 64 atomic_set(&inc->i_refcount, 1); 65 INIT_LIST_HEAD(&inc->i_item); 66 inc->i_conn = cp->cp_conn; 67 inc->i_conn_path = cp; 68 inc->i_saddr = saddr; 69 inc->i_rdma_cookie = 0; 70 inc->i_rx_tstamp.tv_sec = 0; 71 inc->i_rx_tstamp.tv_usec = 0; 72 } 73 EXPORT_SYMBOL_GPL(rds_inc_path_init); 74 75 static void rds_inc_addref(struct rds_incoming *inc) 76 { 77 rdsdebug("addref inc %p ref %d\n", inc, atomic_read(&inc->i_refcount)); 78 atomic_inc(&inc->i_refcount); 79 } 80 81 void rds_inc_put(struct rds_incoming *inc) 82 { 83 rdsdebug("put inc %p ref %d\n", inc, atomic_read(&inc->i_refcount)); 84 if (atomic_dec_and_test(&inc->i_refcount)) { 85 BUG_ON(!list_empty(&inc->i_item)); 86 87 inc->i_conn->c_trans->inc_free(inc); 88 } 89 } 90 EXPORT_SYMBOL_GPL(rds_inc_put); 91 92 static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk, 93 struct rds_cong_map *map, 94 int delta, __be16 port) 95 { 96 int now_congested; 97 98 if (delta == 0) 99 return; 100 101 rs->rs_rcv_bytes += delta; 102 if (delta > 0) 103 rds_stats_add(s_recv_bytes_added_to_socket, delta); 104 else 105 rds_stats_add(s_recv_bytes_removed_from_socket, -delta); 106 now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs); 107 108 rdsdebug("rs %p (%pI4:%u) recv bytes %d buf %d " 109 "now_cong %d delta %d\n", 110 rs, &rs->rs_bound_addr, 111 ntohs(rs->rs_bound_port), rs->rs_rcv_bytes, 112 rds_sk_rcvbuf(rs), now_congested, delta); 113 114 /* wasn't -> am congested */ 115 if (!rs->rs_congested && now_congested) { 116 rs->rs_congested = 1; 117 rds_cong_set_bit(map, port); 118 rds_cong_queue_updates(map); 119 } 120 /* was -> aren't congested */ 121 /* Require more free space before reporting uncongested to prevent 122 bouncing cong/uncong state too often */ 123 else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) { 124 rs->rs_congested = 0; 125 rds_cong_clear_bit(map, port); 126 rds_cong_queue_updates(map); 127 } 128 129 /* do nothing if no change in cong state */ 130 } 131 132 static void rds_conn_peer_gen_update(struct rds_connection *conn, 133 u32 peer_gen_num) 134 { 135 int i; 136 struct rds_message *rm, *tmp; 137 unsigned long flags; 138 139 WARN_ON(conn->c_trans->t_type != RDS_TRANS_TCP); 140 if (peer_gen_num != 0) { 141 if (conn->c_peer_gen_num != 0 && 142 peer_gen_num != conn->c_peer_gen_num) { 143 for (i = 0; i < RDS_MPATH_WORKERS; i++) { 144 struct rds_conn_path *cp; 145 146 cp = &conn->c_path[i]; 147 spin_lock_irqsave(&cp->cp_lock, flags); 148 cp->cp_next_tx_seq = 1; 149 cp->cp_next_rx_seq = 0; 150 list_for_each_entry_safe(rm, tmp, 151 &cp->cp_retrans, 152 m_conn_item) { 153 set_bit(RDS_MSG_FLUSH, &rm->m_flags); 154 } 155 spin_unlock_irqrestore(&cp->cp_lock, flags); 156 } 157 } 158 conn->c_peer_gen_num = peer_gen_num; 159 } 160 } 161 162 /* 163 * Process all extension headers that come with this message. 164 */ 165 static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs) 166 { 167 struct rds_header *hdr = &inc->i_hdr; 168 unsigned int pos = 0, type, len; 169 union { 170 struct rds_ext_header_version version; 171 struct rds_ext_header_rdma rdma; 172 struct rds_ext_header_rdma_dest rdma_dest; 173 } buffer; 174 175 while (1) { 176 len = sizeof(buffer); 177 type = rds_message_next_extension(hdr, &pos, &buffer, &len); 178 if (type == RDS_EXTHDR_NONE) 179 break; 180 /* Process extension header here */ 181 switch (type) { 182 case RDS_EXTHDR_RDMA: 183 rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0); 184 break; 185 186 case RDS_EXTHDR_RDMA_DEST: 187 /* We ignore the size for now. We could stash it 188 * somewhere and use it for error checking. */ 189 inc->i_rdma_cookie = rds_rdma_make_cookie( 190 be32_to_cpu(buffer.rdma_dest.h_rdma_rkey), 191 be32_to_cpu(buffer.rdma_dest.h_rdma_offset)); 192 193 break; 194 } 195 } 196 } 197 198 static void rds_recv_hs_exthdrs(struct rds_header *hdr, 199 struct rds_connection *conn) 200 { 201 unsigned int pos = 0, type, len; 202 union { 203 struct rds_ext_header_version version; 204 u16 rds_npaths; 205 u32 rds_gen_num; 206 } buffer; 207 u32 new_peer_gen_num = 0; 208 209 while (1) { 210 len = sizeof(buffer); 211 type = rds_message_next_extension(hdr, &pos, &buffer, &len); 212 if (type == RDS_EXTHDR_NONE) 213 break; 214 /* Process extension header here */ 215 switch (type) { 216 case RDS_EXTHDR_NPATHS: 217 conn->c_npaths = min_t(int, RDS_MPATH_WORKERS, 218 buffer.rds_npaths); 219 break; 220 case RDS_EXTHDR_GEN_NUM: 221 new_peer_gen_num = buffer.rds_gen_num; 222 break; 223 default: 224 pr_warn_ratelimited("ignoring unknown exthdr type " 225 "0x%x\n", type); 226 } 227 } 228 /* if RDS_EXTHDR_NPATHS was not found, default to a single-path */ 229 conn->c_npaths = max_t(int, conn->c_npaths, 1); 230 rds_conn_peer_gen_update(conn, new_peer_gen_num); 231 } 232 233 /* rds_start_mprds() will synchronously start multiple paths when appropriate. 234 * The scheme is based on the following rules: 235 * 236 * 1. rds_sendmsg on first connect attempt sends the probe ping, with the 237 * sender's npaths (s_npaths) 238 * 2. rcvr of probe-ping knows the mprds_paths = min(s_npaths, r_npaths). It 239 * sends back a probe-pong with r_npaths. After that, if rcvr is the 240 * smaller ip addr, it starts rds_conn_path_connect_if_down on all 241 * mprds_paths. 242 * 3. sender gets woken up, and can move to rds_conn_path_connect_if_down. 243 * If it is the smaller ipaddr, rds_conn_path_connect_if_down can be 244 * called after reception of the probe-pong on all mprds_paths. 245 * Otherwise (sender of probe-ping is not the smaller ip addr): just call 246 * rds_conn_path_connect_if_down on the hashed path. (see rule 4) 247 * 4. when cp_index > 0, rds_connect_worker must only trigger 248 * a connection if laddr < faddr. 249 * 5. sender may end up queuing the packet on the cp. will get sent out later. 250 * when connection is completed. 251 */ 252 static void rds_start_mprds(struct rds_connection *conn) 253 { 254 int i; 255 struct rds_conn_path *cp; 256 257 if (conn->c_npaths > 1 && conn->c_laddr < conn->c_faddr) { 258 for (i = 1; i < conn->c_npaths; i++) { 259 cp = &conn->c_path[i]; 260 rds_conn_path_connect_if_down(cp); 261 } 262 } 263 } 264 265 /* 266 * The transport must make sure that this is serialized against other 267 * rx and conn reset on this specific conn. 268 * 269 * We currently assert that only one fragmented message will be sent 270 * down a connection at a time. This lets us reassemble in the conn 271 * instead of per-flow which means that we don't have to go digging through 272 * flows to tear down partial reassembly progress on conn failure and 273 * we save flow lookup and locking for each frag arrival. It does mean 274 * that small messages will wait behind large ones. Fragmenting at all 275 * is only to reduce the memory consumption of pre-posted buffers. 276 * 277 * The caller passes in saddr and daddr instead of us getting it from the 278 * conn. This lets loopback, who only has one conn for both directions, 279 * tell us which roles the addrs in the conn are playing for this message. 280 */ 281 void rds_recv_incoming(struct rds_connection *conn, __be32 saddr, __be32 daddr, 282 struct rds_incoming *inc, gfp_t gfp) 283 { 284 struct rds_sock *rs = NULL; 285 struct sock *sk; 286 unsigned long flags; 287 struct rds_conn_path *cp; 288 289 inc->i_conn = conn; 290 inc->i_rx_jiffies = jiffies; 291 if (conn->c_trans->t_mp_capable) 292 cp = inc->i_conn_path; 293 else 294 cp = &conn->c_path[0]; 295 296 rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u " 297 "flags 0x%x rx_jiffies %lu\n", conn, 298 (unsigned long long)cp->cp_next_rx_seq, 299 inc, 300 (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence), 301 be32_to_cpu(inc->i_hdr.h_len), 302 be16_to_cpu(inc->i_hdr.h_sport), 303 be16_to_cpu(inc->i_hdr.h_dport), 304 inc->i_hdr.h_flags, 305 inc->i_rx_jiffies); 306 307 /* 308 * Sequence numbers should only increase. Messages get their 309 * sequence number as they're queued in a sending conn. They 310 * can be dropped, though, if the sending socket is closed before 311 * they hit the wire. So sequence numbers can skip forward 312 * under normal operation. They can also drop back in the conn 313 * failover case as previously sent messages are resent down the 314 * new instance of a conn. We drop those, otherwise we have 315 * to assume that the next valid seq does not come after a 316 * hole in the fragment stream. 317 * 318 * The headers don't give us a way to realize if fragments of 319 * a message have been dropped. We assume that frags that arrive 320 * to a flow are part of the current message on the flow that is 321 * being reassembled. This means that senders can't drop messages 322 * from the sending conn until all their frags are sent. 323 * 324 * XXX we could spend more on the wire to get more robust failure 325 * detection, arguably worth it to avoid data corruption. 326 */ 327 if (be64_to_cpu(inc->i_hdr.h_sequence) < cp->cp_next_rx_seq && 328 (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) { 329 rds_stats_inc(s_recv_drop_old_seq); 330 goto out; 331 } 332 cp->cp_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1; 333 334 if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) { 335 if (inc->i_hdr.h_sport == 0) { 336 rdsdebug("ignore ping with 0 sport from 0x%x\n", saddr); 337 goto out; 338 } 339 rds_stats_inc(s_recv_ping); 340 rds_send_pong(cp, inc->i_hdr.h_sport); 341 /* if this is a handshake ping, start multipath if necessary */ 342 if (RDS_HS_PROBE(inc->i_hdr.h_sport, inc->i_hdr.h_dport)) { 343 rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn); 344 rds_start_mprds(cp->cp_conn); 345 } 346 goto out; 347 } 348 349 if (inc->i_hdr.h_dport == RDS_FLAG_PROBE_PORT && 350 inc->i_hdr.h_sport == 0) { 351 rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn); 352 /* if this is a handshake pong, start multipath if necessary */ 353 rds_start_mprds(cp->cp_conn); 354 wake_up(&cp->cp_conn->c_hs_waitq); 355 goto out; 356 } 357 358 rs = rds_find_bound(daddr, inc->i_hdr.h_dport); 359 if (!rs) { 360 rds_stats_inc(s_recv_drop_no_sock); 361 goto out; 362 } 363 364 /* Process extension headers */ 365 rds_recv_incoming_exthdrs(inc, rs); 366 367 /* We can be racing with rds_release() which marks the socket dead. */ 368 sk = rds_rs_to_sk(rs); 369 370 /* serialize with rds_release -> sock_orphan */ 371 write_lock_irqsave(&rs->rs_recv_lock, flags); 372 if (!sock_flag(sk, SOCK_DEAD)) { 373 rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs); 374 rds_stats_inc(s_recv_queued); 375 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, 376 be32_to_cpu(inc->i_hdr.h_len), 377 inc->i_hdr.h_dport); 378 if (sock_flag(sk, SOCK_RCVTSTAMP)) 379 do_gettimeofday(&inc->i_rx_tstamp); 380 rds_inc_addref(inc); 381 inc->i_rx_lat_trace[RDS_MSG_RX_END] = local_clock(); 382 list_add_tail(&inc->i_item, &rs->rs_recv_queue); 383 __rds_wake_sk_sleep(sk); 384 } else { 385 rds_stats_inc(s_recv_drop_dead_sock); 386 } 387 write_unlock_irqrestore(&rs->rs_recv_lock, flags); 388 389 out: 390 if (rs) 391 rds_sock_put(rs); 392 } 393 EXPORT_SYMBOL_GPL(rds_recv_incoming); 394 395 /* 396 * be very careful here. This is being called as the condition in 397 * wait_event_*() needs to cope with being called many times. 398 */ 399 static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc) 400 { 401 unsigned long flags; 402 403 if (!*inc) { 404 read_lock_irqsave(&rs->rs_recv_lock, flags); 405 if (!list_empty(&rs->rs_recv_queue)) { 406 *inc = list_entry(rs->rs_recv_queue.next, 407 struct rds_incoming, 408 i_item); 409 rds_inc_addref(*inc); 410 } 411 read_unlock_irqrestore(&rs->rs_recv_lock, flags); 412 } 413 414 return *inc != NULL; 415 } 416 417 static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc, 418 int drop) 419 { 420 struct sock *sk = rds_rs_to_sk(rs); 421 int ret = 0; 422 unsigned long flags; 423 424 write_lock_irqsave(&rs->rs_recv_lock, flags); 425 if (!list_empty(&inc->i_item)) { 426 ret = 1; 427 if (drop) { 428 /* XXX make sure this i_conn is reliable */ 429 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, 430 -be32_to_cpu(inc->i_hdr.h_len), 431 inc->i_hdr.h_dport); 432 list_del_init(&inc->i_item); 433 rds_inc_put(inc); 434 } 435 } 436 write_unlock_irqrestore(&rs->rs_recv_lock, flags); 437 438 rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop); 439 return ret; 440 } 441 442 /* 443 * Pull errors off the error queue. 444 * If msghdr is NULL, we will just purge the error queue. 445 */ 446 int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr) 447 { 448 struct rds_notifier *notifier; 449 struct rds_rdma_notify cmsg = { 0 }; /* fill holes with zero */ 450 unsigned int count = 0, max_messages = ~0U; 451 unsigned long flags; 452 LIST_HEAD(copy); 453 int err = 0; 454 455 456 /* put_cmsg copies to user space and thus may sleep. We can't do this 457 * with rs_lock held, so first grab as many notifications as we can stuff 458 * in the user provided cmsg buffer. We don't try to copy more, to avoid 459 * losing notifications - except when the buffer is so small that it wouldn't 460 * even hold a single notification. Then we give him as much of this single 461 * msg as we can squeeze in, and set MSG_CTRUNC. 462 */ 463 if (msghdr) { 464 max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg)); 465 if (!max_messages) 466 max_messages = 1; 467 } 468 469 spin_lock_irqsave(&rs->rs_lock, flags); 470 while (!list_empty(&rs->rs_notify_queue) && count < max_messages) { 471 notifier = list_entry(rs->rs_notify_queue.next, 472 struct rds_notifier, n_list); 473 list_move(¬ifier->n_list, ©); 474 count++; 475 } 476 spin_unlock_irqrestore(&rs->rs_lock, flags); 477 478 if (!count) 479 return 0; 480 481 while (!list_empty(©)) { 482 notifier = list_entry(copy.next, struct rds_notifier, n_list); 483 484 if (msghdr) { 485 cmsg.user_token = notifier->n_user_token; 486 cmsg.status = notifier->n_status; 487 488 err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS, 489 sizeof(cmsg), &cmsg); 490 if (err) 491 break; 492 } 493 494 list_del_init(¬ifier->n_list); 495 kfree(notifier); 496 } 497 498 /* If we bailed out because of an error in put_cmsg, 499 * we may be left with one or more notifications that we 500 * didn't process. Return them to the head of the list. */ 501 if (!list_empty(©)) { 502 spin_lock_irqsave(&rs->rs_lock, flags); 503 list_splice(©, &rs->rs_notify_queue); 504 spin_unlock_irqrestore(&rs->rs_lock, flags); 505 } 506 507 return err; 508 } 509 510 /* 511 * Queue a congestion notification 512 */ 513 static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr) 514 { 515 uint64_t notify = rs->rs_cong_notify; 516 unsigned long flags; 517 int err; 518 519 err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE, 520 sizeof(notify), ¬ify); 521 if (err) 522 return err; 523 524 spin_lock_irqsave(&rs->rs_lock, flags); 525 rs->rs_cong_notify &= ~notify; 526 spin_unlock_irqrestore(&rs->rs_lock, flags); 527 528 return 0; 529 } 530 531 /* 532 * Receive any control messages. 533 */ 534 static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg, 535 struct rds_sock *rs) 536 { 537 int ret = 0; 538 539 if (inc->i_rdma_cookie) { 540 ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST, 541 sizeof(inc->i_rdma_cookie), &inc->i_rdma_cookie); 542 if (ret) 543 goto out; 544 } 545 546 if ((inc->i_rx_tstamp.tv_sec != 0) && 547 sock_flag(rds_rs_to_sk(rs), SOCK_RCVTSTAMP)) { 548 ret = put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 549 sizeof(struct timeval), 550 &inc->i_rx_tstamp); 551 if (ret) 552 goto out; 553 } 554 555 if (rs->rs_rx_traces) { 556 struct rds_cmsg_rx_trace t; 557 int i, j; 558 559 inc->i_rx_lat_trace[RDS_MSG_RX_CMSG] = local_clock(); 560 t.rx_traces = rs->rs_rx_traces; 561 for (i = 0; i < rs->rs_rx_traces; i++) { 562 j = rs->rs_rx_trace[i]; 563 t.rx_trace_pos[i] = j; 564 t.rx_trace[i] = inc->i_rx_lat_trace[j + 1] - 565 inc->i_rx_lat_trace[j]; 566 } 567 568 ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RXPATH_LATENCY, 569 sizeof(t), &t); 570 if (ret) 571 goto out; 572 } 573 574 out: 575 return ret; 576 } 577 578 int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 579 int msg_flags) 580 { 581 struct sock *sk = sock->sk; 582 struct rds_sock *rs = rds_sk_to_rs(sk); 583 long timeo; 584 int ret = 0, nonblock = msg_flags & MSG_DONTWAIT; 585 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 586 struct rds_incoming *inc = NULL; 587 588 /* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */ 589 timeo = sock_rcvtimeo(sk, nonblock); 590 591 rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo); 592 593 if (msg_flags & MSG_OOB) 594 goto out; 595 596 while (1) { 597 /* If there are pending notifications, do those - and nothing else */ 598 if (!list_empty(&rs->rs_notify_queue)) { 599 ret = rds_notify_queue_get(rs, msg); 600 break; 601 } 602 603 if (rs->rs_cong_notify) { 604 ret = rds_notify_cong(rs, msg); 605 break; 606 } 607 608 if (!rds_next_incoming(rs, &inc)) { 609 if (nonblock) { 610 ret = -EAGAIN; 611 break; 612 } 613 614 timeo = wait_event_interruptible_timeout(*sk_sleep(sk), 615 (!list_empty(&rs->rs_notify_queue) || 616 rs->rs_cong_notify || 617 rds_next_incoming(rs, &inc)), timeo); 618 rdsdebug("recvmsg woke inc %p timeo %ld\n", inc, 619 timeo); 620 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) 621 continue; 622 623 ret = timeo; 624 if (ret == 0) 625 ret = -ETIMEDOUT; 626 break; 627 } 628 629 rdsdebug("copying inc %p from %pI4:%u to user\n", inc, 630 &inc->i_conn->c_faddr, 631 ntohs(inc->i_hdr.h_sport)); 632 ret = inc->i_conn->c_trans->inc_copy_to_user(inc, &msg->msg_iter); 633 if (ret < 0) 634 break; 635 636 /* 637 * if the message we just copied isn't at the head of the 638 * recv queue then someone else raced us to return it, try 639 * to get the next message. 640 */ 641 if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) { 642 rds_inc_put(inc); 643 inc = NULL; 644 rds_stats_inc(s_recv_deliver_raced); 645 iov_iter_revert(&msg->msg_iter, ret); 646 continue; 647 } 648 649 if (ret < be32_to_cpu(inc->i_hdr.h_len)) { 650 if (msg_flags & MSG_TRUNC) 651 ret = be32_to_cpu(inc->i_hdr.h_len); 652 msg->msg_flags |= MSG_TRUNC; 653 } 654 655 if (rds_cmsg_recv(inc, msg, rs)) { 656 ret = -EFAULT; 657 goto out; 658 } 659 660 rds_stats_inc(s_recv_delivered); 661 662 if (sin) { 663 sin->sin_family = AF_INET; 664 sin->sin_port = inc->i_hdr.h_sport; 665 sin->sin_addr.s_addr = inc->i_saddr; 666 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 667 msg->msg_namelen = sizeof(*sin); 668 } 669 break; 670 } 671 672 if (inc) 673 rds_inc_put(inc); 674 675 out: 676 return ret; 677 } 678 679 /* 680 * The socket is being shut down and we're asked to drop messages that were 681 * queued for recvmsg. The caller has unbound the socket so the receive path 682 * won't queue any more incoming fragments or messages on the socket. 683 */ 684 void rds_clear_recv_queue(struct rds_sock *rs) 685 { 686 struct sock *sk = rds_rs_to_sk(rs); 687 struct rds_incoming *inc, *tmp; 688 unsigned long flags; 689 690 write_lock_irqsave(&rs->rs_recv_lock, flags); 691 list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) { 692 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, 693 -be32_to_cpu(inc->i_hdr.h_len), 694 inc->i_hdr.h_dport); 695 list_del_init(&inc->i_item); 696 rds_inc_put(inc); 697 } 698 write_unlock_irqrestore(&rs->rs_recv_lock, flags); 699 } 700 701 /* 702 * inc->i_saddr isn't used here because it is only set in the receive 703 * path. 704 */ 705 void rds_inc_info_copy(struct rds_incoming *inc, 706 struct rds_info_iterator *iter, 707 __be32 saddr, __be32 daddr, int flip) 708 { 709 struct rds_info_message minfo; 710 711 minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence); 712 minfo.len = be32_to_cpu(inc->i_hdr.h_len); 713 714 if (flip) { 715 minfo.laddr = daddr; 716 minfo.faddr = saddr; 717 minfo.lport = inc->i_hdr.h_dport; 718 minfo.fport = inc->i_hdr.h_sport; 719 } else { 720 minfo.laddr = saddr; 721 minfo.faddr = daddr; 722 minfo.lport = inc->i_hdr.h_sport; 723 minfo.fport = inc->i_hdr.h_dport; 724 } 725 726 minfo.flags = 0; 727 728 rds_info_copy(iter, &minfo, sizeof(minfo)); 729 } 730