xref: /openbmc/linux/net/rds/ib_send.c (revision e190bfe5)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 
38 #include "rds.h"
39 #include "rdma.h"
40 #include "ib.h"
41 
42 static void rds_ib_send_rdma_complete(struct rds_message *rm,
43 				      int wc_status)
44 {
45 	int notify_status;
46 
47 	switch (wc_status) {
48 	case IB_WC_WR_FLUSH_ERR:
49 		return;
50 
51 	case IB_WC_SUCCESS:
52 		notify_status = RDS_RDMA_SUCCESS;
53 		break;
54 
55 	case IB_WC_REM_ACCESS_ERR:
56 		notify_status = RDS_RDMA_REMOTE_ERROR;
57 		break;
58 
59 	default:
60 		notify_status = RDS_RDMA_OTHER_ERROR;
61 		break;
62 	}
63 	rds_rdma_send_complete(rm, notify_status);
64 }
65 
66 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
67 				   struct rds_rdma_op *op)
68 {
69 	if (op->r_mapped) {
70 		ib_dma_unmap_sg(ic->i_cm_id->device,
71 			op->r_sg, op->r_nents,
72 			op->r_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
73 		op->r_mapped = 0;
74 	}
75 }
76 
77 static void rds_ib_send_unmap_rm(struct rds_ib_connection *ic,
78 			  struct rds_ib_send_work *send,
79 			  int wc_status)
80 {
81 	struct rds_message *rm = send->s_rm;
82 
83 	rdsdebug("ic %p send %p rm %p\n", ic, send, rm);
84 
85 	ib_dma_unmap_sg(ic->i_cm_id->device,
86 		     rm->m_sg, rm->m_nents,
87 		     DMA_TO_DEVICE);
88 
89 	if (rm->m_rdma_op != NULL) {
90 		rds_ib_send_unmap_rdma(ic, rm->m_rdma_op);
91 
92 		/* If the user asked for a completion notification on this
93 		 * message, we can implement three different semantics:
94 		 *  1.	Notify when we received the ACK on the RDS message
95 		 *	that was queued with the RDMA. This provides reliable
96 		 *	notification of RDMA status at the expense of a one-way
97 		 *	packet delay.
98 		 *  2.	Notify when the IB stack gives us the completion event for
99 		 *	the RDMA operation.
100 		 *  3.	Notify when the IB stack gives us the completion event for
101 		 *	the accompanying RDS messages.
102 		 * Here, we implement approach #3. To implement approach #2,
103 		 * call rds_rdma_send_complete from the cq_handler. To implement #1,
104 		 * don't call rds_rdma_send_complete at all, and fall back to the notify
105 		 * handling in the ACK processing code.
106 		 *
107 		 * Note: There's no need to explicitly sync any RDMA buffers using
108 		 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
109 		 * operation itself unmapped the RDMA buffers, which takes care
110 		 * of synching.
111 		 */
112 		rds_ib_send_rdma_complete(rm, wc_status);
113 
114 		if (rm->m_rdma_op->r_write)
115 			rds_stats_add(s_send_rdma_bytes, rm->m_rdma_op->r_bytes);
116 		else
117 			rds_stats_add(s_recv_rdma_bytes, rm->m_rdma_op->r_bytes);
118 	}
119 
120 	/* If anyone waited for this message to get flushed out, wake
121 	 * them up now */
122 	rds_message_unmapped(rm);
123 
124 	rds_message_put(rm);
125 	send->s_rm = NULL;
126 }
127 
128 void rds_ib_send_init_ring(struct rds_ib_connection *ic)
129 {
130 	struct rds_ib_send_work *send;
131 	u32 i;
132 
133 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
134 		struct ib_sge *sge;
135 
136 		send->s_rm = NULL;
137 		send->s_op = NULL;
138 
139 		send->s_wr.wr_id = i;
140 		send->s_wr.sg_list = send->s_sge;
141 		send->s_wr.num_sge = 1;
142 		send->s_wr.opcode = IB_WR_SEND;
143 		send->s_wr.send_flags = 0;
144 		send->s_wr.ex.imm_data = 0;
145 
146 		sge = rds_ib_data_sge(ic, send->s_sge);
147 		sge->lkey = ic->i_mr->lkey;
148 
149 		sge = rds_ib_header_sge(ic, send->s_sge);
150 		sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
151 		sge->length = sizeof(struct rds_header);
152 		sge->lkey = ic->i_mr->lkey;
153 	}
154 }
155 
156 void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
157 {
158 	struct rds_ib_send_work *send;
159 	u32 i;
160 
161 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
162 		if (send->s_wr.opcode == 0xdead)
163 			continue;
164 		if (send->s_rm)
165 			rds_ib_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR);
166 		if (send->s_op)
167 			rds_ib_send_unmap_rdma(ic, send->s_op);
168 	}
169 }
170 
171 /*
172  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
173  * operations performed in the send path.  As the sender allocs and potentially
174  * unallocs the next free entry in the ring it doesn't alter which is
175  * the next to be freed, which is what this is concerned with.
176  */
177 void rds_ib_send_cq_comp_handler(struct ib_cq *cq, void *context)
178 {
179 	struct rds_connection *conn = context;
180 	struct rds_ib_connection *ic = conn->c_transport_data;
181 	struct ib_wc wc;
182 	struct rds_ib_send_work *send;
183 	u32 completed;
184 	u32 oldest;
185 	u32 i = 0;
186 	int ret;
187 
188 	rdsdebug("cq %p conn %p\n", cq, conn);
189 	rds_ib_stats_inc(s_ib_tx_cq_call);
190 	ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
191 	if (ret)
192 		rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
193 
194 	while (ib_poll_cq(cq, 1, &wc) > 0) {
195 		rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
196 			 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
197 			 be32_to_cpu(wc.ex.imm_data));
198 		rds_ib_stats_inc(s_ib_tx_cq_event);
199 
200 		if (wc.wr_id == RDS_IB_ACK_WR_ID) {
201 			if (ic->i_ack_queued + HZ/2 < jiffies)
202 				rds_ib_stats_inc(s_ib_tx_stalled);
203 			rds_ib_ack_send_complete(ic);
204 			continue;
205 		}
206 
207 		oldest = rds_ib_ring_oldest(&ic->i_send_ring);
208 
209 		completed = rds_ib_ring_completed(&ic->i_send_ring, wc.wr_id, oldest);
210 
211 		for (i = 0; i < completed; i++) {
212 			send = &ic->i_sends[oldest];
213 
214 			/* In the error case, wc.opcode sometimes contains garbage */
215 			switch (send->s_wr.opcode) {
216 			case IB_WR_SEND:
217 				if (send->s_rm)
218 					rds_ib_send_unmap_rm(ic, send, wc.status);
219 				break;
220 			case IB_WR_RDMA_WRITE:
221 			case IB_WR_RDMA_READ:
222 				/* Nothing to be done - the SG list will be unmapped
223 				 * when the SEND completes. */
224 				break;
225 			default:
226 				if (printk_ratelimit())
227 					printk(KERN_NOTICE
228 						"RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
229 						__func__, send->s_wr.opcode);
230 				break;
231 			}
232 
233 			send->s_wr.opcode = 0xdead;
234 			send->s_wr.num_sge = 1;
235 			if (send->s_queued + HZ/2 < jiffies)
236 				rds_ib_stats_inc(s_ib_tx_stalled);
237 
238 			/* If a RDMA operation produced an error, signal this right
239 			 * away. If we don't, the subsequent SEND that goes with this
240 			 * RDMA will be canceled with ERR_WFLUSH, and the application
241 			 * never learn that the RDMA failed. */
242 			if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) {
243 				struct rds_message *rm;
244 
245 				rm = rds_send_get_message(conn, send->s_op);
246 				if (rm) {
247 					if (rm->m_rdma_op)
248 						rds_ib_send_unmap_rdma(ic, rm->m_rdma_op);
249 					rds_ib_send_rdma_complete(rm, wc.status);
250 					rds_message_put(rm);
251 				}
252 			}
253 
254 			oldest = (oldest + 1) % ic->i_send_ring.w_nr;
255 		}
256 
257 		rds_ib_ring_free(&ic->i_send_ring, completed);
258 
259 		if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
260 		    test_bit(0, &conn->c_map_queued))
261 			queue_delayed_work(rds_wq, &conn->c_send_w, 0);
262 
263 		/* We expect errors as the qp is drained during shutdown */
264 		if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) {
265 			rds_ib_conn_error(conn,
266 				"send completion on %pI4 "
267 				"had status %u, disconnecting and reconnecting\n",
268 				&conn->c_faddr, wc.status);
269 		}
270 	}
271 }
272 
273 /*
274  * This is the main function for allocating credits when sending
275  * messages.
276  *
277  * Conceptually, we have two counters:
278  *  -	send credits: this tells us how many WRs we're allowed
279  *	to submit without overruning the reciever's queue. For
280  *	each SEND WR we post, we decrement this by one.
281  *
282  *  -	posted credits: this tells us how many WRs we recently
283  *	posted to the receive queue. This value is transferred
284  *	to the peer as a "credit update" in a RDS header field.
285  *	Every time we transmit credits to the peer, we subtract
286  *	the amount of transferred credits from this counter.
287  *
288  * It is essential that we avoid situations where both sides have
289  * exhausted their send credits, and are unable to send new credits
290  * to the peer. We achieve this by requiring that we send at least
291  * one credit update to the peer before exhausting our credits.
292  * When new credits arrive, we subtract one credit that is withheld
293  * until we've posted new buffers and are ready to transmit these
294  * credits (see rds_ib_send_add_credits below).
295  *
296  * The RDS send code is essentially single-threaded; rds_send_xmit
297  * grabs c_send_lock to ensure exclusive access to the send ring.
298  * However, the ACK sending code is independent and can race with
299  * message SENDs.
300  *
301  * In the send path, we need to update the counters for send credits
302  * and the counter of posted buffers atomically - when we use the
303  * last available credit, we cannot allow another thread to race us
304  * and grab the posted credits counter.  Hence, we have to use a
305  * spinlock to protect the credit counter, or use atomics.
306  *
307  * Spinlocks shared between the send and the receive path are bad,
308  * because they create unnecessary delays. An early implementation
309  * using a spinlock showed a 5% degradation in throughput at some
310  * loads.
311  *
312  * This implementation avoids spinlocks completely, putting both
313  * counters into a single atomic, and updating that atomic using
314  * atomic_add (in the receive path, when receiving fresh credits),
315  * and using atomic_cmpxchg when updating the two counters.
316  */
317 int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
318 			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
319 {
320 	unsigned int avail, posted, got = 0, advertise;
321 	long oldval, newval;
322 
323 	*adv_credits = 0;
324 	if (!ic->i_flowctl)
325 		return wanted;
326 
327 try_again:
328 	advertise = 0;
329 	oldval = newval = atomic_read(&ic->i_credits);
330 	posted = IB_GET_POST_CREDITS(oldval);
331 	avail = IB_GET_SEND_CREDITS(oldval);
332 
333 	rdsdebug("rds_ib_send_grab_credits(%u): credits=%u posted=%u\n",
334 			wanted, avail, posted);
335 
336 	/* The last credit must be used to send a credit update. */
337 	if (avail && !posted)
338 		avail--;
339 
340 	if (avail < wanted) {
341 		struct rds_connection *conn = ic->i_cm_id->context;
342 
343 		/* Oops, there aren't that many credits left! */
344 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
345 		got = avail;
346 	} else {
347 		/* Sometimes you get what you want, lalala. */
348 		got = wanted;
349 	}
350 	newval -= IB_SET_SEND_CREDITS(got);
351 
352 	/*
353 	 * If need_posted is non-zero, then the caller wants
354 	 * the posted regardless of whether any send credits are
355 	 * available.
356 	 */
357 	if (posted && (got || need_posted)) {
358 		advertise = min_t(unsigned int, posted, max_posted);
359 		newval -= IB_SET_POST_CREDITS(advertise);
360 	}
361 
362 	/* Finally bill everything */
363 	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
364 		goto try_again;
365 
366 	*adv_credits = advertise;
367 	return got;
368 }
369 
370 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
371 {
372 	struct rds_ib_connection *ic = conn->c_transport_data;
373 
374 	if (credits == 0)
375 		return;
376 
377 	rdsdebug("rds_ib_send_add_credits(%u): current=%u%s\n",
378 			credits,
379 			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
380 			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
381 
382 	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
383 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
384 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
385 
386 	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
387 
388 	rds_ib_stats_inc(s_ib_rx_credit_updates);
389 }
390 
391 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
392 {
393 	struct rds_ib_connection *ic = conn->c_transport_data;
394 
395 	if (posted == 0)
396 		return;
397 
398 	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
399 
400 	/* Decide whether to send an update to the peer now.
401 	 * If we would send a credit update for every single buffer we
402 	 * post, we would end up with an ACK storm (ACK arrives,
403 	 * consumes buffer, we refill the ring, send ACK to remote
404 	 * advertising the newly posted buffer... ad inf)
405 	 *
406 	 * Performance pretty much depends on how often we send
407 	 * credit updates - too frequent updates mean lots of ACKs.
408 	 * Too infrequent updates, and the peer will run out of
409 	 * credits and has to throttle.
410 	 * For the time being, 16 seems to be a good compromise.
411 	 */
412 	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
413 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
414 }
415 
416 static inline void
417 rds_ib_xmit_populate_wr(struct rds_ib_connection *ic,
418 		struct rds_ib_send_work *send, unsigned int pos,
419 		unsigned long buffer, unsigned int length,
420 		int send_flags)
421 {
422 	struct ib_sge *sge;
423 
424 	WARN_ON(pos != send - ic->i_sends);
425 
426 	send->s_wr.send_flags = send_flags;
427 	send->s_wr.opcode = IB_WR_SEND;
428 	send->s_wr.num_sge = 2;
429 	send->s_wr.next = NULL;
430 	send->s_queued = jiffies;
431 	send->s_op = NULL;
432 
433 	if (length != 0) {
434 		sge = rds_ib_data_sge(ic, send->s_sge);
435 		sge->addr = buffer;
436 		sge->length = length;
437 		sge->lkey = ic->i_mr->lkey;
438 
439 		sge = rds_ib_header_sge(ic, send->s_sge);
440 	} else {
441 		/* We're sending a packet with no payload. There is only
442 		 * one SGE */
443 		send->s_wr.num_sge = 1;
444 		sge = &send->s_sge[0];
445 	}
446 
447 	sge->addr = ic->i_send_hdrs_dma + (pos * sizeof(struct rds_header));
448 	sge->length = sizeof(struct rds_header);
449 	sge->lkey = ic->i_mr->lkey;
450 }
451 
452 /*
453  * This can be called multiple times for a given message.  The first time
454  * we see a message we map its scatterlist into the IB device so that
455  * we can provide that mapped address to the IB scatter gather entries
456  * in the IB work requests.  We translate the scatterlist into a series
457  * of work requests that fragment the message.  These work requests complete
458  * in order so we pass ownership of the message to the completion handler
459  * once we send the final fragment.
460  *
461  * The RDS core uses the c_send_lock to only enter this function once
462  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
463  * don't get out of sync and confuse the ring.
464  */
465 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
466 		unsigned int hdr_off, unsigned int sg, unsigned int off)
467 {
468 	struct rds_ib_connection *ic = conn->c_transport_data;
469 	struct ib_device *dev = ic->i_cm_id->device;
470 	struct rds_ib_send_work *send = NULL;
471 	struct rds_ib_send_work *first;
472 	struct rds_ib_send_work *prev;
473 	struct ib_send_wr *failed_wr;
474 	struct scatterlist *scat;
475 	u32 pos;
476 	u32 i;
477 	u32 work_alloc;
478 	u32 credit_alloc;
479 	u32 posted;
480 	u32 adv_credits = 0;
481 	int send_flags = 0;
482 	int sent;
483 	int ret;
484 	int flow_controlled = 0;
485 
486 	BUG_ON(off % RDS_FRAG_SIZE);
487 	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
488 
489 	/* Do not send cong updates to IB loopback */
490 	if (conn->c_loopback
491 	    && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
492 		rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
493 		return sizeof(struct rds_header) + RDS_CONG_MAP_BYTES;
494 	}
495 
496 	/* FIXME we may overallocate here */
497 	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
498 		i = 1;
499 	else
500 		i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
501 
502 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
503 	if (work_alloc == 0) {
504 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
505 		rds_ib_stats_inc(s_ib_tx_ring_full);
506 		ret = -ENOMEM;
507 		goto out;
508 	}
509 
510 	credit_alloc = work_alloc;
511 	if (ic->i_flowctl) {
512 		credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
513 		adv_credits += posted;
514 		if (credit_alloc < work_alloc) {
515 			rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
516 			work_alloc = credit_alloc;
517 			flow_controlled++;
518 		}
519 		if (work_alloc == 0) {
520 			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
521 			rds_ib_stats_inc(s_ib_tx_throttle);
522 			ret = -ENOMEM;
523 			goto out;
524 		}
525 	}
526 
527 	/* map the message the first time we see it */
528 	if (ic->i_rm == NULL) {
529 		/*
530 		printk(KERN_NOTICE "rds_ib_xmit prep msg dport=%u flags=0x%x len=%d\n",
531 				be16_to_cpu(rm->m_inc.i_hdr.h_dport),
532 				rm->m_inc.i_hdr.h_flags,
533 				be32_to_cpu(rm->m_inc.i_hdr.h_len));
534 		   */
535 		if (rm->m_nents) {
536 			rm->m_count = ib_dma_map_sg(dev,
537 					 rm->m_sg, rm->m_nents, DMA_TO_DEVICE);
538 			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->m_count);
539 			if (rm->m_count == 0) {
540 				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
541 				rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
542 				ret = -ENOMEM; /* XXX ? */
543 				goto out;
544 			}
545 		} else {
546 			rm->m_count = 0;
547 		}
548 
549 		ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
550 		ic->i_unsignaled_bytes = rds_ib_sysctl_max_unsig_bytes;
551 		rds_message_addref(rm);
552 		ic->i_rm = rm;
553 
554 		/* Finalize the header */
555 		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
556 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
557 		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
558 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
559 
560 		/* If it has a RDMA op, tell the peer we did it. This is
561 		 * used by the peer to release use-once RDMA MRs. */
562 		if (rm->m_rdma_op) {
563 			struct rds_ext_header_rdma ext_hdr;
564 
565 			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->m_rdma_op->r_key);
566 			rds_message_add_extension(&rm->m_inc.i_hdr,
567 					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
568 		}
569 		if (rm->m_rdma_cookie) {
570 			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
571 					rds_rdma_cookie_key(rm->m_rdma_cookie),
572 					rds_rdma_cookie_offset(rm->m_rdma_cookie));
573 		}
574 
575 		/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
576 		 * we should not do this unless we have a chance of at least
577 		 * sticking the header into the send ring. Which is why we
578 		 * should call rds_ib_ring_alloc first. */
579 		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
580 		rds_message_make_checksum(&rm->m_inc.i_hdr);
581 
582 		/*
583 		 * Update adv_credits since we reset the ACK_REQUIRED bit.
584 		 */
585 		rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
586 		adv_credits += posted;
587 		BUG_ON(adv_credits > 255);
588 	}
589 
590 	send = &ic->i_sends[pos];
591 	first = send;
592 	prev = NULL;
593 	scat = &rm->m_sg[sg];
594 	sent = 0;
595 	i = 0;
596 
597 	/* Sometimes you want to put a fence between an RDMA
598 	 * READ and the following SEND.
599 	 * We could either do this all the time
600 	 * or when requested by the user. Right now, we let
601 	 * the application choose.
602 	 */
603 	if (rm->m_rdma_op && rm->m_rdma_op->r_fence)
604 		send_flags = IB_SEND_FENCE;
605 
606 	/*
607 	 * We could be copying the header into the unused tail of the page.
608 	 * That would need to be changed in the future when those pages might
609 	 * be mapped userspace pages or page cache pages.  So instead we always
610 	 * use a second sge and our long-lived ring of mapped headers.  We send
611 	 * the header after the data so that the data payload can be aligned on
612 	 * the receiver.
613 	 */
614 
615 	/* handle a 0-len message */
616 	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) {
617 		rds_ib_xmit_populate_wr(ic, send, pos, 0, 0, send_flags);
618 		goto add_header;
619 	}
620 
621 	/* if there's data reference it with a chain of work reqs */
622 	for (; i < work_alloc && scat != &rm->m_sg[rm->m_count]; i++) {
623 		unsigned int len;
624 
625 		send = &ic->i_sends[pos];
626 
627 		len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off);
628 		rds_ib_xmit_populate_wr(ic, send, pos,
629 				ib_sg_dma_address(dev, scat) + off, len,
630 				send_flags);
631 
632 		/*
633 		 * We want to delay signaling completions just enough to get
634 		 * the batching benefits but not so much that we create dead time
635 		 * on the wire.
636 		 */
637 		if (ic->i_unsignaled_wrs-- == 0) {
638 			ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
639 			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
640 		}
641 
642 		ic->i_unsignaled_bytes -= len;
643 		if (ic->i_unsignaled_bytes <= 0) {
644 			ic->i_unsignaled_bytes = rds_ib_sysctl_max_unsig_bytes;
645 			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
646 		}
647 
648 		/*
649 		 * Always signal the last one if we're stopping due to flow control.
650 		 */
651 		if (flow_controlled && i == (work_alloc-1))
652 			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
653 
654 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
655 			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
656 
657 		sent += len;
658 		off += len;
659 		if (off == ib_sg_dma_len(dev, scat)) {
660 			scat++;
661 			off = 0;
662 		}
663 
664 add_header:
665 		/* Tack on the header after the data. The header SGE should already
666 		 * have been set up to point to the right header buffer. */
667 		memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
668 
669 		if (0) {
670 			struct rds_header *hdr = &ic->i_send_hdrs[pos];
671 
672 			printk(KERN_NOTICE "send WR dport=%u flags=0x%x len=%d\n",
673 				be16_to_cpu(hdr->h_dport),
674 				hdr->h_flags,
675 				be32_to_cpu(hdr->h_len));
676 		}
677 		if (adv_credits) {
678 			struct rds_header *hdr = &ic->i_send_hdrs[pos];
679 
680 			/* add credit and redo the header checksum */
681 			hdr->h_credit = adv_credits;
682 			rds_message_make_checksum(hdr);
683 			adv_credits = 0;
684 			rds_ib_stats_inc(s_ib_tx_credit_updates);
685 		}
686 
687 		if (prev)
688 			prev->s_wr.next = &send->s_wr;
689 		prev = send;
690 
691 		pos = (pos + 1) % ic->i_send_ring.w_nr;
692 	}
693 
694 	/* Account the RDS header in the number of bytes we sent, but just once.
695 	 * The caller has no concept of fragmentation. */
696 	if (hdr_off == 0)
697 		sent += sizeof(struct rds_header);
698 
699 	/* if we finished the message then send completion owns it */
700 	if (scat == &rm->m_sg[rm->m_count]) {
701 		prev->s_rm = ic->i_rm;
702 		prev->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
703 		ic->i_rm = NULL;
704 	}
705 
706 	if (i < work_alloc) {
707 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
708 		work_alloc = i;
709 	}
710 	if (ic->i_flowctl && i < credit_alloc)
711 		rds_ib_send_add_credits(conn, credit_alloc - i);
712 
713 	/* XXX need to worry about failed_wr and partial sends. */
714 	failed_wr = &first->s_wr;
715 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
716 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
717 		 first, &first->s_wr, ret, failed_wr);
718 	BUG_ON(failed_wr != &first->s_wr);
719 	if (ret) {
720 		printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 "
721 		       "returned %d\n", &conn->c_faddr, ret);
722 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
723 		if (prev->s_rm) {
724 			ic->i_rm = prev->s_rm;
725 			prev->s_rm = NULL;
726 		}
727 
728 		rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
729 		goto out;
730 	}
731 
732 	ret = sent;
733 out:
734 	BUG_ON(adv_credits);
735 	return ret;
736 }
737 
738 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rds_rdma_op *op)
739 {
740 	struct rds_ib_connection *ic = conn->c_transport_data;
741 	struct rds_ib_send_work *send = NULL;
742 	struct rds_ib_send_work *first;
743 	struct rds_ib_send_work *prev;
744 	struct ib_send_wr *failed_wr;
745 	struct rds_ib_device *rds_ibdev;
746 	struct scatterlist *scat;
747 	unsigned long len;
748 	u64 remote_addr = op->r_remote_addr;
749 	u32 pos;
750 	u32 work_alloc;
751 	u32 i;
752 	u32 j;
753 	int sent;
754 	int ret;
755 	int num_sge;
756 
757 	rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client);
758 
759 	/* map the message the first time we see it */
760 	if (!op->r_mapped) {
761 		op->r_count = ib_dma_map_sg(ic->i_cm_id->device,
762 					op->r_sg, op->r_nents, (op->r_write) ?
763 					DMA_TO_DEVICE : DMA_FROM_DEVICE);
764 		rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->r_count);
765 		if (op->r_count == 0) {
766 			rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
767 			ret = -ENOMEM; /* XXX ? */
768 			goto out;
769 		}
770 
771 		op->r_mapped = 1;
772 	}
773 
774 	/*
775 	 * Instead of knowing how to return a partial rdma read/write we insist that there
776 	 * be enough work requests to send the entire message.
777 	 */
778 	i = ceil(op->r_count, rds_ibdev->max_sge);
779 
780 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
781 	if (work_alloc != i) {
782 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
783 		rds_ib_stats_inc(s_ib_tx_ring_full);
784 		ret = -ENOMEM;
785 		goto out;
786 	}
787 
788 	send = &ic->i_sends[pos];
789 	first = send;
790 	prev = NULL;
791 	scat = &op->r_sg[0];
792 	sent = 0;
793 	num_sge = op->r_count;
794 
795 	for (i = 0; i < work_alloc && scat != &op->r_sg[op->r_count]; i++) {
796 		send->s_wr.send_flags = 0;
797 		send->s_queued = jiffies;
798 		/*
799 		 * We want to delay signaling completions just enough to get
800 		 * the batching benefits but not so much that we create dead time on the wire.
801 		 */
802 		if (ic->i_unsignaled_wrs-- == 0) {
803 			ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
804 			send->s_wr.send_flags = IB_SEND_SIGNALED;
805 		}
806 
807 		send->s_wr.opcode = op->r_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
808 		send->s_wr.wr.rdma.remote_addr = remote_addr;
809 		send->s_wr.wr.rdma.rkey = op->r_key;
810 		send->s_op = op;
811 
812 		if (num_sge > rds_ibdev->max_sge) {
813 			send->s_wr.num_sge = rds_ibdev->max_sge;
814 			num_sge -= rds_ibdev->max_sge;
815 		} else {
816 			send->s_wr.num_sge = num_sge;
817 		}
818 
819 		send->s_wr.next = NULL;
820 
821 		if (prev)
822 			prev->s_wr.next = &send->s_wr;
823 
824 		for (j = 0; j < send->s_wr.num_sge && scat != &op->r_sg[op->r_count]; j++) {
825 			len = ib_sg_dma_len(ic->i_cm_id->device, scat);
826 			send->s_sge[j].addr =
827 				 ib_sg_dma_address(ic->i_cm_id->device, scat);
828 			send->s_sge[j].length = len;
829 			send->s_sge[j].lkey = ic->i_mr->lkey;
830 
831 			sent += len;
832 			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
833 
834 			remote_addr += len;
835 			scat++;
836 		}
837 
838 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
839 			&send->s_wr, send->s_wr.num_sge, send->s_wr.next);
840 
841 		prev = send;
842 		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
843 			send = ic->i_sends;
844 	}
845 
846 	/* if we finished the message then send completion owns it */
847 	if (scat == &op->r_sg[op->r_count])
848 		prev->s_wr.send_flags = IB_SEND_SIGNALED;
849 
850 	if (i < work_alloc) {
851 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
852 		work_alloc = i;
853 	}
854 
855 	failed_wr = &first->s_wr;
856 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
857 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
858 		 first, &first->s_wr, ret, failed_wr);
859 	BUG_ON(failed_wr != &first->s_wr);
860 	if (ret) {
861 		printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 "
862 		       "returned %d\n", &conn->c_faddr, ret);
863 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
864 		goto out;
865 	}
866 
867 	if (unlikely(failed_wr != &first->s_wr)) {
868 		printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
869 		BUG_ON(failed_wr != &first->s_wr);
870 	}
871 
872 
873 out:
874 	return ret;
875 }
876 
877 void rds_ib_xmit_complete(struct rds_connection *conn)
878 {
879 	struct rds_ib_connection *ic = conn->c_transport_data;
880 
881 	/* We may have a pending ACK or window update we were unable
882 	 * to send previously (due to flow control). Try again. */
883 	rds_ib_attempt_ack(ic);
884 }
885