1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/in.h> 35 #include <linux/device.h> 36 #include <linux/dmapool.h> 37 38 #include "rds.h" 39 #include "ib.h" 40 41 static char *rds_ib_wc_status_strings[] = { 42 #define RDS_IB_WC_STATUS_STR(foo) \ 43 [IB_WC_##foo] = __stringify(IB_WC_##foo) 44 RDS_IB_WC_STATUS_STR(SUCCESS), 45 RDS_IB_WC_STATUS_STR(LOC_LEN_ERR), 46 RDS_IB_WC_STATUS_STR(LOC_QP_OP_ERR), 47 RDS_IB_WC_STATUS_STR(LOC_EEC_OP_ERR), 48 RDS_IB_WC_STATUS_STR(LOC_PROT_ERR), 49 RDS_IB_WC_STATUS_STR(WR_FLUSH_ERR), 50 RDS_IB_WC_STATUS_STR(MW_BIND_ERR), 51 RDS_IB_WC_STATUS_STR(BAD_RESP_ERR), 52 RDS_IB_WC_STATUS_STR(LOC_ACCESS_ERR), 53 RDS_IB_WC_STATUS_STR(REM_INV_REQ_ERR), 54 RDS_IB_WC_STATUS_STR(REM_ACCESS_ERR), 55 RDS_IB_WC_STATUS_STR(REM_OP_ERR), 56 RDS_IB_WC_STATUS_STR(RETRY_EXC_ERR), 57 RDS_IB_WC_STATUS_STR(RNR_RETRY_EXC_ERR), 58 RDS_IB_WC_STATUS_STR(LOC_RDD_VIOL_ERR), 59 RDS_IB_WC_STATUS_STR(REM_INV_RD_REQ_ERR), 60 RDS_IB_WC_STATUS_STR(REM_ABORT_ERR), 61 RDS_IB_WC_STATUS_STR(INV_EECN_ERR), 62 RDS_IB_WC_STATUS_STR(INV_EEC_STATE_ERR), 63 RDS_IB_WC_STATUS_STR(FATAL_ERR), 64 RDS_IB_WC_STATUS_STR(RESP_TIMEOUT_ERR), 65 RDS_IB_WC_STATUS_STR(GENERAL_ERR), 66 #undef RDS_IB_WC_STATUS_STR 67 }; 68 69 char *rds_ib_wc_status_str(enum ib_wc_status status) 70 { 71 return rds_str_array(rds_ib_wc_status_strings, 72 ARRAY_SIZE(rds_ib_wc_status_strings), status); 73 } 74 75 /* 76 * Convert IB-specific error message to RDS error message and call core 77 * completion handler. 78 */ 79 static void rds_ib_send_complete(struct rds_message *rm, 80 int wc_status, 81 void (*complete)(struct rds_message *rm, int status)) 82 { 83 int notify_status; 84 85 switch (wc_status) { 86 case IB_WC_WR_FLUSH_ERR: 87 return; 88 89 case IB_WC_SUCCESS: 90 notify_status = RDS_RDMA_SUCCESS; 91 break; 92 93 case IB_WC_REM_ACCESS_ERR: 94 notify_status = RDS_RDMA_REMOTE_ERROR; 95 break; 96 97 default: 98 notify_status = RDS_RDMA_OTHER_ERROR; 99 break; 100 } 101 complete(rm, notify_status); 102 } 103 104 static void rds_ib_send_unmap_data(struct rds_ib_connection *ic, 105 struct rm_data_op *op, 106 int wc_status) 107 { 108 if (op->op_nents) 109 ib_dma_unmap_sg(ic->i_cm_id->device, 110 op->op_sg, op->op_nents, 111 DMA_TO_DEVICE); 112 } 113 114 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic, 115 struct rm_rdma_op *op, 116 int wc_status) 117 { 118 if (op->op_mapped) { 119 ib_dma_unmap_sg(ic->i_cm_id->device, 120 op->op_sg, op->op_nents, 121 op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 122 op->op_mapped = 0; 123 } 124 125 /* If the user asked for a completion notification on this 126 * message, we can implement three different semantics: 127 * 1. Notify when we received the ACK on the RDS message 128 * that was queued with the RDMA. This provides reliable 129 * notification of RDMA status at the expense of a one-way 130 * packet delay. 131 * 2. Notify when the IB stack gives us the completion event for 132 * the RDMA operation. 133 * 3. Notify when the IB stack gives us the completion event for 134 * the accompanying RDS messages. 135 * Here, we implement approach #3. To implement approach #2, 136 * we would need to take an event for the rdma WR. To implement #1, 137 * don't call rds_rdma_send_complete at all, and fall back to the notify 138 * handling in the ACK processing code. 139 * 140 * Note: There's no need to explicitly sync any RDMA buffers using 141 * ib_dma_sync_sg_for_cpu - the completion for the RDMA 142 * operation itself unmapped the RDMA buffers, which takes care 143 * of synching. 144 */ 145 rds_ib_send_complete(container_of(op, struct rds_message, rdma), 146 wc_status, rds_rdma_send_complete); 147 148 if (op->op_write) 149 rds_stats_add(s_send_rdma_bytes, op->op_bytes); 150 else 151 rds_stats_add(s_recv_rdma_bytes, op->op_bytes); 152 } 153 154 static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic, 155 struct rm_atomic_op *op, 156 int wc_status) 157 { 158 /* unmap atomic recvbuf */ 159 if (op->op_mapped) { 160 ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1, 161 DMA_FROM_DEVICE); 162 op->op_mapped = 0; 163 } 164 165 rds_ib_send_complete(container_of(op, struct rds_message, atomic), 166 wc_status, rds_atomic_send_complete); 167 168 if (op->op_type == RDS_ATOMIC_TYPE_CSWP) 169 rds_ib_stats_inc(s_ib_atomic_cswp); 170 else 171 rds_ib_stats_inc(s_ib_atomic_fadd); 172 } 173 174 /* 175 * Unmap the resources associated with a struct send_work. 176 * 177 * Returns the rm for no good reason other than it is unobtainable 178 * other than by switching on wr.opcode, currently, and the caller, 179 * the event handler, needs it. 180 */ 181 static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic, 182 struct rds_ib_send_work *send, 183 int wc_status) 184 { 185 struct rds_message *rm = NULL; 186 187 /* In the error case, wc.opcode sometimes contains garbage */ 188 switch (send->s_wr.opcode) { 189 case IB_WR_SEND: 190 if (send->s_op) { 191 rm = container_of(send->s_op, struct rds_message, data); 192 rds_ib_send_unmap_data(ic, send->s_op, wc_status); 193 } 194 break; 195 case IB_WR_RDMA_WRITE: 196 case IB_WR_RDMA_READ: 197 if (send->s_op) { 198 rm = container_of(send->s_op, struct rds_message, rdma); 199 rds_ib_send_unmap_rdma(ic, send->s_op, wc_status); 200 } 201 break; 202 case IB_WR_ATOMIC_FETCH_AND_ADD: 203 case IB_WR_ATOMIC_CMP_AND_SWP: 204 if (send->s_op) { 205 rm = container_of(send->s_op, struct rds_message, atomic); 206 rds_ib_send_unmap_atomic(ic, send->s_op, wc_status); 207 } 208 break; 209 default: 210 if (printk_ratelimit()) 211 printk(KERN_NOTICE 212 "RDS/IB: %s: unexpected opcode 0x%x in WR!\n", 213 __func__, send->s_wr.opcode); 214 break; 215 } 216 217 send->s_wr.opcode = 0xdead; 218 219 return rm; 220 } 221 222 void rds_ib_send_init_ring(struct rds_ib_connection *ic) 223 { 224 struct rds_ib_send_work *send; 225 u32 i; 226 227 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { 228 struct ib_sge *sge; 229 230 send->s_op = NULL; 231 232 send->s_wr.wr_id = i; 233 send->s_wr.sg_list = send->s_sge; 234 send->s_wr.ex.imm_data = 0; 235 236 sge = &send->s_sge[0]; 237 sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header)); 238 sge->length = sizeof(struct rds_header); 239 sge->lkey = ic->i_mr->lkey; 240 241 send->s_sge[1].lkey = ic->i_mr->lkey; 242 } 243 } 244 245 void rds_ib_send_clear_ring(struct rds_ib_connection *ic) 246 { 247 struct rds_ib_send_work *send; 248 u32 i; 249 250 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { 251 if (send->s_op && send->s_wr.opcode != 0xdead) 252 rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR); 253 } 254 } 255 256 /* 257 * The only fast path caller always has a non-zero nr, so we don't 258 * bother testing nr before performing the atomic sub. 259 */ 260 static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr) 261 { 262 if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) && 263 waitqueue_active(&rds_ib_ring_empty_wait)) 264 wake_up(&rds_ib_ring_empty_wait); 265 BUG_ON(atomic_read(&ic->i_signaled_sends) < 0); 266 } 267 268 /* 269 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc 270 * operations performed in the send path. As the sender allocs and potentially 271 * unallocs the next free entry in the ring it doesn't alter which is 272 * the next to be freed, which is what this is concerned with. 273 */ 274 void rds_ib_send_cq_comp_handler(struct ib_cq *cq, void *context) 275 { 276 struct rds_connection *conn = context; 277 struct rds_ib_connection *ic = conn->c_transport_data; 278 struct rds_message *rm = NULL; 279 struct ib_wc wc; 280 struct rds_ib_send_work *send; 281 u32 completed; 282 u32 oldest; 283 u32 i = 0; 284 int ret; 285 int nr_sig = 0; 286 287 rdsdebug("cq %p conn %p\n", cq, conn); 288 rds_ib_stats_inc(s_ib_tx_cq_call); 289 ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 290 if (ret) 291 rdsdebug("ib_req_notify_cq send failed: %d\n", ret); 292 293 while (ib_poll_cq(cq, 1, &wc) > 0) { 294 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", 295 (unsigned long long)wc.wr_id, wc.status, 296 rds_ib_wc_status_str(wc.status), wc.byte_len, 297 be32_to_cpu(wc.ex.imm_data)); 298 rds_ib_stats_inc(s_ib_tx_cq_event); 299 300 if (wc.wr_id == RDS_IB_ACK_WR_ID) { 301 if (ic->i_ack_queued + HZ/2 < jiffies) 302 rds_ib_stats_inc(s_ib_tx_stalled); 303 rds_ib_ack_send_complete(ic); 304 continue; 305 } 306 307 oldest = rds_ib_ring_oldest(&ic->i_send_ring); 308 309 completed = rds_ib_ring_completed(&ic->i_send_ring, wc.wr_id, oldest); 310 311 for (i = 0; i < completed; i++) { 312 send = &ic->i_sends[oldest]; 313 if (send->s_wr.send_flags & IB_SEND_SIGNALED) 314 nr_sig++; 315 316 rm = rds_ib_send_unmap_op(ic, send, wc.status); 317 318 if (send->s_queued + HZ/2 < jiffies) 319 rds_ib_stats_inc(s_ib_tx_stalled); 320 321 if (send->s_op) { 322 if (send->s_op == rm->m_final_op) { 323 /* If anyone waited for this message to get flushed out, wake 324 * them up now */ 325 rds_message_unmapped(rm); 326 } 327 rds_message_put(rm); 328 send->s_op = NULL; 329 } 330 331 oldest = (oldest + 1) % ic->i_send_ring.w_nr; 332 } 333 334 rds_ib_ring_free(&ic->i_send_ring, completed); 335 rds_ib_sub_signaled(ic, nr_sig); 336 nr_sig = 0; 337 338 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) || 339 test_bit(0, &conn->c_map_queued)) 340 queue_delayed_work(rds_wq, &conn->c_send_w, 0); 341 342 /* We expect errors as the qp is drained during shutdown */ 343 if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) { 344 rds_ib_conn_error(conn, "send completion on %pI4 had status " 345 "%u (%s), disconnecting and reconnecting\n", 346 &conn->c_faddr, wc.status, 347 rds_ib_wc_status_str(wc.status)); 348 } 349 } 350 } 351 352 /* 353 * This is the main function for allocating credits when sending 354 * messages. 355 * 356 * Conceptually, we have two counters: 357 * - send credits: this tells us how many WRs we're allowed 358 * to submit without overruning the reciever's queue. For 359 * each SEND WR we post, we decrement this by one. 360 * 361 * - posted credits: this tells us how many WRs we recently 362 * posted to the receive queue. This value is transferred 363 * to the peer as a "credit update" in a RDS header field. 364 * Every time we transmit credits to the peer, we subtract 365 * the amount of transferred credits from this counter. 366 * 367 * It is essential that we avoid situations where both sides have 368 * exhausted their send credits, and are unable to send new credits 369 * to the peer. We achieve this by requiring that we send at least 370 * one credit update to the peer before exhausting our credits. 371 * When new credits arrive, we subtract one credit that is withheld 372 * until we've posted new buffers and are ready to transmit these 373 * credits (see rds_ib_send_add_credits below). 374 * 375 * The RDS send code is essentially single-threaded; rds_send_xmit 376 * sets RDS_IN_XMIT to ensure exclusive access to the send ring. 377 * However, the ACK sending code is independent and can race with 378 * message SENDs. 379 * 380 * In the send path, we need to update the counters for send credits 381 * and the counter of posted buffers atomically - when we use the 382 * last available credit, we cannot allow another thread to race us 383 * and grab the posted credits counter. Hence, we have to use a 384 * spinlock to protect the credit counter, or use atomics. 385 * 386 * Spinlocks shared between the send and the receive path are bad, 387 * because they create unnecessary delays. An early implementation 388 * using a spinlock showed a 5% degradation in throughput at some 389 * loads. 390 * 391 * This implementation avoids spinlocks completely, putting both 392 * counters into a single atomic, and updating that atomic using 393 * atomic_add (in the receive path, when receiving fresh credits), 394 * and using atomic_cmpxchg when updating the two counters. 395 */ 396 int rds_ib_send_grab_credits(struct rds_ib_connection *ic, 397 u32 wanted, u32 *adv_credits, int need_posted, int max_posted) 398 { 399 unsigned int avail, posted, got = 0, advertise; 400 long oldval, newval; 401 402 *adv_credits = 0; 403 if (!ic->i_flowctl) 404 return wanted; 405 406 try_again: 407 advertise = 0; 408 oldval = newval = atomic_read(&ic->i_credits); 409 posted = IB_GET_POST_CREDITS(oldval); 410 avail = IB_GET_SEND_CREDITS(oldval); 411 412 rdsdebug("rds_ib_send_grab_credits(%u): credits=%u posted=%u\n", 413 wanted, avail, posted); 414 415 /* The last credit must be used to send a credit update. */ 416 if (avail && !posted) 417 avail--; 418 419 if (avail < wanted) { 420 struct rds_connection *conn = ic->i_cm_id->context; 421 422 /* Oops, there aren't that many credits left! */ 423 set_bit(RDS_LL_SEND_FULL, &conn->c_flags); 424 got = avail; 425 } else { 426 /* Sometimes you get what you want, lalala. */ 427 got = wanted; 428 } 429 newval -= IB_SET_SEND_CREDITS(got); 430 431 /* 432 * If need_posted is non-zero, then the caller wants 433 * the posted regardless of whether any send credits are 434 * available. 435 */ 436 if (posted && (got || need_posted)) { 437 advertise = min_t(unsigned int, posted, max_posted); 438 newval -= IB_SET_POST_CREDITS(advertise); 439 } 440 441 /* Finally bill everything */ 442 if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval) 443 goto try_again; 444 445 *adv_credits = advertise; 446 return got; 447 } 448 449 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits) 450 { 451 struct rds_ib_connection *ic = conn->c_transport_data; 452 453 if (credits == 0) 454 return; 455 456 rdsdebug("rds_ib_send_add_credits(%u): current=%u%s\n", 457 credits, 458 IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)), 459 test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : ""); 460 461 atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits); 462 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags)) 463 queue_delayed_work(rds_wq, &conn->c_send_w, 0); 464 465 WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384); 466 467 rds_ib_stats_inc(s_ib_rx_credit_updates); 468 } 469 470 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted) 471 { 472 struct rds_ib_connection *ic = conn->c_transport_data; 473 474 if (posted == 0) 475 return; 476 477 atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits); 478 479 /* Decide whether to send an update to the peer now. 480 * If we would send a credit update for every single buffer we 481 * post, we would end up with an ACK storm (ACK arrives, 482 * consumes buffer, we refill the ring, send ACK to remote 483 * advertising the newly posted buffer... ad inf) 484 * 485 * Performance pretty much depends on how often we send 486 * credit updates - too frequent updates mean lots of ACKs. 487 * Too infrequent updates, and the peer will run out of 488 * credits and has to throttle. 489 * For the time being, 16 seems to be a good compromise. 490 */ 491 if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16) 492 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 493 } 494 495 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic, 496 struct rds_ib_send_work *send, 497 bool notify) 498 { 499 /* 500 * We want to delay signaling completions just enough to get 501 * the batching benefits but not so much that we create dead time 502 * on the wire. 503 */ 504 if (ic->i_unsignaled_wrs-- == 0 || notify) { 505 ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs; 506 send->s_wr.send_flags |= IB_SEND_SIGNALED; 507 return 1; 508 } 509 return 0; 510 } 511 512 /* 513 * This can be called multiple times for a given message. The first time 514 * we see a message we map its scatterlist into the IB device so that 515 * we can provide that mapped address to the IB scatter gather entries 516 * in the IB work requests. We translate the scatterlist into a series 517 * of work requests that fragment the message. These work requests complete 518 * in order so we pass ownership of the message to the completion handler 519 * once we send the final fragment. 520 * 521 * The RDS core uses the c_send_lock to only enter this function once 522 * per connection. This makes sure that the tx ring alloc/unalloc pairs 523 * don't get out of sync and confuse the ring. 524 */ 525 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm, 526 unsigned int hdr_off, unsigned int sg, unsigned int off) 527 { 528 struct rds_ib_connection *ic = conn->c_transport_data; 529 struct ib_device *dev = ic->i_cm_id->device; 530 struct rds_ib_send_work *send = NULL; 531 struct rds_ib_send_work *first; 532 struct rds_ib_send_work *prev; 533 struct ib_send_wr *failed_wr; 534 struct scatterlist *scat; 535 u32 pos; 536 u32 i; 537 u32 work_alloc; 538 u32 credit_alloc = 0; 539 u32 posted; 540 u32 adv_credits = 0; 541 int send_flags = 0; 542 int bytes_sent = 0; 543 int ret; 544 int flow_controlled = 0; 545 int nr_sig = 0; 546 547 BUG_ON(off % RDS_FRAG_SIZE); 548 BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header)); 549 550 /* Do not send cong updates to IB loopback */ 551 if (conn->c_loopback 552 && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) { 553 rds_cong_map_updated(conn->c_fcong, ~(u64) 0); 554 return sizeof(struct rds_header) + RDS_CONG_MAP_BYTES; 555 } 556 557 /* FIXME we may overallocate here */ 558 if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) 559 i = 1; 560 else 561 i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE); 562 563 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); 564 if (work_alloc == 0) { 565 set_bit(RDS_LL_SEND_FULL, &conn->c_flags); 566 rds_ib_stats_inc(s_ib_tx_ring_full); 567 ret = -ENOMEM; 568 goto out; 569 } 570 571 if (ic->i_flowctl) { 572 credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT); 573 adv_credits += posted; 574 if (credit_alloc < work_alloc) { 575 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc); 576 work_alloc = credit_alloc; 577 flow_controlled = 1; 578 } 579 if (work_alloc == 0) { 580 set_bit(RDS_LL_SEND_FULL, &conn->c_flags); 581 rds_ib_stats_inc(s_ib_tx_throttle); 582 ret = -ENOMEM; 583 goto out; 584 } 585 } 586 587 /* map the message the first time we see it */ 588 if (!ic->i_data_op) { 589 if (rm->data.op_nents) { 590 rm->data.op_count = ib_dma_map_sg(dev, 591 rm->data.op_sg, 592 rm->data.op_nents, 593 DMA_TO_DEVICE); 594 rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count); 595 if (rm->data.op_count == 0) { 596 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); 597 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 598 ret = -ENOMEM; /* XXX ? */ 599 goto out; 600 } 601 } else { 602 rm->data.op_count = 0; 603 } 604 605 rds_message_addref(rm); 606 ic->i_data_op = &rm->data; 607 608 /* Finalize the header */ 609 if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags)) 610 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED; 611 if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) 612 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED; 613 614 /* If it has a RDMA op, tell the peer we did it. This is 615 * used by the peer to release use-once RDMA MRs. */ 616 if (rm->rdma.op_active) { 617 struct rds_ext_header_rdma ext_hdr; 618 619 ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey); 620 rds_message_add_extension(&rm->m_inc.i_hdr, 621 RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr)); 622 } 623 if (rm->m_rdma_cookie) { 624 rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr, 625 rds_rdma_cookie_key(rm->m_rdma_cookie), 626 rds_rdma_cookie_offset(rm->m_rdma_cookie)); 627 } 628 629 /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so 630 * we should not do this unless we have a chance of at least 631 * sticking the header into the send ring. Which is why we 632 * should call rds_ib_ring_alloc first. */ 633 rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic)); 634 rds_message_make_checksum(&rm->m_inc.i_hdr); 635 636 /* 637 * Update adv_credits since we reset the ACK_REQUIRED bit. 638 */ 639 if (ic->i_flowctl) { 640 rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits); 641 adv_credits += posted; 642 BUG_ON(adv_credits > 255); 643 } 644 } 645 646 /* Sometimes you want to put a fence between an RDMA 647 * READ and the following SEND. 648 * We could either do this all the time 649 * or when requested by the user. Right now, we let 650 * the application choose. 651 */ 652 if (rm->rdma.op_active && rm->rdma.op_fence) 653 send_flags = IB_SEND_FENCE; 654 655 /* Each frag gets a header. Msgs may be 0 bytes */ 656 send = &ic->i_sends[pos]; 657 first = send; 658 prev = NULL; 659 scat = &ic->i_data_op->op_sg[sg]; 660 i = 0; 661 do { 662 unsigned int len = 0; 663 664 /* Set up the header */ 665 send->s_wr.send_flags = send_flags; 666 send->s_wr.opcode = IB_WR_SEND; 667 send->s_wr.num_sge = 1; 668 send->s_wr.next = NULL; 669 send->s_queued = jiffies; 670 send->s_op = NULL; 671 672 send->s_sge[0].addr = ic->i_send_hdrs_dma 673 + (pos * sizeof(struct rds_header)); 674 send->s_sge[0].length = sizeof(struct rds_header); 675 676 memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header)); 677 678 /* Set up the data, if present */ 679 if (i < work_alloc 680 && scat != &rm->data.op_sg[rm->data.op_count]) { 681 len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off); 682 send->s_wr.num_sge = 2; 683 684 send->s_sge[1].addr = ib_sg_dma_address(dev, scat) + off; 685 send->s_sge[1].length = len; 686 687 bytes_sent += len; 688 off += len; 689 if (off == ib_sg_dma_len(dev, scat)) { 690 scat++; 691 off = 0; 692 } 693 } 694 695 rds_ib_set_wr_signal_state(ic, send, 0); 696 697 /* 698 * Always signal the last one if we're stopping due to flow control. 699 */ 700 if (ic->i_flowctl && flow_controlled && i == (work_alloc-1)) 701 send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; 702 703 if (send->s_wr.send_flags & IB_SEND_SIGNALED) 704 nr_sig++; 705 706 rdsdebug("send %p wr %p num_sge %u next %p\n", send, 707 &send->s_wr, send->s_wr.num_sge, send->s_wr.next); 708 709 if (ic->i_flowctl && adv_credits) { 710 struct rds_header *hdr = &ic->i_send_hdrs[pos]; 711 712 /* add credit and redo the header checksum */ 713 hdr->h_credit = adv_credits; 714 rds_message_make_checksum(hdr); 715 adv_credits = 0; 716 rds_ib_stats_inc(s_ib_tx_credit_updates); 717 } 718 719 if (prev) 720 prev->s_wr.next = &send->s_wr; 721 prev = send; 722 723 pos = (pos + 1) % ic->i_send_ring.w_nr; 724 send = &ic->i_sends[pos]; 725 i++; 726 727 } while (i < work_alloc 728 && scat != &rm->data.op_sg[rm->data.op_count]); 729 730 /* Account the RDS header in the number of bytes we sent, but just once. 731 * The caller has no concept of fragmentation. */ 732 if (hdr_off == 0) 733 bytes_sent += sizeof(struct rds_header); 734 735 /* if we finished the message then send completion owns it */ 736 if (scat == &rm->data.op_sg[rm->data.op_count]) { 737 prev->s_op = ic->i_data_op; 738 prev->s_wr.send_flags |= IB_SEND_SOLICITED; 739 ic->i_data_op = NULL; 740 } 741 742 /* Put back wrs & credits we didn't use */ 743 if (i < work_alloc) { 744 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); 745 work_alloc = i; 746 } 747 if (ic->i_flowctl && i < credit_alloc) 748 rds_ib_send_add_credits(conn, credit_alloc - i); 749 750 if (nr_sig) 751 atomic_add(nr_sig, &ic->i_signaled_sends); 752 753 /* XXX need to worry about failed_wr and partial sends. */ 754 failed_wr = &first->s_wr; 755 ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); 756 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, 757 first, &first->s_wr, ret, failed_wr); 758 BUG_ON(failed_wr != &first->s_wr); 759 if (ret) { 760 printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 " 761 "returned %d\n", &conn->c_faddr, ret); 762 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 763 rds_ib_sub_signaled(ic, nr_sig); 764 if (prev->s_op) { 765 ic->i_data_op = prev->s_op; 766 prev->s_op = NULL; 767 } 768 769 rds_ib_conn_error(ic->conn, "ib_post_send failed\n"); 770 goto out; 771 } 772 773 ret = bytes_sent; 774 out: 775 BUG_ON(adv_credits); 776 return ret; 777 } 778 779 /* 780 * Issue atomic operation. 781 * A simplified version of the rdma case, we always map 1 SG, and 782 * only 8 bytes, for the return value from the atomic operation. 783 */ 784 int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op) 785 { 786 struct rds_ib_connection *ic = conn->c_transport_data; 787 struct rds_ib_send_work *send = NULL; 788 struct ib_send_wr *failed_wr; 789 struct rds_ib_device *rds_ibdev; 790 u32 pos; 791 u32 work_alloc; 792 int ret; 793 int nr_sig = 0; 794 795 rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client); 796 797 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos); 798 if (work_alloc != 1) { 799 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 800 rds_ib_stats_inc(s_ib_tx_ring_full); 801 ret = -ENOMEM; 802 goto out; 803 } 804 805 /* address of send request in ring */ 806 send = &ic->i_sends[pos]; 807 send->s_queued = jiffies; 808 809 if (op->op_type == RDS_ATOMIC_TYPE_CSWP) { 810 send->s_wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP; 811 send->s_wr.wr.atomic.compare_add = op->op_m_cswp.compare; 812 send->s_wr.wr.atomic.swap = op->op_m_cswp.swap; 813 send->s_wr.wr.atomic.compare_add_mask = op->op_m_cswp.compare_mask; 814 send->s_wr.wr.atomic.swap_mask = op->op_m_cswp.swap_mask; 815 } else { /* FADD */ 816 send->s_wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD; 817 send->s_wr.wr.atomic.compare_add = op->op_m_fadd.add; 818 send->s_wr.wr.atomic.swap = 0; 819 send->s_wr.wr.atomic.compare_add_mask = op->op_m_fadd.nocarry_mask; 820 send->s_wr.wr.atomic.swap_mask = 0; 821 } 822 nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify); 823 send->s_wr.num_sge = 1; 824 send->s_wr.next = NULL; 825 send->s_wr.wr.atomic.remote_addr = op->op_remote_addr; 826 send->s_wr.wr.atomic.rkey = op->op_rkey; 827 send->s_op = op; 828 rds_message_addref(container_of(send->s_op, struct rds_message, atomic)); 829 830 /* map 8 byte retval buffer to the device */ 831 ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE); 832 rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret); 833 if (ret != 1) { 834 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 835 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); 836 ret = -ENOMEM; /* XXX ? */ 837 goto out; 838 } 839 840 /* Convert our struct scatterlist to struct ib_sge */ 841 send->s_sge[0].addr = ib_sg_dma_address(ic->i_cm_id->device, op->op_sg); 842 send->s_sge[0].length = ib_sg_dma_len(ic->i_cm_id->device, op->op_sg); 843 send->s_sge[0].lkey = ic->i_mr->lkey; 844 845 rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr, 846 send->s_sge[0].addr, send->s_sge[0].length); 847 848 if (nr_sig) 849 atomic_add(nr_sig, &ic->i_signaled_sends); 850 851 failed_wr = &send->s_wr; 852 ret = ib_post_send(ic->i_cm_id->qp, &send->s_wr, &failed_wr); 853 rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic, 854 send, &send->s_wr, ret, failed_wr); 855 BUG_ON(failed_wr != &send->s_wr); 856 if (ret) { 857 printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI4 " 858 "returned %d\n", &conn->c_faddr, ret); 859 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 860 rds_ib_sub_signaled(ic, nr_sig); 861 goto out; 862 } 863 864 if (unlikely(failed_wr != &send->s_wr)) { 865 printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret); 866 BUG_ON(failed_wr != &send->s_wr); 867 } 868 869 out: 870 return ret; 871 } 872 873 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op) 874 { 875 struct rds_ib_connection *ic = conn->c_transport_data; 876 struct rds_ib_send_work *send = NULL; 877 struct rds_ib_send_work *first; 878 struct rds_ib_send_work *prev; 879 struct ib_send_wr *failed_wr; 880 struct scatterlist *scat; 881 unsigned long len; 882 u64 remote_addr = op->op_remote_addr; 883 u32 max_sge = ic->rds_ibdev->max_sge; 884 u32 pos; 885 u32 work_alloc; 886 u32 i; 887 u32 j; 888 int sent; 889 int ret; 890 int num_sge; 891 int nr_sig = 0; 892 893 /* map the op the first time we see it */ 894 if (!op->op_mapped) { 895 op->op_count = ib_dma_map_sg(ic->i_cm_id->device, 896 op->op_sg, op->op_nents, (op->op_write) ? 897 DMA_TO_DEVICE : DMA_FROM_DEVICE); 898 rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count); 899 if (op->op_count == 0) { 900 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); 901 ret = -ENOMEM; /* XXX ? */ 902 goto out; 903 } 904 905 op->op_mapped = 1; 906 } 907 908 /* 909 * Instead of knowing how to return a partial rdma read/write we insist that there 910 * be enough work requests to send the entire message. 911 */ 912 i = ceil(op->op_count, max_sge); 913 914 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); 915 if (work_alloc != i) { 916 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 917 rds_ib_stats_inc(s_ib_tx_ring_full); 918 ret = -ENOMEM; 919 goto out; 920 } 921 922 send = &ic->i_sends[pos]; 923 first = send; 924 prev = NULL; 925 scat = &op->op_sg[0]; 926 sent = 0; 927 num_sge = op->op_count; 928 929 for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) { 930 send->s_wr.send_flags = 0; 931 send->s_queued = jiffies; 932 send->s_op = NULL; 933 934 nr_sig += rds_ib_set_wr_signal_state(ic, send, op->op_notify); 935 936 send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ; 937 send->s_wr.wr.rdma.remote_addr = remote_addr; 938 send->s_wr.wr.rdma.rkey = op->op_rkey; 939 940 if (num_sge > max_sge) { 941 send->s_wr.num_sge = max_sge; 942 num_sge -= max_sge; 943 } else { 944 send->s_wr.num_sge = num_sge; 945 } 946 947 send->s_wr.next = NULL; 948 949 if (prev) 950 prev->s_wr.next = &send->s_wr; 951 952 for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) { 953 len = ib_sg_dma_len(ic->i_cm_id->device, scat); 954 send->s_sge[j].addr = 955 ib_sg_dma_address(ic->i_cm_id->device, scat); 956 send->s_sge[j].length = len; 957 send->s_sge[j].lkey = ic->i_mr->lkey; 958 959 sent += len; 960 rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr); 961 962 remote_addr += len; 963 scat++; 964 } 965 966 rdsdebug("send %p wr %p num_sge %u next %p\n", send, 967 &send->s_wr, send->s_wr.num_sge, send->s_wr.next); 968 969 prev = send; 970 if (++send == &ic->i_sends[ic->i_send_ring.w_nr]) 971 send = ic->i_sends; 972 } 973 974 /* give a reference to the last op */ 975 if (scat == &op->op_sg[op->op_count]) { 976 prev->s_op = op; 977 rds_message_addref(container_of(op, struct rds_message, rdma)); 978 } 979 980 if (i < work_alloc) { 981 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); 982 work_alloc = i; 983 } 984 985 if (nr_sig) 986 atomic_add(nr_sig, &ic->i_signaled_sends); 987 988 failed_wr = &first->s_wr; 989 ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); 990 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, 991 first, &first->s_wr, ret, failed_wr); 992 BUG_ON(failed_wr != &first->s_wr); 993 if (ret) { 994 printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 " 995 "returned %d\n", &conn->c_faddr, ret); 996 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 997 rds_ib_sub_signaled(ic, nr_sig); 998 goto out; 999 } 1000 1001 if (unlikely(failed_wr != &first->s_wr)) { 1002 printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret); 1003 BUG_ON(failed_wr != &first->s_wr); 1004 } 1005 1006 1007 out: 1008 return ret; 1009 } 1010 1011 void rds_ib_xmit_complete(struct rds_connection *conn) 1012 { 1013 struct rds_ib_connection *ic = conn->c_transport_data; 1014 1015 /* We may have a pending ACK or window update we were unable 1016 * to send previously (due to flow control). Try again. */ 1017 rds_ib_attempt_ack(ic); 1018 } 1019