xref: /openbmc/linux/net/rds/ib_send.c (revision be80507d)
1 /*
2  * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
38 
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42 
43 /*
44  * Convert IB-specific error message to RDS error message and call core
45  * completion handler.
46  */
47 static void rds_ib_send_complete(struct rds_message *rm,
48 				 int wc_status,
49 				 void (*complete)(struct rds_message *rm, int status))
50 {
51 	int notify_status;
52 
53 	switch (wc_status) {
54 	case IB_WC_WR_FLUSH_ERR:
55 		return;
56 
57 	case IB_WC_SUCCESS:
58 		notify_status = RDS_RDMA_SUCCESS;
59 		break;
60 
61 	case IB_WC_REM_ACCESS_ERR:
62 		notify_status = RDS_RDMA_REMOTE_ERROR;
63 		break;
64 
65 	default:
66 		notify_status = RDS_RDMA_OTHER_ERROR;
67 		break;
68 	}
69 	complete(rm, notify_status);
70 }
71 
72 static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
73 				   struct rm_data_op *op,
74 				   int wc_status)
75 {
76 	if (op->op_nents)
77 		ib_dma_unmap_sg(ic->i_cm_id->device,
78 				op->op_sg, op->op_nents,
79 				DMA_TO_DEVICE);
80 }
81 
82 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
83 				   struct rm_rdma_op *op,
84 				   int wc_status)
85 {
86 	if (op->op_mapped) {
87 		ib_dma_unmap_sg(ic->i_cm_id->device,
88 				op->op_sg, op->op_nents,
89 				op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
90 		op->op_mapped = 0;
91 	}
92 
93 	/* If the user asked for a completion notification on this
94 	 * message, we can implement three different semantics:
95 	 *  1.	Notify when we received the ACK on the RDS message
96 	 *	that was queued with the RDMA. This provides reliable
97 	 *	notification of RDMA status at the expense of a one-way
98 	 *	packet delay.
99 	 *  2.	Notify when the IB stack gives us the completion event for
100 	 *	the RDMA operation.
101 	 *  3.	Notify when the IB stack gives us the completion event for
102 	 *	the accompanying RDS messages.
103 	 * Here, we implement approach #3. To implement approach #2,
104 	 * we would need to take an event for the rdma WR. To implement #1,
105 	 * don't call rds_rdma_send_complete at all, and fall back to the notify
106 	 * handling in the ACK processing code.
107 	 *
108 	 * Note: There's no need to explicitly sync any RDMA buffers using
109 	 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
110 	 * operation itself unmapped the RDMA buffers, which takes care
111 	 * of synching.
112 	 */
113 	rds_ib_send_complete(container_of(op, struct rds_message, rdma),
114 			     wc_status, rds_rdma_send_complete);
115 
116 	if (op->op_write)
117 		rds_stats_add(s_send_rdma_bytes, op->op_bytes);
118 	else
119 		rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
120 }
121 
122 static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
123 				     struct rm_atomic_op *op,
124 				     int wc_status)
125 {
126 	/* unmap atomic recvbuf */
127 	if (op->op_mapped) {
128 		ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
129 				DMA_FROM_DEVICE);
130 		op->op_mapped = 0;
131 	}
132 
133 	rds_ib_send_complete(container_of(op, struct rds_message, atomic),
134 			     wc_status, rds_atomic_send_complete);
135 
136 	if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
137 		rds_ib_stats_inc(s_ib_atomic_cswp);
138 	else
139 		rds_ib_stats_inc(s_ib_atomic_fadd);
140 }
141 
142 /*
143  * Unmap the resources associated with a struct send_work.
144  *
145  * Returns the rm for no good reason other than it is unobtainable
146  * other than by switching on wr.opcode, currently, and the caller,
147  * the event handler, needs it.
148  */
149 static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
150 						struct rds_ib_send_work *send,
151 						int wc_status)
152 {
153 	struct rds_message *rm = NULL;
154 
155 	/* In the error case, wc.opcode sometimes contains garbage */
156 	switch (send->s_wr.opcode) {
157 	case IB_WR_SEND:
158 		if (send->s_op) {
159 			rm = container_of(send->s_op, struct rds_message, data);
160 			rds_ib_send_unmap_data(ic, send->s_op, wc_status);
161 		}
162 		break;
163 	case IB_WR_RDMA_WRITE:
164 	case IB_WR_RDMA_READ:
165 		if (send->s_op) {
166 			rm = container_of(send->s_op, struct rds_message, rdma);
167 			rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
168 		}
169 		break;
170 	case IB_WR_ATOMIC_FETCH_AND_ADD:
171 	case IB_WR_ATOMIC_CMP_AND_SWP:
172 		if (send->s_op) {
173 			rm = container_of(send->s_op, struct rds_message, atomic);
174 			rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
175 		}
176 		break;
177 	default:
178 		printk_ratelimited(KERN_NOTICE
179 			       "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
180 			       __func__, send->s_wr.opcode);
181 		break;
182 	}
183 
184 	send->s_wr.opcode = 0xdead;
185 
186 	return rm;
187 }
188 
189 void rds_ib_send_init_ring(struct rds_ib_connection *ic)
190 {
191 	struct rds_ib_send_work *send;
192 	u32 i;
193 
194 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
195 		struct ib_sge *sge;
196 
197 		send->s_op = NULL;
198 
199 		send->s_wr.wr_id = i;
200 		send->s_wr.sg_list = send->s_sge;
201 		send->s_wr.ex.imm_data = 0;
202 
203 		sge = &send->s_sge[0];
204 		sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
205 		sge->length = sizeof(struct rds_header);
206 		sge->lkey = ic->i_pd->local_dma_lkey;
207 
208 		send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
209 	}
210 }
211 
212 void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
213 {
214 	struct rds_ib_send_work *send;
215 	u32 i;
216 
217 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
218 		if (send->s_op && send->s_wr.opcode != 0xdead)
219 			rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
220 	}
221 }
222 
223 /*
224  * The only fast path caller always has a non-zero nr, so we don't
225  * bother testing nr before performing the atomic sub.
226  */
227 static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
228 {
229 	if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
230 	    waitqueue_active(&rds_ib_ring_empty_wait))
231 		wake_up(&rds_ib_ring_empty_wait);
232 	BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
233 }
234 
235 /*
236  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
237  * operations performed in the send path.  As the sender allocs and potentially
238  * unallocs the next free entry in the ring it doesn't alter which is
239  * the next to be freed, which is what this is concerned with.
240  */
241 void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc)
242 {
243 	struct rds_message *rm = NULL;
244 	struct rds_connection *conn = ic->conn;
245 	struct rds_ib_send_work *send;
246 	u32 completed;
247 	u32 oldest;
248 	u32 i = 0;
249 	int nr_sig = 0;
250 
251 
252 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
253 		 (unsigned long long)wc->wr_id, wc->status,
254 		 ib_wc_status_msg(wc->status), wc->byte_len,
255 		 be32_to_cpu(wc->ex.imm_data));
256 	rds_ib_stats_inc(s_ib_tx_cq_event);
257 
258 	if (wc->wr_id == RDS_IB_ACK_WR_ID) {
259 		if (time_after(jiffies, ic->i_ack_queued + HZ / 2))
260 			rds_ib_stats_inc(s_ib_tx_stalled);
261 		rds_ib_ack_send_complete(ic);
262 		return;
263 	}
264 
265 	oldest = rds_ib_ring_oldest(&ic->i_send_ring);
266 
267 	completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest);
268 
269 	for (i = 0; i < completed; i++) {
270 		send = &ic->i_sends[oldest];
271 		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
272 			nr_sig++;
273 
274 		rm = rds_ib_send_unmap_op(ic, send, wc->status);
275 
276 		if (time_after(jiffies, send->s_queued + HZ / 2))
277 			rds_ib_stats_inc(s_ib_tx_stalled);
278 
279 		if (send->s_op) {
280 			if (send->s_op == rm->m_final_op) {
281 				/* If anyone waited for this message to get
282 				 * flushed out, wake them up now
283 				 */
284 				rds_message_unmapped(rm);
285 			}
286 			rds_message_put(rm);
287 			send->s_op = NULL;
288 		}
289 
290 		oldest = (oldest + 1) % ic->i_send_ring.w_nr;
291 	}
292 
293 	rds_ib_ring_free(&ic->i_send_ring, completed);
294 	rds_ib_sub_signaled(ic, nr_sig);
295 	nr_sig = 0;
296 
297 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
298 	    test_bit(0, &conn->c_map_queued))
299 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
300 
301 	/* We expect errors as the qp is drained during shutdown */
302 	if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) {
303 		rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), disconnecting and reconnecting\n",
304 				  &conn->c_laddr, &conn->c_faddr,
305 				  conn->c_tos, wc->status,
306 				  ib_wc_status_msg(wc->status));
307 	}
308 }
309 
310 /*
311  * This is the main function for allocating credits when sending
312  * messages.
313  *
314  * Conceptually, we have two counters:
315  *  -	send credits: this tells us how many WRs we're allowed
316  *	to submit without overruning the receiver's queue. For
317  *	each SEND WR we post, we decrement this by one.
318  *
319  *  -	posted credits: this tells us how many WRs we recently
320  *	posted to the receive queue. This value is transferred
321  *	to the peer as a "credit update" in a RDS header field.
322  *	Every time we transmit credits to the peer, we subtract
323  *	the amount of transferred credits from this counter.
324  *
325  * It is essential that we avoid situations where both sides have
326  * exhausted their send credits, and are unable to send new credits
327  * to the peer. We achieve this by requiring that we send at least
328  * one credit update to the peer before exhausting our credits.
329  * When new credits arrive, we subtract one credit that is withheld
330  * until we've posted new buffers and are ready to transmit these
331  * credits (see rds_ib_send_add_credits below).
332  *
333  * The RDS send code is essentially single-threaded; rds_send_xmit
334  * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
335  * However, the ACK sending code is independent and can race with
336  * message SENDs.
337  *
338  * In the send path, we need to update the counters for send credits
339  * and the counter of posted buffers atomically - when we use the
340  * last available credit, we cannot allow another thread to race us
341  * and grab the posted credits counter.  Hence, we have to use a
342  * spinlock to protect the credit counter, or use atomics.
343  *
344  * Spinlocks shared between the send and the receive path are bad,
345  * because they create unnecessary delays. An early implementation
346  * using a spinlock showed a 5% degradation in throughput at some
347  * loads.
348  *
349  * This implementation avoids spinlocks completely, putting both
350  * counters into a single atomic, and updating that atomic using
351  * atomic_add (in the receive path, when receiving fresh credits),
352  * and using atomic_cmpxchg when updating the two counters.
353  */
354 int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
355 			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
356 {
357 	unsigned int avail, posted, got = 0, advertise;
358 	long oldval, newval;
359 
360 	*adv_credits = 0;
361 	if (!ic->i_flowctl)
362 		return wanted;
363 
364 try_again:
365 	advertise = 0;
366 	oldval = newval = atomic_read(&ic->i_credits);
367 	posted = IB_GET_POST_CREDITS(oldval);
368 	avail = IB_GET_SEND_CREDITS(oldval);
369 
370 	rdsdebug("wanted=%u credits=%u posted=%u\n",
371 			wanted, avail, posted);
372 
373 	/* The last credit must be used to send a credit update. */
374 	if (avail && !posted)
375 		avail--;
376 
377 	if (avail < wanted) {
378 		struct rds_connection *conn = ic->i_cm_id->context;
379 
380 		/* Oops, there aren't that many credits left! */
381 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
382 		got = avail;
383 	} else {
384 		/* Sometimes you get what you want, lalala. */
385 		got = wanted;
386 	}
387 	newval -= IB_SET_SEND_CREDITS(got);
388 
389 	/*
390 	 * If need_posted is non-zero, then the caller wants
391 	 * the posted regardless of whether any send credits are
392 	 * available.
393 	 */
394 	if (posted && (got || need_posted)) {
395 		advertise = min_t(unsigned int, posted, max_posted);
396 		newval -= IB_SET_POST_CREDITS(advertise);
397 	}
398 
399 	/* Finally bill everything */
400 	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
401 		goto try_again;
402 
403 	*adv_credits = advertise;
404 	return got;
405 }
406 
407 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
408 {
409 	struct rds_ib_connection *ic = conn->c_transport_data;
410 
411 	if (credits == 0)
412 		return;
413 
414 	rdsdebug("credits=%u current=%u%s\n",
415 			credits,
416 			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
417 			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
418 
419 	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
420 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
421 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
422 
423 	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
424 
425 	rds_ib_stats_inc(s_ib_rx_credit_updates);
426 }
427 
428 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
429 {
430 	struct rds_ib_connection *ic = conn->c_transport_data;
431 
432 	if (posted == 0)
433 		return;
434 
435 	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
436 
437 	/* Decide whether to send an update to the peer now.
438 	 * If we would send a credit update for every single buffer we
439 	 * post, we would end up with an ACK storm (ACK arrives,
440 	 * consumes buffer, we refill the ring, send ACK to remote
441 	 * advertising the newly posted buffer... ad inf)
442 	 *
443 	 * Performance pretty much depends on how often we send
444 	 * credit updates - too frequent updates mean lots of ACKs.
445 	 * Too infrequent updates, and the peer will run out of
446 	 * credits and has to throttle.
447 	 * For the time being, 16 seems to be a good compromise.
448 	 */
449 	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
450 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
451 }
452 
453 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
454 					     struct rds_ib_send_work *send,
455 					     bool notify)
456 {
457 	/*
458 	 * We want to delay signaling completions just enough to get
459 	 * the batching benefits but not so much that we create dead time
460 	 * on the wire.
461 	 */
462 	if (ic->i_unsignaled_wrs-- == 0 || notify) {
463 		ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
464 		send->s_wr.send_flags |= IB_SEND_SIGNALED;
465 		return 1;
466 	}
467 	return 0;
468 }
469 
470 /*
471  * This can be called multiple times for a given message.  The first time
472  * we see a message we map its scatterlist into the IB device so that
473  * we can provide that mapped address to the IB scatter gather entries
474  * in the IB work requests.  We translate the scatterlist into a series
475  * of work requests that fragment the message.  These work requests complete
476  * in order so we pass ownership of the message to the completion handler
477  * once we send the final fragment.
478  *
479  * The RDS core uses the c_send_lock to only enter this function once
480  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
481  * don't get out of sync and confuse the ring.
482  */
483 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
484 		unsigned int hdr_off, unsigned int sg, unsigned int off)
485 {
486 	struct rds_ib_connection *ic = conn->c_transport_data;
487 	struct ib_device *dev = ic->i_cm_id->device;
488 	struct rds_ib_send_work *send = NULL;
489 	struct rds_ib_send_work *first;
490 	struct rds_ib_send_work *prev;
491 	const struct ib_send_wr *failed_wr;
492 	struct scatterlist *scat;
493 	u32 pos;
494 	u32 i;
495 	u32 work_alloc;
496 	u32 credit_alloc = 0;
497 	u32 posted;
498 	u32 adv_credits = 0;
499 	int send_flags = 0;
500 	int bytes_sent = 0;
501 	int ret;
502 	int flow_controlled = 0;
503 	int nr_sig = 0;
504 
505 	BUG_ON(off % RDS_FRAG_SIZE);
506 	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
507 
508 	/* Do not send cong updates to IB loopback */
509 	if (conn->c_loopback
510 	    && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
511 		rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
512 		scat = &rm->data.op_sg[sg];
513 		ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
514 		return sizeof(struct rds_header) + ret;
515 	}
516 
517 	/* FIXME we may overallocate here */
518 	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
519 		i = 1;
520 	else
521 		i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
522 
523 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
524 	if (work_alloc == 0) {
525 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
526 		rds_ib_stats_inc(s_ib_tx_ring_full);
527 		ret = -ENOMEM;
528 		goto out;
529 	}
530 
531 	if (ic->i_flowctl) {
532 		credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
533 		adv_credits += posted;
534 		if (credit_alloc < work_alloc) {
535 			rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
536 			work_alloc = credit_alloc;
537 			flow_controlled = 1;
538 		}
539 		if (work_alloc == 0) {
540 			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
541 			rds_ib_stats_inc(s_ib_tx_throttle);
542 			ret = -ENOMEM;
543 			goto out;
544 		}
545 	}
546 
547 	/* map the message the first time we see it */
548 	if (!ic->i_data_op) {
549 		if (rm->data.op_nents) {
550 			rm->data.op_count = ib_dma_map_sg(dev,
551 							  rm->data.op_sg,
552 							  rm->data.op_nents,
553 							  DMA_TO_DEVICE);
554 			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
555 			if (rm->data.op_count == 0) {
556 				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
557 				rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
558 				ret = -ENOMEM; /* XXX ? */
559 				goto out;
560 			}
561 		} else {
562 			rm->data.op_count = 0;
563 		}
564 
565 		rds_message_addref(rm);
566 		rm->data.op_dmasg = 0;
567 		rm->data.op_dmaoff = 0;
568 		ic->i_data_op = &rm->data;
569 
570 		/* Finalize the header */
571 		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
572 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
573 		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
574 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
575 
576 		/* If it has a RDMA op, tell the peer we did it. This is
577 		 * used by the peer to release use-once RDMA MRs. */
578 		if (rm->rdma.op_active) {
579 			struct rds_ext_header_rdma ext_hdr;
580 
581 			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
582 			rds_message_add_extension(&rm->m_inc.i_hdr,
583 					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
584 		}
585 		if (rm->m_rdma_cookie) {
586 			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
587 					rds_rdma_cookie_key(rm->m_rdma_cookie),
588 					rds_rdma_cookie_offset(rm->m_rdma_cookie));
589 		}
590 
591 		/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
592 		 * we should not do this unless we have a chance of at least
593 		 * sticking the header into the send ring. Which is why we
594 		 * should call rds_ib_ring_alloc first. */
595 		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
596 		rds_message_make_checksum(&rm->m_inc.i_hdr);
597 
598 		/*
599 		 * Update adv_credits since we reset the ACK_REQUIRED bit.
600 		 */
601 		if (ic->i_flowctl) {
602 			rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
603 			adv_credits += posted;
604 			BUG_ON(adv_credits > 255);
605 		}
606 	}
607 
608 	/* Sometimes you want to put a fence between an RDMA
609 	 * READ and the following SEND.
610 	 * We could either do this all the time
611 	 * or when requested by the user. Right now, we let
612 	 * the application choose.
613 	 */
614 	if (rm->rdma.op_active && rm->rdma.op_fence)
615 		send_flags = IB_SEND_FENCE;
616 
617 	/* Each frag gets a header. Msgs may be 0 bytes */
618 	send = &ic->i_sends[pos];
619 	first = send;
620 	prev = NULL;
621 	scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
622 	i = 0;
623 	do {
624 		unsigned int len = 0;
625 
626 		/* Set up the header */
627 		send->s_wr.send_flags = send_flags;
628 		send->s_wr.opcode = IB_WR_SEND;
629 		send->s_wr.num_sge = 1;
630 		send->s_wr.next = NULL;
631 		send->s_queued = jiffies;
632 		send->s_op = NULL;
633 
634 		send->s_sge[0].addr = ic->i_send_hdrs_dma
635 			+ (pos * sizeof(struct rds_header));
636 		send->s_sge[0].length = sizeof(struct rds_header);
637 
638 		memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
639 
640 		/* Set up the data, if present */
641 		if (i < work_alloc
642 		    && scat != &rm->data.op_sg[rm->data.op_count]) {
643 			len = min(RDS_FRAG_SIZE,
644 				  sg_dma_len(scat) - rm->data.op_dmaoff);
645 			send->s_wr.num_sge = 2;
646 
647 			send->s_sge[1].addr = sg_dma_address(scat);
648 			send->s_sge[1].addr += rm->data.op_dmaoff;
649 			send->s_sge[1].length = len;
650 
651 			bytes_sent += len;
652 			rm->data.op_dmaoff += len;
653 			if (rm->data.op_dmaoff == sg_dma_len(scat)) {
654 				scat++;
655 				rm->data.op_dmasg++;
656 				rm->data.op_dmaoff = 0;
657 			}
658 		}
659 
660 		rds_ib_set_wr_signal_state(ic, send, false);
661 
662 		/*
663 		 * Always signal the last one if we're stopping due to flow control.
664 		 */
665 		if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) {
666 			rds_ib_set_wr_signal_state(ic, send, true);
667 			send->s_wr.send_flags |= IB_SEND_SOLICITED;
668 		}
669 
670 		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
671 			nr_sig++;
672 
673 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
674 			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
675 
676 		if (ic->i_flowctl && adv_credits) {
677 			struct rds_header *hdr = &ic->i_send_hdrs[pos];
678 
679 			/* add credit and redo the header checksum */
680 			hdr->h_credit = adv_credits;
681 			rds_message_make_checksum(hdr);
682 			adv_credits = 0;
683 			rds_ib_stats_inc(s_ib_tx_credit_updates);
684 		}
685 
686 		if (prev)
687 			prev->s_wr.next = &send->s_wr;
688 		prev = send;
689 
690 		pos = (pos + 1) % ic->i_send_ring.w_nr;
691 		send = &ic->i_sends[pos];
692 		i++;
693 
694 	} while (i < work_alloc
695 		 && scat != &rm->data.op_sg[rm->data.op_count]);
696 
697 	/* Account the RDS header in the number of bytes we sent, but just once.
698 	 * The caller has no concept of fragmentation. */
699 	if (hdr_off == 0)
700 		bytes_sent += sizeof(struct rds_header);
701 
702 	/* if we finished the message then send completion owns it */
703 	if (scat == &rm->data.op_sg[rm->data.op_count]) {
704 		prev->s_op = ic->i_data_op;
705 		prev->s_wr.send_flags |= IB_SEND_SOLICITED;
706 		if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED))
707 			nr_sig += rds_ib_set_wr_signal_state(ic, prev, true);
708 		ic->i_data_op = NULL;
709 	}
710 
711 	/* Put back wrs & credits we didn't use */
712 	if (i < work_alloc) {
713 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
714 		work_alloc = i;
715 	}
716 	if (ic->i_flowctl && i < credit_alloc)
717 		rds_ib_send_add_credits(conn, credit_alloc - i);
718 
719 	if (nr_sig)
720 		atomic_add(nr_sig, &ic->i_signaled_sends);
721 
722 	/* XXX need to worry about failed_wr and partial sends. */
723 	failed_wr = &first->s_wr;
724 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
725 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
726 		 first, &first->s_wr, ret, failed_wr);
727 	BUG_ON(failed_wr != &first->s_wr);
728 	if (ret) {
729 		printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c "
730 		       "returned %d\n", &conn->c_faddr, ret);
731 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
732 		rds_ib_sub_signaled(ic, nr_sig);
733 		if (prev->s_op) {
734 			ic->i_data_op = prev->s_op;
735 			prev->s_op = NULL;
736 		}
737 
738 		rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
739 		goto out;
740 	}
741 
742 	ret = bytes_sent;
743 out:
744 	BUG_ON(adv_credits);
745 	return ret;
746 }
747 
748 /*
749  * Issue atomic operation.
750  * A simplified version of the rdma case, we always map 1 SG, and
751  * only 8 bytes, for the return value from the atomic operation.
752  */
753 int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
754 {
755 	struct rds_ib_connection *ic = conn->c_transport_data;
756 	struct rds_ib_send_work *send = NULL;
757 	const struct ib_send_wr *failed_wr;
758 	u32 pos;
759 	u32 work_alloc;
760 	int ret;
761 	int nr_sig = 0;
762 
763 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
764 	if (work_alloc != 1) {
765 		rds_ib_stats_inc(s_ib_tx_ring_full);
766 		ret = -ENOMEM;
767 		goto out;
768 	}
769 
770 	/* address of send request in ring */
771 	send = &ic->i_sends[pos];
772 	send->s_queued = jiffies;
773 
774 	if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
775 		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
776 		send->s_atomic_wr.compare_add = op->op_m_cswp.compare;
777 		send->s_atomic_wr.swap = op->op_m_cswp.swap;
778 		send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask;
779 		send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask;
780 	} else { /* FADD */
781 		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
782 		send->s_atomic_wr.compare_add = op->op_m_fadd.add;
783 		send->s_atomic_wr.swap = 0;
784 		send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask;
785 		send->s_atomic_wr.swap_mask = 0;
786 	}
787 	send->s_wr.send_flags = 0;
788 	nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
789 	send->s_atomic_wr.wr.num_sge = 1;
790 	send->s_atomic_wr.wr.next = NULL;
791 	send->s_atomic_wr.remote_addr = op->op_remote_addr;
792 	send->s_atomic_wr.rkey = op->op_rkey;
793 	send->s_op = op;
794 	rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
795 
796 	/* map 8 byte retval buffer to the device */
797 	ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
798 	rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
799 	if (ret != 1) {
800 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
801 		rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
802 		ret = -ENOMEM; /* XXX ? */
803 		goto out;
804 	}
805 
806 	/* Convert our struct scatterlist to struct ib_sge */
807 	send->s_sge[0].addr = sg_dma_address(op->op_sg);
808 	send->s_sge[0].length = sg_dma_len(op->op_sg);
809 	send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
810 
811 	rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
812 		 send->s_sge[0].addr, send->s_sge[0].length);
813 
814 	if (nr_sig)
815 		atomic_add(nr_sig, &ic->i_signaled_sends);
816 
817 	failed_wr = &send->s_atomic_wr.wr;
818 	ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr);
819 	rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
820 		 send, &send->s_atomic_wr, ret, failed_wr);
821 	BUG_ON(failed_wr != &send->s_atomic_wr.wr);
822 	if (ret) {
823 		printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c "
824 		       "returned %d\n", &conn->c_faddr, ret);
825 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
826 		rds_ib_sub_signaled(ic, nr_sig);
827 		goto out;
828 	}
829 
830 	if (unlikely(failed_wr != &send->s_atomic_wr.wr)) {
831 		printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
832 		BUG_ON(failed_wr != &send->s_atomic_wr.wr);
833 	}
834 
835 out:
836 	return ret;
837 }
838 
839 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
840 {
841 	struct rds_ib_connection *ic = conn->c_transport_data;
842 	struct rds_ib_send_work *send = NULL;
843 	struct rds_ib_send_work *first;
844 	struct rds_ib_send_work *prev;
845 	const struct ib_send_wr *failed_wr;
846 	struct scatterlist *scat;
847 	unsigned long len;
848 	u64 remote_addr = op->op_remote_addr;
849 	u32 max_sge = ic->rds_ibdev->max_sge;
850 	u32 pos;
851 	u32 work_alloc;
852 	u32 i;
853 	u32 j;
854 	int sent;
855 	int ret;
856 	int num_sge;
857 	int nr_sig = 0;
858 
859 	/* map the op the first time we see it */
860 	if (!op->op_mapped) {
861 		op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
862 					     op->op_sg, op->op_nents, (op->op_write) ?
863 					     DMA_TO_DEVICE : DMA_FROM_DEVICE);
864 		rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
865 		if (op->op_count == 0) {
866 			rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
867 			ret = -ENOMEM; /* XXX ? */
868 			goto out;
869 		}
870 
871 		op->op_mapped = 1;
872 	}
873 
874 	/*
875 	 * Instead of knowing how to return a partial rdma read/write we insist that there
876 	 * be enough work requests to send the entire message.
877 	 */
878 	i = DIV_ROUND_UP(op->op_count, max_sge);
879 
880 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
881 	if (work_alloc != i) {
882 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
883 		rds_ib_stats_inc(s_ib_tx_ring_full);
884 		ret = -ENOMEM;
885 		goto out;
886 	}
887 
888 	send = &ic->i_sends[pos];
889 	first = send;
890 	prev = NULL;
891 	scat = &op->op_sg[0];
892 	sent = 0;
893 	num_sge = op->op_count;
894 
895 	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
896 		send->s_wr.send_flags = 0;
897 		send->s_queued = jiffies;
898 		send->s_op = NULL;
899 
900 		if (!op->op_notify)
901 			nr_sig += rds_ib_set_wr_signal_state(ic, send,
902 							     op->op_notify);
903 
904 		send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
905 		send->s_rdma_wr.remote_addr = remote_addr;
906 		send->s_rdma_wr.rkey = op->op_rkey;
907 
908 		if (num_sge > max_sge) {
909 			send->s_rdma_wr.wr.num_sge = max_sge;
910 			num_sge -= max_sge;
911 		} else {
912 			send->s_rdma_wr.wr.num_sge = num_sge;
913 		}
914 
915 		send->s_rdma_wr.wr.next = NULL;
916 
917 		if (prev)
918 			prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr;
919 
920 		for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
921 		     scat != &op->op_sg[op->op_count]; j++) {
922 			len = sg_dma_len(scat);
923 			send->s_sge[j].addr = sg_dma_address(scat);
924 			send->s_sge[j].length = len;
925 			send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
926 
927 			sent += len;
928 			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
929 
930 			remote_addr += len;
931 			scat++;
932 		}
933 
934 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
935 			&send->s_rdma_wr.wr,
936 			send->s_rdma_wr.wr.num_sge,
937 			send->s_rdma_wr.wr.next);
938 
939 		prev = send;
940 		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
941 			send = ic->i_sends;
942 	}
943 
944 	/* give a reference to the last op */
945 	if (scat == &op->op_sg[op->op_count]) {
946 		prev->s_op = op;
947 		rds_message_addref(container_of(op, struct rds_message, rdma));
948 	}
949 
950 	if (i < work_alloc) {
951 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
952 		work_alloc = i;
953 	}
954 
955 	if (nr_sig)
956 		atomic_add(nr_sig, &ic->i_signaled_sends);
957 
958 	failed_wr = &first->s_rdma_wr.wr;
959 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
960 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
961 		 first, &first->s_rdma_wr.wr, ret, failed_wr);
962 	BUG_ON(failed_wr != &first->s_rdma_wr.wr);
963 	if (ret) {
964 		printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c "
965 		       "returned %d\n", &conn->c_faddr, ret);
966 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
967 		rds_ib_sub_signaled(ic, nr_sig);
968 		goto out;
969 	}
970 
971 	if (unlikely(failed_wr != &first->s_rdma_wr.wr)) {
972 		printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
973 		BUG_ON(failed_wr != &first->s_rdma_wr.wr);
974 	}
975 
976 
977 out:
978 	return ret;
979 }
980 
981 void rds_ib_xmit_path_complete(struct rds_conn_path *cp)
982 {
983 	struct rds_connection *conn = cp->cp_conn;
984 	struct rds_ib_connection *ic = conn->c_transport_data;
985 
986 	/* We may have a pending ACK or window update we were unable
987 	 * to send previously (due to flow control). Try again. */
988 	rds_ib_attempt_ack(ic);
989 }
990