xref: /openbmc/linux/net/rds/ib_send.c (revision be122522)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
38 
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42 
43 /*
44  * Convert IB-specific error message to RDS error message and call core
45  * completion handler.
46  */
47 static void rds_ib_send_complete(struct rds_message *rm,
48 				 int wc_status,
49 				 void (*complete)(struct rds_message *rm, int status))
50 {
51 	int notify_status;
52 
53 	switch (wc_status) {
54 	case IB_WC_WR_FLUSH_ERR:
55 		return;
56 
57 	case IB_WC_SUCCESS:
58 		notify_status = RDS_RDMA_SUCCESS;
59 		break;
60 
61 	case IB_WC_REM_ACCESS_ERR:
62 		notify_status = RDS_RDMA_REMOTE_ERROR;
63 		break;
64 
65 	default:
66 		notify_status = RDS_RDMA_OTHER_ERROR;
67 		break;
68 	}
69 	complete(rm, notify_status);
70 }
71 
72 static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
73 				   struct rm_data_op *op,
74 				   int wc_status)
75 {
76 	if (op->op_nents)
77 		ib_dma_unmap_sg(ic->i_cm_id->device,
78 				op->op_sg, op->op_nents,
79 				DMA_TO_DEVICE);
80 }
81 
82 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
83 				   struct rm_rdma_op *op,
84 				   int wc_status)
85 {
86 	if (op->op_mapped) {
87 		ib_dma_unmap_sg(ic->i_cm_id->device,
88 				op->op_sg, op->op_nents,
89 				op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
90 		op->op_mapped = 0;
91 	}
92 
93 	/* If the user asked for a completion notification on this
94 	 * message, we can implement three different semantics:
95 	 *  1.	Notify when we received the ACK on the RDS message
96 	 *	that was queued with the RDMA. This provides reliable
97 	 *	notification of RDMA status at the expense of a one-way
98 	 *	packet delay.
99 	 *  2.	Notify when the IB stack gives us the completion event for
100 	 *	the RDMA operation.
101 	 *  3.	Notify when the IB stack gives us the completion event for
102 	 *	the accompanying RDS messages.
103 	 * Here, we implement approach #3. To implement approach #2,
104 	 * we would need to take an event for the rdma WR. To implement #1,
105 	 * don't call rds_rdma_send_complete at all, and fall back to the notify
106 	 * handling in the ACK processing code.
107 	 *
108 	 * Note: There's no need to explicitly sync any RDMA buffers using
109 	 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
110 	 * operation itself unmapped the RDMA buffers, which takes care
111 	 * of synching.
112 	 */
113 	rds_ib_send_complete(container_of(op, struct rds_message, rdma),
114 			     wc_status, rds_rdma_send_complete);
115 
116 	if (op->op_write)
117 		rds_stats_add(s_send_rdma_bytes, op->op_bytes);
118 	else
119 		rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
120 }
121 
122 static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
123 				     struct rm_atomic_op *op,
124 				     int wc_status)
125 {
126 	/* unmap atomic recvbuf */
127 	if (op->op_mapped) {
128 		ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
129 				DMA_FROM_DEVICE);
130 		op->op_mapped = 0;
131 	}
132 
133 	rds_ib_send_complete(container_of(op, struct rds_message, atomic),
134 			     wc_status, rds_atomic_send_complete);
135 
136 	if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
137 		rds_ib_stats_inc(s_ib_atomic_cswp);
138 	else
139 		rds_ib_stats_inc(s_ib_atomic_fadd);
140 }
141 
142 /*
143  * Unmap the resources associated with a struct send_work.
144  *
145  * Returns the rm for no good reason other than it is unobtainable
146  * other than by switching on wr.opcode, currently, and the caller,
147  * the event handler, needs it.
148  */
149 static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
150 						struct rds_ib_send_work *send,
151 						int wc_status)
152 {
153 	struct rds_message *rm = NULL;
154 
155 	/* In the error case, wc.opcode sometimes contains garbage */
156 	switch (send->s_wr.opcode) {
157 	case IB_WR_SEND:
158 		if (send->s_op) {
159 			rm = container_of(send->s_op, struct rds_message, data);
160 			rds_ib_send_unmap_data(ic, send->s_op, wc_status);
161 		}
162 		break;
163 	case IB_WR_RDMA_WRITE:
164 	case IB_WR_RDMA_READ:
165 		if (send->s_op) {
166 			rm = container_of(send->s_op, struct rds_message, rdma);
167 			rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
168 		}
169 		break;
170 	case IB_WR_ATOMIC_FETCH_AND_ADD:
171 	case IB_WR_ATOMIC_CMP_AND_SWP:
172 		if (send->s_op) {
173 			rm = container_of(send->s_op, struct rds_message, atomic);
174 			rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
175 		}
176 		break;
177 	default:
178 		printk_ratelimited(KERN_NOTICE
179 			       "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
180 			       __func__, send->s_wr.opcode);
181 		break;
182 	}
183 
184 	send->s_wr.opcode = 0xdead;
185 
186 	return rm;
187 }
188 
189 void rds_ib_send_init_ring(struct rds_ib_connection *ic)
190 {
191 	struct rds_ib_send_work *send;
192 	u32 i;
193 
194 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
195 		struct ib_sge *sge;
196 
197 		send->s_op = NULL;
198 
199 		send->s_wr.wr_id = i;
200 		send->s_wr.sg_list = send->s_sge;
201 		send->s_wr.ex.imm_data = 0;
202 
203 		sge = &send->s_sge[0];
204 		sge->addr = ic->i_send_hdrs_dma[i];
205 
206 		sge->length = sizeof(struct rds_header);
207 		sge->lkey = ic->i_pd->local_dma_lkey;
208 
209 		send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
210 	}
211 }
212 
213 void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
214 {
215 	struct rds_ib_send_work *send;
216 	u32 i;
217 
218 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
219 		if (send->s_op && send->s_wr.opcode != 0xdead)
220 			rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
221 	}
222 }
223 
224 /*
225  * The only fast path caller always has a non-zero nr, so we don't
226  * bother testing nr before performing the atomic sub.
227  */
228 static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
229 {
230 	if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
231 	    waitqueue_active(&rds_ib_ring_empty_wait))
232 		wake_up(&rds_ib_ring_empty_wait);
233 	BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
234 }
235 
236 /*
237  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
238  * operations performed in the send path.  As the sender allocs and potentially
239  * unallocs the next free entry in the ring it doesn't alter which is
240  * the next to be freed, which is what this is concerned with.
241  */
242 void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc)
243 {
244 	struct rds_message *rm = NULL;
245 	struct rds_connection *conn = ic->conn;
246 	struct rds_ib_send_work *send;
247 	u32 completed;
248 	u32 oldest;
249 	u32 i = 0;
250 	int nr_sig = 0;
251 
252 
253 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
254 		 (unsigned long long)wc->wr_id, wc->status,
255 		 ib_wc_status_msg(wc->status), wc->byte_len,
256 		 be32_to_cpu(wc->ex.imm_data));
257 	rds_ib_stats_inc(s_ib_tx_cq_event);
258 
259 	if (wc->wr_id == RDS_IB_ACK_WR_ID) {
260 		if (time_after(jiffies, ic->i_ack_queued + HZ / 2))
261 			rds_ib_stats_inc(s_ib_tx_stalled);
262 		rds_ib_ack_send_complete(ic);
263 		return;
264 	}
265 
266 	oldest = rds_ib_ring_oldest(&ic->i_send_ring);
267 
268 	completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest);
269 
270 	for (i = 0; i < completed; i++) {
271 		send = &ic->i_sends[oldest];
272 		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
273 			nr_sig++;
274 
275 		rm = rds_ib_send_unmap_op(ic, send, wc->status);
276 
277 		if (time_after(jiffies, send->s_queued + HZ / 2))
278 			rds_ib_stats_inc(s_ib_tx_stalled);
279 
280 		if (send->s_op) {
281 			if (send->s_op == rm->m_final_op) {
282 				/* If anyone waited for this message to get
283 				 * flushed out, wake them up now
284 				 */
285 				rds_message_unmapped(rm);
286 			}
287 			rds_message_put(rm);
288 			send->s_op = NULL;
289 		}
290 
291 		oldest = (oldest + 1) % ic->i_send_ring.w_nr;
292 	}
293 
294 	rds_ib_ring_free(&ic->i_send_ring, completed);
295 	rds_ib_sub_signaled(ic, nr_sig);
296 	nr_sig = 0;
297 
298 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
299 	    test_bit(0, &conn->c_map_queued))
300 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
301 
302 	/* We expect errors as the qp is drained during shutdown */
303 	if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) {
304 		rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
305 				  &conn->c_laddr, &conn->c_faddr,
306 				  conn->c_tos, wc->status,
307 				  ib_wc_status_msg(wc->status), wc->vendor_err);
308 	}
309 }
310 
311 /*
312  * This is the main function for allocating credits when sending
313  * messages.
314  *
315  * Conceptually, we have two counters:
316  *  -	send credits: this tells us how many WRs we're allowed
317  *	to submit without overruning the receiver's queue. For
318  *	each SEND WR we post, we decrement this by one.
319  *
320  *  -	posted credits: this tells us how many WRs we recently
321  *	posted to the receive queue. This value is transferred
322  *	to the peer as a "credit update" in a RDS header field.
323  *	Every time we transmit credits to the peer, we subtract
324  *	the amount of transferred credits from this counter.
325  *
326  * It is essential that we avoid situations where both sides have
327  * exhausted their send credits, and are unable to send new credits
328  * to the peer. We achieve this by requiring that we send at least
329  * one credit update to the peer before exhausting our credits.
330  * When new credits arrive, we subtract one credit that is withheld
331  * until we've posted new buffers and are ready to transmit these
332  * credits (see rds_ib_send_add_credits below).
333  *
334  * The RDS send code is essentially single-threaded; rds_send_xmit
335  * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
336  * However, the ACK sending code is independent and can race with
337  * message SENDs.
338  *
339  * In the send path, we need to update the counters for send credits
340  * and the counter of posted buffers atomically - when we use the
341  * last available credit, we cannot allow another thread to race us
342  * and grab the posted credits counter.  Hence, we have to use a
343  * spinlock to protect the credit counter, or use atomics.
344  *
345  * Spinlocks shared between the send and the receive path are bad,
346  * because they create unnecessary delays. An early implementation
347  * using a spinlock showed a 5% degradation in throughput at some
348  * loads.
349  *
350  * This implementation avoids spinlocks completely, putting both
351  * counters into a single atomic, and updating that atomic using
352  * atomic_add (in the receive path, when receiving fresh credits),
353  * and using atomic_cmpxchg when updating the two counters.
354  */
355 int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
356 			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
357 {
358 	unsigned int avail, posted, got = 0, advertise;
359 	long oldval, newval;
360 
361 	*adv_credits = 0;
362 	if (!ic->i_flowctl)
363 		return wanted;
364 
365 try_again:
366 	advertise = 0;
367 	oldval = newval = atomic_read(&ic->i_credits);
368 	posted = IB_GET_POST_CREDITS(oldval);
369 	avail = IB_GET_SEND_CREDITS(oldval);
370 
371 	rdsdebug("wanted=%u credits=%u posted=%u\n",
372 			wanted, avail, posted);
373 
374 	/* The last credit must be used to send a credit update. */
375 	if (avail && !posted)
376 		avail--;
377 
378 	if (avail < wanted) {
379 		struct rds_connection *conn = ic->i_cm_id->context;
380 
381 		/* Oops, there aren't that many credits left! */
382 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
383 		got = avail;
384 	} else {
385 		/* Sometimes you get what you want, lalala. */
386 		got = wanted;
387 	}
388 	newval -= IB_SET_SEND_CREDITS(got);
389 
390 	/*
391 	 * If need_posted is non-zero, then the caller wants
392 	 * the posted regardless of whether any send credits are
393 	 * available.
394 	 */
395 	if (posted && (got || need_posted)) {
396 		advertise = min_t(unsigned int, posted, max_posted);
397 		newval -= IB_SET_POST_CREDITS(advertise);
398 	}
399 
400 	/* Finally bill everything */
401 	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
402 		goto try_again;
403 
404 	*adv_credits = advertise;
405 	return got;
406 }
407 
408 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
409 {
410 	struct rds_ib_connection *ic = conn->c_transport_data;
411 
412 	if (credits == 0)
413 		return;
414 
415 	rdsdebug("credits=%u current=%u%s\n",
416 			credits,
417 			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
418 			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
419 
420 	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
421 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
422 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
423 
424 	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
425 
426 	rds_ib_stats_inc(s_ib_rx_credit_updates);
427 }
428 
429 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
430 {
431 	struct rds_ib_connection *ic = conn->c_transport_data;
432 
433 	if (posted == 0)
434 		return;
435 
436 	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
437 
438 	/* Decide whether to send an update to the peer now.
439 	 * If we would send a credit update for every single buffer we
440 	 * post, we would end up with an ACK storm (ACK arrives,
441 	 * consumes buffer, we refill the ring, send ACK to remote
442 	 * advertising the newly posted buffer... ad inf)
443 	 *
444 	 * Performance pretty much depends on how often we send
445 	 * credit updates - too frequent updates mean lots of ACKs.
446 	 * Too infrequent updates, and the peer will run out of
447 	 * credits and has to throttle.
448 	 * For the time being, 16 seems to be a good compromise.
449 	 */
450 	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
451 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
452 }
453 
454 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
455 					     struct rds_ib_send_work *send,
456 					     bool notify)
457 {
458 	/*
459 	 * We want to delay signaling completions just enough to get
460 	 * the batching benefits but not so much that we create dead time
461 	 * on the wire.
462 	 */
463 	if (ic->i_unsignaled_wrs-- == 0 || notify) {
464 		ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
465 		send->s_wr.send_flags |= IB_SEND_SIGNALED;
466 		return 1;
467 	}
468 	return 0;
469 }
470 
471 /*
472  * This can be called multiple times for a given message.  The first time
473  * we see a message we map its scatterlist into the IB device so that
474  * we can provide that mapped address to the IB scatter gather entries
475  * in the IB work requests.  We translate the scatterlist into a series
476  * of work requests that fragment the message.  These work requests complete
477  * in order so we pass ownership of the message to the completion handler
478  * once we send the final fragment.
479  *
480  * The RDS core uses the c_send_lock to only enter this function once
481  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
482  * don't get out of sync and confuse the ring.
483  */
484 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
485 		unsigned int hdr_off, unsigned int sg, unsigned int off)
486 {
487 	struct rds_ib_connection *ic = conn->c_transport_data;
488 	struct ib_device *dev = ic->i_cm_id->device;
489 	struct rds_ib_send_work *send = NULL;
490 	struct rds_ib_send_work *first;
491 	struct rds_ib_send_work *prev;
492 	const struct ib_send_wr *failed_wr;
493 	struct scatterlist *scat;
494 	u32 pos;
495 	u32 i;
496 	u32 work_alloc;
497 	u32 credit_alloc = 0;
498 	u32 posted;
499 	u32 adv_credits = 0;
500 	int send_flags = 0;
501 	int bytes_sent = 0;
502 	int ret;
503 	int flow_controlled = 0;
504 	int nr_sig = 0;
505 
506 	BUG_ON(off % RDS_FRAG_SIZE);
507 	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
508 
509 	/* Do not send cong updates to IB loopback */
510 	if (conn->c_loopback
511 	    && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
512 		rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
513 		scat = &rm->data.op_sg[sg];
514 		ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
515 		return sizeof(struct rds_header) + ret;
516 	}
517 
518 	/* FIXME we may overallocate here */
519 	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
520 		i = 1;
521 	else
522 		i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
523 
524 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
525 	if (work_alloc == 0) {
526 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
527 		rds_ib_stats_inc(s_ib_tx_ring_full);
528 		ret = -ENOMEM;
529 		goto out;
530 	}
531 
532 	if (ic->i_flowctl) {
533 		credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
534 		adv_credits += posted;
535 		if (credit_alloc < work_alloc) {
536 			rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
537 			work_alloc = credit_alloc;
538 			flow_controlled = 1;
539 		}
540 		if (work_alloc == 0) {
541 			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
542 			rds_ib_stats_inc(s_ib_tx_throttle);
543 			ret = -ENOMEM;
544 			goto out;
545 		}
546 	}
547 
548 	/* map the message the first time we see it */
549 	if (!ic->i_data_op) {
550 		if (rm->data.op_nents) {
551 			rm->data.op_count = ib_dma_map_sg(dev,
552 							  rm->data.op_sg,
553 							  rm->data.op_nents,
554 							  DMA_TO_DEVICE);
555 			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
556 			if (rm->data.op_count == 0) {
557 				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
558 				rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
559 				ret = -ENOMEM; /* XXX ? */
560 				goto out;
561 			}
562 		} else {
563 			rm->data.op_count = 0;
564 		}
565 
566 		rds_message_addref(rm);
567 		rm->data.op_dmasg = 0;
568 		rm->data.op_dmaoff = 0;
569 		ic->i_data_op = &rm->data;
570 
571 		/* Finalize the header */
572 		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
573 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
574 		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
575 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
576 
577 		/* If it has a RDMA op, tell the peer we did it. This is
578 		 * used by the peer to release use-once RDMA MRs. */
579 		if (rm->rdma.op_active) {
580 			struct rds_ext_header_rdma ext_hdr;
581 
582 			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
583 			rds_message_add_extension(&rm->m_inc.i_hdr,
584 					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
585 		}
586 		if (rm->m_rdma_cookie) {
587 			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
588 					rds_rdma_cookie_key(rm->m_rdma_cookie),
589 					rds_rdma_cookie_offset(rm->m_rdma_cookie));
590 		}
591 
592 		/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
593 		 * we should not do this unless we have a chance of at least
594 		 * sticking the header into the send ring. Which is why we
595 		 * should call rds_ib_ring_alloc first. */
596 		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
597 		rds_message_make_checksum(&rm->m_inc.i_hdr);
598 
599 		/*
600 		 * Update adv_credits since we reset the ACK_REQUIRED bit.
601 		 */
602 		if (ic->i_flowctl) {
603 			rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
604 			adv_credits += posted;
605 			BUG_ON(adv_credits > 255);
606 		}
607 	}
608 
609 	/* Sometimes you want to put a fence between an RDMA
610 	 * READ and the following SEND.
611 	 * We could either do this all the time
612 	 * or when requested by the user. Right now, we let
613 	 * the application choose.
614 	 */
615 	if (rm->rdma.op_active && rm->rdma.op_fence)
616 		send_flags = IB_SEND_FENCE;
617 
618 	/* Each frag gets a header. Msgs may be 0 bytes */
619 	send = &ic->i_sends[pos];
620 	first = send;
621 	prev = NULL;
622 	scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
623 	i = 0;
624 	do {
625 		unsigned int len = 0;
626 
627 		/* Set up the header */
628 		send->s_wr.send_flags = send_flags;
629 		send->s_wr.opcode = IB_WR_SEND;
630 		send->s_wr.num_sge = 1;
631 		send->s_wr.next = NULL;
632 		send->s_queued = jiffies;
633 		send->s_op = NULL;
634 
635 		send->s_sge[0].addr = ic->i_send_hdrs_dma[pos];
636 
637 		send->s_sge[0].length = sizeof(struct rds_header);
638 
639 		memcpy(ic->i_send_hdrs[pos], &rm->m_inc.i_hdr,
640 		       sizeof(struct rds_header));
641 
642 
643 		/* Set up the data, if present */
644 		if (i < work_alloc
645 		    && scat != &rm->data.op_sg[rm->data.op_count]) {
646 			len = min(RDS_FRAG_SIZE,
647 				  sg_dma_len(scat) - rm->data.op_dmaoff);
648 			send->s_wr.num_sge = 2;
649 
650 			send->s_sge[1].addr = sg_dma_address(scat);
651 			send->s_sge[1].addr += rm->data.op_dmaoff;
652 			send->s_sge[1].length = len;
653 
654 			bytes_sent += len;
655 			rm->data.op_dmaoff += len;
656 			if (rm->data.op_dmaoff == sg_dma_len(scat)) {
657 				scat++;
658 				rm->data.op_dmasg++;
659 				rm->data.op_dmaoff = 0;
660 			}
661 		}
662 
663 		rds_ib_set_wr_signal_state(ic, send, false);
664 
665 		/*
666 		 * Always signal the last one if we're stopping due to flow control.
667 		 */
668 		if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) {
669 			rds_ib_set_wr_signal_state(ic, send, true);
670 			send->s_wr.send_flags |= IB_SEND_SOLICITED;
671 		}
672 
673 		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
674 			nr_sig++;
675 
676 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
677 			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
678 
679 		if (ic->i_flowctl && adv_credits) {
680 			struct rds_header *hdr = ic->i_send_hdrs[pos];
681 
682 			/* add credit and redo the header checksum */
683 			hdr->h_credit = adv_credits;
684 			rds_message_make_checksum(hdr);
685 			adv_credits = 0;
686 			rds_ib_stats_inc(s_ib_tx_credit_updates);
687 		}
688 
689 		if (prev)
690 			prev->s_wr.next = &send->s_wr;
691 		prev = send;
692 
693 		pos = (pos + 1) % ic->i_send_ring.w_nr;
694 		send = &ic->i_sends[pos];
695 		i++;
696 
697 	} while (i < work_alloc
698 		 && scat != &rm->data.op_sg[rm->data.op_count]);
699 
700 	/* Account the RDS header in the number of bytes we sent, but just once.
701 	 * The caller has no concept of fragmentation. */
702 	if (hdr_off == 0)
703 		bytes_sent += sizeof(struct rds_header);
704 
705 	/* if we finished the message then send completion owns it */
706 	if (scat == &rm->data.op_sg[rm->data.op_count]) {
707 		prev->s_op = ic->i_data_op;
708 		prev->s_wr.send_flags |= IB_SEND_SOLICITED;
709 		if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED))
710 			nr_sig += rds_ib_set_wr_signal_state(ic, prev, true);
711 		ic->i_data_op = NULL;
712 	}
713 
714 	/* Put back wrs & credits we didn't use */
715 	if (i < work_alloc) {
716 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
717 		work_alloc = i;
718 	}
719 	if (ic->i_flowctl && i < credit_alloc)
720 		rds_ib_send_add_credits(conn, credit_alloc - i);
721 
722 	if (nr_sig)
723 		atomic_add(nr_sig, &ic->i_signaled_sends);
724 
725 	/* XXX need to worry about failed_wr and partial sends. */
726 	failed_wr = &first->s_wr;
727 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
728 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
729 		 first, &first->s_wr, ret, failed_wr);
730 	BUG_ON(failed_wr != &first->s_wr);
731 	if (ret) {
732 		printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c "
733 		       "returned %d\n", &conn->c_faddr, ret);
734 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
735 		rds_ib_sub_signaled(ic, nr_sig);
736 		if (prev->s_op) {
737 			ic->i_data_op = prev->s_op;
738 			prev->s_op = NULL;
739 		}
740 
741 		rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
742 		goto out;
743 	}
744 
745 	ret = bytes_sent;
746 out:
747 	BUG_ON(adv_credits);
748 	return ret;
749 }
750 
751 /*
752  * Issue atomic operation.
753  * A simplified version of the rdma case, we always map 1 SG, and
754  * only 8 bytes, for the return value from the atomic operation.
755  */
756 int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
757 {
758 	struct rds_ib_connection *ic = conn->c_transport_data;
759 	struct rds_ib_send_work *send = NULL;
760 	const struct ib_send_wr *failed_wr;
761 	u32 pos;
762 	u32 work_alloc;
763 	int ret;
764 	int nr_sig = 0;
765 
766 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
767 	if (work_alloc != 1) {
768 		rds_ib_stats_inc(s_ib_tx_ring_full);
769 		ret = -ENOMEM;
770 		goto out;
771 	}
772 
773 	/* address of send request in ring */
774 	send = &ic->i_sends[pos];
775 	send->s_queued = jiffies;
776 
777 	if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
778 		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
779 		send->s_atomic_wr.compare_add = op->op_m_cswp.compare;
780 		send->s_atomic_wr.swap = op->op_m_cswp.swap;
781 		send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask;
782 		send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask;
783 	} else { /* FADD */
784 		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
785 		send->s_atomic_wr.compare_add = op->op_m_fadd.add;
786 		send->s_atomic_wr.swap = 0;
787 		send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask;
788 		send->s_atomic_wr.swap_mask = 0;
789 	}
790 	send->s_wr.send_flags = 0;
791 	nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
792 	send->s_atomic_wr.wr.num_sge = 1;
793 	send->s_atomic_wr.wr.next = NULL;
794 	send->s_atomic_wr.remote_addr = op->op_remote_addr;
795 	send->s_atomic_wr.rkey = op->op_rkey;
796 	send->s_op = op;
797 	rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
798 
799 	/* map 8 byte retval buffer to the device */
800 	ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
801 	rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
802 	if (ret != 1) {
803 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
804 		rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
805 		ret = -ENOMEM; /* XXX ? */
806 		goto out;
807 	}
808 
809 	/* Convert our struct scatterlist to struct ib_sge */
810 	send->s_sge[0].addr = sg_dma_address(op->op_sg);
811 	send->s_sge[0].length = sg_dma_len(op->op_sg);
812 	send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
813 
814 	rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
815 		 send->s_sge[0].addr, send->s_sge[0].length);
816 
817 	if (nr_sig)
818 		atomic_add(nr_sig, &ic->i_signaled_sends);
819 
820 	failed_wr = &send->s_atomic_wr.wr;
821 	ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr);
822 	rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
823 		 send, &send->s_atomic_wr, ret, failed_wr);
824 	BUG_ON(failed_wr != &send->s_atomic_wr.wr);
825 	if (ret) {
826 		printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c "
827 		       "returned %d\n", &conn->c_faddr, ret);
828 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
829 		rds_ib_sub_signaled(ic, nr_sig);
830 		goto out;
831 	}
832 
833 	if (unlikely(failed_wr != &send->s_atomic_wr.wr)) {
834 		printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
835 		BUG_ON(failed_wr != &send->s_atomic_wr.wr);
836 	}
837 
838 out:
839 	return ret;
840 }
841 
842 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
843 {
844 	struct rds_ib_connection *ic = conn->c_transport_data;
845 	struct rds_ib_send_work *send = NULL;
846 	struct rds_ib_send_work *first;
847 	struct rds_ib_send_work *prev;
848 	const struct ib_send_wr *failed_wr;
849 	struct scatterlist *scat;
850 	unsigned long len;
851 	u64 remote_addr = op->op_remote_addr;
852 	u32 max_sge = ic->rds_ibdev->max_sge;
853 	u32 pos;
854 	u32 work_alloc;
855 	u32 i;
856 	u32 j;
857 	int sent;
858 	int ret;
859 	int num_sge;
860 	int nr_sig = 0;
861 
862 	/* map the op the first time we see it */
863 	if (!op->op_mapped) {
864 		op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
865 					     op->op_sg, op->op_nents, (op->op_write) ?
866 					     DMA_TO_DEVICE : DMA_FROM_DEVICE);
867 		rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
868 		if (op->op_count == 0) {
869 			rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
870 			ret = -ENOMEM; /* XXX ? */
871 			goto out;
872 		}
873 
874 		op->op_mapped = 1;
875 	}
876 
877 	/*
878 	 * Instead of knowing how to return a partial rdma read/write we insist that there
879 	 * be enough work requests to send the entire message.
880 	 */
881 	i = DIV_ROUND_UP(op->op_count, max_sge);
882 
883 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
884 	if (work_alloc != i) {
885 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
886 		rds_ib_stats_inc(s_ib_tx_ring_full);
887 		ret = -ENOMEM;
888 		goto out;
889 	}
890 
891 	send = &ic->i_sends[pos];
892 	first = send;
893 	prev = NULL;
894 	scat = &op->op_sg[0];
895 	sent = 0;
896 	num_sge = op->op_count;
897 
898 	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
899 		send->s_wr.send_flags = 0;
900 		send->s_queued = jiffies;
901 		send->s_op = NULL;
902 
903 		if (!op->op_notify)
904 			nr_sig += rds_ib_set_wr_signal_state(ic, send,
905 							     op->op_notify);
906 
907 		send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
908 		send->s_rdma_wr.remote_addr = remote_addr;
909 		send->s_rdma_wr.rkey = op->op_rkey;
910 
911 		if (num_sge > max_sge) {
912 			send->s_rdma_wr.wr.num_sge = max_sge;
913 			num_sge -= max_sge;
914 		} else {
915 			send->s_rdma_wr.wr.num_sge = num_sge;
916 		}
917 
918 		send->s_rdma_wr.wr.next = NULL;
919 
920 		if (prev)
921 			prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr;
922 
923 		for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
924 		     scat != &op->op_sg[op->op_count]; j++) {
925 			len = sg_dma_len(scat);
926 			send->s_sge[j].addr = sg_dma_address(scat);
927 			send->s_sge[j].length = len;
928 			send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
929 
930 			sent += len;
931 			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
932 
933 			remote_addr += len;
934 			scat++;
935 		}
936 
937 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
938 			&send->s_rdma_wr.wr,
939 			send->s_rdma_wr.wr.num_sge,
940 			send->s_rdma_wr.wr.next);
941 
942 		prev = send;
943 		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
944 			send = ic->i_sends;
945 	}
946 
947 	/* give a reference to the last op */
948 	if (scat == &op->op_sg[op->op_count]) {
949 		prev->s_op = op;
950 		rds_message_addref(container_of(op, struct rds_message, rdma));
951 	}
952 
953 	if (i < work_alloc) {
954 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
955 		work_alloc = i;
956 	}
957 
958 	if (nr_sig)
959 		atomic_add(nr_sig, &ic->i_signaled_sends);
960 
961 	failed_wr = &first->s_rdma_wr.wr;
962 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
963 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
964 		 first, &first->s_rdma_wr.wr, ret, failed_wr);
965 	BUG_ON(failed_wr != &first->s_rdma_wr.wr);
966 	if (ret) {
967 		printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c "
968 		       "returned %d\n", &conn->c_faddr, ret);
969 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
970 		rds_ib_sub_signaled(ic, nr_sig);
971 		goto out;
972 	}
973 
974 	if (unlikely(failed_wr != &first->s_rdma_wr.wr)) {
975 		printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
976 		BUG_ON(failed_wr != &first->s_rdma_wr.wr);
977 	}
978 
979 
980 out:
981 	return ret;
982 }
983 
984 void rds_ib_xmit_path_complete(struct rds_conn_path *cp)
985 {
986 	struct rds_connection *conn = cp->cp_conn;
987 	struct rds_ib_connection *ic = conn->c_transport_data;
988 
989 	/* We may have a pending ACK or window update we were unable
990 	 * to send previously (due to flow control). Try again. */
991 	rds_ib_attempt_ack(ic);
992 }
993