1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/in.h> 35 #include <linux/device.h> 36 #include <linux/dmapool.h> 37 38 #include "rds.h" 39 #include "rdma.h" 40 #include "ib.h" 41 42 static void rds_ib_send_rdma_complete(struct rds_message *rm, 43 int wc_status) 44 { 45 int notify_status; 46 47 switch (wc_status) { 48 case IB_WC_WR_FLUSH_ERR: 49 return; 50 51 case IB_WC_SUCCESS: 52 notify_status = RDS_RDMA_SUCCESS; 53 break; 54 55 case IB_WC_REM_ACCESS_ERR: 56 notify_status = RDS_RDMA_REMOTE_ERROR; 57 break; 58 59 default: 60 notify_status = RDS_RDMA_OTHER_ERROR; 61 break; 62 } 63 rds_rdma_send_complete(rm, notify_status); 64 } 65 66 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic, 67 struct rds_rdma_op *op) 68 { 69 if (op->r_mapped) { 70 ib_dma_unmap_sg(ic->i_cm_id->device, 71 op->r_sg, op->r_nents, 72 op->r_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 73 op->r_mapped = 0; 74 } 75 } 76 77 static void rds_ib_send_unmap_rm(struct rds_ib_connection *ic, 78 struct rds_ib_send_work *send, 79 int wc_status) 80 { 81 struct rds_message *rm = send->s_rm; 82 83 rdsdebug("ic %p send %p rm %p\n", ic, send, rm); 84 85 ib_dma_unmap_sg(ic->i_cm_id->device, 86 rm->m_sg, rm->m_nents, 87 DMA_TO_DEVICE); 88 89 if (rm->m_rdma_op != NULL) { 90 rds_ib_send_unmap_rdma(ic, rm->m_rdma_op); 91 92 /* If the user asked for a completion notification on this 93 * message, we can implement three different semantics: 94 * 1. Notify when we received the ACK on the RDS message 95 * that was queued with the RDMA. This provides reliable 96 * notification of RDMA status at the expense of a one-way 97 * packet delay. 98 * 2. Notify when the IB stack gives us the completion event for 99 * the RDMA operation. 100 * 3. Notify when the IB stack gives us the completion event for 101 * the accompanying RDS messages. 102 * Here, we implement approach #3. To implement approach #2, 103 * call rds_rdma_send_complete from the cq_handler. To implement #1, 104 * don't call rds_rdma_send_complete at all, and fall back to the notify 105 * handling in the ACK processing code. 106 * 107 * Note: There's no need to explicitly sync any RDMA buffers using 108 * ib_dma_sync_sg_for_cpu - the completion for the RDMA 109 * operation itself unmapped the RDMA buffers, which takes care 110 * of synching. 111 */ 112 rds_ib_send_rdma_complete(rm, wc_status); 113 114 if (rm->m_rdma_op->r_write) 115 rds_stats_add(s_send_rdma_bytes, rm->m_rdma_op->r_bytes); 116 else 117 rds_stats_add(s_recv_rdma_bytes, rm->m_rdma_op->r_bytes); 118 } 119 120 /* If anyone waited for this message to get flushed out, wake 121 * them up now */ 122 rds_message_unmapped(rm); 123 124 rds_message_put(rm); 125 send->s_rm = NULL; 126 } 127 128 void rds_ib_send_init_ring(struct rds_ib_connection *ic) 129 { 130 struct rds_ib_send_work *send; 131 u32 i; 132 133 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { 134 struct ib_sge *sge; 135 136 send->s_rm = NULL; 137 send->s_op = NULL; 138 139 send->s_wr.wr_id = i; 140 send->s_wr.sg_list = send->s_sge; 141 send->s_wr.num_sge = 1; 142 send->s_wr.opcode = IB_WR_SEND; 143 send->s_wr.send_flags = 0; 144 send->s_wr.ex.imm_data = 0; 145 146 sge = rds_ib_data_sge(ic, send->s_sge); 147 sge->lkey = ic->i_mr->lkey; 148 149 sge = rds_ib_header_sge(ic, send->s_sge); 150 sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header)); 151 sge->length = sizeof(struct rds_header); 152 sge->lkey = ic->i_mr->lkey; 153 } 154 } 155 156 void rds_ib_send_clear_ring(struct rds_ib_connection *ic) 157 { 158 struct rds_ib_send_work *send; 159 u32 i; 160 161 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { 162 if (send->s_wr.opcode == 0xdead) 163 continue; 164 if (send->s_rm) 165 rds_ib_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR); 166 if (send->s_op) 167 rds_ib_send_unmap_rdma(ic, send->s_op); 168 } 169 } 170 171 /* 172 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc 173 * operations performed in the send path. As the sender allocs and potentially 174 * unallocs the next free entry in the ring it doesn't alter which is 175 * the next to be freed, which is what this is concerned with. 176 */ 177 void rds_ib_send_cq_comp_handler(struct ib_cq *cq, void *context) 178 { 179 struct rds_connection *conn = context; 180 struct rds_ib_connection *ic = conn->c_transport_data; 181 struct ib_wc wc; 182 struct rds_ib_send_work *send; 183 u32 completed; 184 u32 oldest; 185 u32 i = 0; 186 int ret; 187 188 rdsdebug("cq %p conn %p\n", cq, conn); 189 rds_ib_stats_inc(s_ib_tx_cq_call); 190 ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 191 if (ret) 192 rdsdebug("ib_req_notify_cq send failed: %d\n", ret); 193 194 while (ib_poll_cq(cq, 1, &wc) > 0) { 195 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", 196 (unsigned long long)wc.wr_id, wc.status, wc.byte_len, 197 be32_to_cpu(wc.ex.imm_data)); 198 rds_ib_stats_inc(s_ib_tx_cq_event); 199 200 if (wc.wr_id == RDS_IB_ACK_WR_ID) { 201 if (ic->i_ack_queued + HZ/2 < jiffies) 202 rds_ib_stats_inc(s_ib_tx_stalled); 203 rds_ib_ack_send_complete(ic); 204 continue; 205 } 206 207 oldest = rds_ib_ring_oldest(&ic->i_send_ring); 208 209 completed = rds_ib_ring_completed(&ic->i_send_ring, wc.wr_id, oldest); 210 211 for (i = 0; i < completed; i++) { 212 send = &ic->i_sends[oldest]; 213 214 /* In the error case, wc.opcode sometimes contains garbage */ 215 switch (send->s_wr.opcode) { 216 case IB_WR_SEND: 217 if (send->s_rm) 218 rds_ib_send_unmap_rm(ic, send, wc.status); 219 break; 220 case IB_WR_RDMA_WRITE: 221 case IB_WR_RDMA_READ: 222 /* Nothing to be done - the SG list will be unmapped 223 * when the SEND completes. */ 224 break; 225 default: 226 if (printk_ratelimit()) 227 printk(KERN_NOTICE 228 "RDS/IB: %s: unexpected opcode 0x%x in WR!\n", 229 __func__, send->s_wr.opcode); 230 break; 231 } 232 233 send->s_wr.opcode = 0xdead; 234 send->s_wr.num_sge = 1; 235 if (send->s_queued + HZ/2 < jiffies) 236 rds_ib_stats_inc(s_ib_tx_stalled); 237 238 /* If a RDMA operation produced an error, signal this right 239 * away. If we don't, the subsequent SEND that goes with this 240 * RDMA will be canceled with ERR_WFLUSH, and the application 241 * never learn that the RDMA failed. */ 242 if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) { 243 struct rds_message *rm; 244 245 rm = rds_send_get_message(conn, send->s_op); 246 if (rm) 247 rds_ib_send_rdma_complete(rm, wc.status); 248 } 249 250 oldest = (oldest + 1) % ic->i_send_ring.w_nr; 251 } 252 253 rds_ib_ring_free(&ic->i_send_ring, completed); 254 255 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) 256 || test_bit(0, &conn->c_map_queued)) 257 queue_delayed_work(rds_wq, &conn->c_send_w, 0); 258 259 /* We expect errors as the qp is drained during shutdown */ 260 if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) { 261 rds_ib_conn_error(conn, 262 "send completion on %pI4 " 263 "had status %u, disconnecting and reconnecting\n", 264 &conn->c_faddr, wc.status); 265 } 266 } 267 } 268 269 /* 270 * This is the main function for allocating credits when sending 271 * messages. 272 * 273 * Conceptually, we have two counters: 274 * - send credits: this tells us how many WRs we're allowed 275 * to submit without overruning the reciever's queue. For 276 * each SEND WR we post, we decrement this by one. 277 * 278 * - posted credits: this tells us how many WRs we recently 279 * posted to the receive queue. This value is transferred 280 * to the peer as a "credit update" in a RDS header field. 281 * Every time we transmit credits to the peer, we subtract 282 * the amount of transferred credits from this counter. 283 * 284 * It is essential that we avoid situations where both sides have 285 * exhausted their send credits, and are unable to send new credits 286 * to the peer. We achieve this by requiring that we send at least 287 * one credit update to the peer before exhausting our credits. 288 * When new credits arrive, we subtract one credit that is withheld 289 * until we've posted new buffers and are ready to transmit these 290 * credits (see rds_ib_send_add_credits below). 291 * 292 * The RDS send code is essentially single-threaded; rds_send_xmit 293 * grabs c_send_lock to ensure exclusive access to the send ring. 294 * However, the ACK sending code is independent and can race with 295 * message SENDs. 296 * 297 * In the send path, we need to update the counters for send credits 298 * and the counter of posted buffers atomically - when we use the 299 * last available credit, we cannot allow another thread to race us 300 * and grab the posted credits counter. Hence, we have to use a 301 * spinlock to protect the credit counter, or use atomics. 302 * 303 * Spinlocks shared between the send and the receive path are bad, 304 * because they create unnecessary delays. An early implementation 305 * using a spinlock showed a 5% degradation in throughput at some 306 * loads. 307 * 308 * This implementation avoids spinlocks completely, putting both 309 * counters into a single atomic, and updating that atomic using 310 * atomic_add (in the receive path, when receiving fresh credits), 311 * and using atomic_cmpxchg when updating the two counters. 312 */ 313 int rds_ib_send_grab_credits(struct rds_ib_connection *ic, 314 u32 wanted, u32 *adv_credits, int need_posted) 315 { 316 unsigned int avail, posted, got = 0, advertise; 317 long oldval, newval; 318 319 *adv_credits = 0; 320 if (!ic->i_flowctl) 321 return wanted; 322 323 try_again: 324 advertise = 0; 325 oldval = newval = atomic_read(&ic->i_credits); 326 posted = IB_GET_POST_CREDITS(oldval); 327 avail = IB_GET_SEND_CREDITS(oldval); 328 329 rdsdebug("rds_ib_send_grab_credits(%u): credits=%u posted=%u\n", 330 wanted, avail, posted); 331 332 /* The last credit must be used to send a credit update. */ 333 if (avail && !posted) 334 avail--; 335 336 if (avail < wanted) { 337 struct rds_connection *conn = ic->i_cm_id->context; 338 339 /* Oops, there aren't that many credits left! */ 340 set_bit(RDS_LL_SEND_FULL, &conn->c_flags); 341 got = avail; 342 } else { 343 /* Sometimes you get what you want, lalala. */ 344 got = wanted; 345 } 346 newval -= IB_SET_SEND_CREDITS(got); 347 348 /* 349 * If need_posted is non-zero, then the caller wants 350 * the posted regardless of whether any send credits are 351 * available. 352 */ 353 if (posted && (got || need_posted)) { 354 advertise = min_t(unsigned int, posted, RDS_MAX_ADV_CREDIT); 355 newval -= IB_SET_POST_CREDITS(advertise); 356 } 357 358 /* Finally bill everything */ 359 if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval) 360 goto try_again; 361 362 *adv_credits = advertise; 363 return got; 364 } 365 366 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits) 367 { 368 struct rds_ib_connection *ic = conn->c_transport_data; 369 370 if (credits == 0) 371 return; 372 373 rdsdebug("rds_ib_send_add_credits(%u): current=%u%s\n", 374 credits, 375 IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)), 376 test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : ""); 377 378 atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits); 379 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags)) 380 queue_delayed_work(rds_wq, &conn->c_send_w, 0); 381 382 WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384); 383 384 rds_ib_stats_inc(s_ib_rx_credit_updates); 385 } 386 387 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted) 388 { 389 struct rds_ib_connection *ic = conn->c_transport_data; 390 391 if (posted == 0) 392 return; 393 394 atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits); 395 396 /* Decide whether to send an update to the peer now. 397 * If we would send a credit update for every single buffer we 398 * post, we would end up with an ACK storm (ACK arrives, 399 * consumes buffer, we refill the ring, send ACK to remote 400 * advertising the newly posted buffer... ad inf) 401 * 402 * Performance pretty much depends on how often we send 403 * credit updates - too frequent updates mean lots of ACKs. 404 * Too infrequent updates, and the peer will run out of 405 * credits and has to throttle. 406 * For the time being, 16 seems to be a good compromise. 407 */ 408 if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16) 409 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 410 } 411 412 static inline void 413 rds_ib_xmit_populate_wr(struct rds_ib_connection *ic, 414 struct rds_ib_send_work *send, unsigned int pos, 415 unsigned long buffer, unsigned int length, 416 int send_flags) 417 { 418 struct ib_sge *sge; 419 420 WARN_ON(pos != send - ic->i_sends); 421 422 send->s_wr.send_flags = send_flags; 423 send->s_wr.opcode = IB_WR_SEND; 424 send->s_wr.num_sge = 2; 425 send->s_wr.next = NULL; 426 send->s_queued = jiffies; 427 send->s_op = NULL; 428 429 if (length != 0) { 430 sge = rds_ib_data_sge(ic, send->s_sge); 431 sge->addr = buffer; 432 sge->length = length; 433 sge->lkey = ic->i_mr->lkey; 434 435 sge = rds_ib_header_sge(ic, send->s_sge); 436 } else { 437 /* We're sending a packet with no payload. There is only 438 * one SGE */ 439 send->s_wr.num_sge = 1; 440 sge = &send->s_sge[0]; 441 } 442 443 sge->addr = ic->i_send_hdrs_dma + (pos * sizeof(struct rds_header)); 444 sge->length = sizeof(struct rds_header); 445 sge->lkey = ic->i_mr->lkey; 446 } 447 448 /* 449 * This can be called multiple times for a given message. The first time 450 * we see a message we map its scatterlist into the IB device so that 451 * we can provide that mapped address to the IB scatter gather entries 452 * in the IB work requests. We translate the scatterlist into a series 453 * of work requests that fragment the message. These work requests complete 454 * in order so we pass ownership of the message to the completion handler 455 * once we send the final fragment. 456 * 457 * The RDS core uses the c_send_lock to only enter this function once 458 * per connection. This makes sure that the tx ring alloc/unalloc pairs 459 * don't get out of sync and confuse the ring. 460 */ 461 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm, 462 unsigned int hdr_off, unsigned int sg, unsigned int off) 463 { 464 struct rds_ib_connection *ic = conn->c_transport_data; 465 struct ib_device *dev = ic->i_cm_id->device; 466 struct rds_ib_send_work *send = NULL; 467 struct rds_ib_send_work *first; 468 struct rds_ib_send_work *prev; 469 struct ib_send_wr *failed_wr; 470 struct scatterlist *scat; 471 u32 pos; 472 u32 i; 473 u32 work_alloc; 474 u32 credit_alloc; 475 u32 posted; 476 u32 adv_credits = 0; 477 int send_flags = 0; 478 int sent; 479 int ret; 480 int flow_controlled = 0; 481 482 BUG_ON(off % RDS_FRAG_SIZE); 483 BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header)); 484 485 /* FIXME we may overallocate here */ 486 if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) 487 i = 1; 488 else 489 i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE); 490 491 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); 492 if (work_alloc == 0) { 493 set_bit(RDS_LL_SEND_FULL, &conn->c_flags); 494 rds_ib_stats_inc(s_ib_tx_ring_full); 495 ret = -ENOMEM; 496 goto out; 497 } 498 499 credit_alloc = work_alloc; 500 if (ic->i_flowctl) { 501 credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0); 502 adv_credits += posted; 503 if (credit_alloc < work_alloc) { 504 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc); 505 work_alloc = credit_alloc; 506 flow_controlled++; 507 } 508 if (work_alloc == 0) { 509 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 510 rds_ib_stats_inc(s_ib_tx_throttle); 511 ret = -ENOMEM; 512 goto out; 513 } 514 } 515 516 /* map the message the first time we see it */ 517 if (ic->i_rm == NULL) { 518 /* 519 printk(KERN_NOTICE "rds_ib_xmit prep msg dport=%u flags=0x%x len=%d\n", 520 be16_to_cpu(rm->m_inc.i_hdr.h_dport), 521 rm->m_inc.i_hdr.h_flags, 522 be32_to_cpu(rm->m_inc.i_hdr.h_len)); 523 */ 524 if (rm->m_nents) { 525 rm->m_count = ib_dma_map_sg(dev, 526 rm->m_sg, rm->m_nents, DMA_TO_DEVICE); 527 rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->m_count); 528 if (rm->m_count == 0) { 529 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); 530 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 531 ret = -ENOMEM; /* XXX ? */ 532 goto out; 533 } 534 } else { 535 rm->m_count = 0; 536 } 537 538 ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs; 539 ic->i_unsignaled_bytes = rds_ib_sysctl_max_unsig_bytes; 540 rds_message_addref(rm); 541 ic->i_rm = rm; 542 543 /* Finalize the header */ 544 if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags)) 545 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED; 546 if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) 547 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED; 548 549 /* If it has a RDMA op, tell the peer we did it. This is 550 * used by the peer to release use-once RDMA MRs. */ 551 if (rm->m_rdma_op) { 552 struct rds_ext_header_rdma ext_hdr; 553 554 ext_hdr.h_rdma_rkey = cpu_to_be32(rm->m_rdma_op->r_key); 555 rds_message_add_extension(&rm->m_inc.i_hdr, 556 RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr)); 557 } 558 if (rm->m_rdma_cookie) { 559 rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr, 560 rds_rdma_cookie_key(rm->m_rdma_cookie), 561 rds_rdma_cookie_offset(rm->m_rdma_cookie)); 562 } 563 564 /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so 565 * we should not do this unless we have a chance of at least 566 * sticking the header into the send ring. Which is why we 567 * should call rds_ib_ring_alloc first. */ 568 rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic)); 569 rds_message_make_checksum(&rm->m_inc.i_hdr); 570 571 /* 572 * Update adv_credits since we reset the ACK_REQUIRED bit. 573 */ 574 rds_ib_send_grab_credits(ic, 0, &posted, 1); 575 adv_credits += posted; 576 BUG_ON(adv_credits > 255); 577 } else if (ic->i_rm != rm) 578 BUG(); 579 580 send = &ic->i_sends[pos]; 581 first = send; 582 prev = NULL; 583 scat = &rm->m_sg[sg]; 584 sent = 0; 585 i = 0; 586 587 /* Sometimes you want to put a fence between an RDMA 588 * READ and the following SEND. 589 * We could either do this all the time 590 * or when requested by the user. Right now, we let 591 * the application choose. 592 */ 593 if (rm->m_rdma_op && rm->m_rdma_op->r_fence) 594 send_flags = IB_SEND_FENCE; 595 596 /* 597 * We could be copying the header into the unused tail of the page. 598 * That would need to be changed in the future when those pages might 599 * be mapped userspace pages or page cache pages. So instead we always 600 * use a second sge and our long-lived ring of mapped headers. We send 601 * the header after the data so that the data payload can be aligned on 602 * the receiver. 603 */ 604 605 /* handle a 0-len message */ 606 if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) { 607 rds_ib_xmit_populate_wr(ic, send, pos, 0, 0, send_flags); 608 goto add_header; 609 } 610 611 /* if there's data reference it with a chain of work reqs */ 612 for (; i < work_alloc && scat != &rm->m_sg[rm->m_count]; i++) { 613 unsigned int len; 614 615 send = &ic->i_sends[pos]; 616 617 len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off); 618 rds_ib_xmit_populate_wr(ic, send, pos, 619 ib_sg_dma_address(dev, scat) + off, len, 620 send_flags); 621 622 /* 623 * We want to delay signaling completions just enough to get 624 * the batching benefits but not so much that we create dead time 625 * on the wire. 626 */ 627 if (ic->i_unsignaled_wrs-- == 0) { 628 ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs; 629 send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; 630 } 631 632 ic->i_unsignaled_bytes -= len; 633 if (ic->i_unsignaled_bytes <= 0) { 634 ic->i_unsignaled_bytes = rds_ib_sysctl_max_unsig_bytes; 635 send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; 636 } 637 638 /* 639 * Always signal the last one if we're stopping due to flow control. 640 */ 641 if (flow_controlled && i == (work_alloc-1)) 642 send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; 643 644 rdsdebug("send %p wr %p num_sge %u next %p\n", send, 645 &send->s_wr, send->s_wr.num_sge, send->s_wr.next); 646 647 sent += len; 648 off += len; 649 if (off == ib_sg_dma_len(dev, scat)) { 650 scat++; 651 off = 0; 652 } 653 654 add_header: 655 /* Tack on the header after the data. The header SGE should already 656 * have been set up to point to the right header buffer. */ 657 memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header)); 658 659 if (0) { 660 struct rds_header *hdr = &ic->i_send_hdrs[pos]; 661 662 printk(KERN_NOTICE "send WR dport=%u flags=0x%x len=%d\n", 663 be16_to_cpu(hdr->h_dport), 664 hdr->h_flags, 665 be32_to_cpu(hdr->h_len)); 666 } 667 if (adv_credits) { 668 struct rds_header *hdr = &ic->i_send_hdrs[pos]; 669 670 /* add credit and redo the header checksum */ 671 hdr->h_credit = adv_credits; 672 rds_message_make_checksum(hdr); 673 adv_credits = 0; 674 rds_ib_stats_inc(s_ib_tx_credit_updates); 675 } 676 677 if (prev) 678 prev->s_wr.next = &send->s_wr; 679 prev = send; 680 681 pos = (pos + 1) % ic->i_send_ring.w_nr; 682 } 683 684 /* Account the RDS header in the number of bytes we sent, but just once. 685 * The caller has no concept of fragmentation. */ 686 if (hdr_off == 0) 687 sent += sizeof(struct rds_header); 688 689 /* if we finished the message then send completion owns it */ 690 if (scat == &rm->m_sg[rm->m_count]) { 691 prev->s_rm = ic->i_rm; 692 prev->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; 693 ic->i_rm = NULL; 694 } 695 696 if (i < work_alloc) { 697 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); 698 work_alloc = i; 699 } 700 if (ic->i_flowctl && i < credit_alloc) 701 rds_ib_send_add_credits(conn, credit_alloc - i); 702 703 /* XXX need to worry about failed_wr and partial sends. */ 704 failed_wr = &first->s_wr; 705 ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); 706 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, 707 first, &first->s_wr, ret, failed_wr); 708 BUG_ON(failed_wr != &first->s_wr); 709 if (ret) { 710 printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 " 711 "returned %d\n", &conn->c_faddr, ret); 712 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 713 if (prev->s_rm) { 714 ic->i_rm = prev->s_rm; 715 prev->s_rm = NULL; 716 } 717 /* Finesse this later */ 718 BUG(); 719 goto out; 720 } 721 722 ret = sent; 723 out: 724 BUG_ON(adv_credits); 725 return ret; 726 } 727 728 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rds_rdma_op *op) 729 { 730 struct rds_ib_connection *ic = conn->c_transport_data; 731 struct rds_ib_send_work *send = NULL; 732 struct rds_ib_send_work *first; 733 struct rds_ib_send_work *prev; 734 struct ib_send_wr *failed_wr; 735 struct rds_ib_device *rds_ibdev; 736 struct scatterlist *scat; 737 unsigned long len; 738 u64 remote_addr = op->r_remote_addr; 739 u32 pos; 740 u32 work_alloc; 741 u32 i; 742 u32 j; 743 int sent; 744 int ret; 745 int num_sge; 746 747 rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client); 748 749 /* map the message the first time we see it */ 750 if (!op->r_mapped) { 751 op->r_count = ib_dma_map_sg(ic->i_cm_id->device, 752 op->r_sg, op->r_nents, (op->r_write) ? 753 DMA_TO_DEVICE : DMA_FROM_DEVICE); 754 rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->r_count); 755 if (op->r_count == 0) { 756 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); 757 ret = -ENOMEM; /* XXX ? */ 758 goto out; 759 } 760 761 op->r_mapped = 1; 762 } 763 764 /* 765 * Instead of knowing how to return a partial rdma read/write we insist that there 766 * be enough work requests to send the entire message. 767 */ 768 i = ceil(op->r_count, rds_ibdev->max_sge); 769 770 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); 771 if (work_alloc != i) { 772 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 773 rds_ib_stats_inc(s_ib_tx_ring_full); 774 ret = -ENOMEM; 775 goto out; 776 } 777 778 send = &ic->i_sends[pos]; 779 first = send; 780 prev = NULL; 781 scat = &op->r_sg[0]; 782 sent = 0; 783 num_sge = op->r_count; 784 785 for (i = 0; i < work_alloc && scat != &op->r_sg[op->r_count]; i++) { 786 send->s_wr.send_flags = 0; 787 send->s_queued = jiffies; 788 /* 789 * We want to delay signaling completions just enough to get 790 * the batching benefits but not so much that we create dead time on the wire. 791 */ 792 if (ic->i_unsignaled_wrs-- == 0) { 793 ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs; 794 send->s_wr.send_flags = IB_SEND_SIGNALED; 795 } 796 797 send->s_wr.opcode = op->r_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ; 798 send->s_wr.wr.rdma.remote_addr = remote_addr; 799 send->s_wr.wr.rdma.rkey = op->r_key; 800 send->s_op = op; 801 802 if (num_sge > rds_ibdev->max_sge) { 803 send->s_wr.num_sge = rds_ibdev->max_sge; 804 num_sge -= rds_ibdev->max_sge; 805 } else { 806 send->s_wr.num_sge = num_sge; 807 } 808 809 send->s_wr.next = NULL; 810 811 if (prev) 812 prev->s_wr.next = &send->s_wr; 813 814 for (j = 0; j < send->s_wr.num_sge && scat != &op->r_sg[op->r_count]; j++) { 815 len = ib_sg_dma_len(ic->i_cm_id->device, scat); 816 send->s_sge[j].addr = 817 ib_sg_dma_address(ic->i_cm_id->device, scat); 818 send->s_sge[j].length = len; 819 send->s_sge[j].lkey = ic->i_mr->lkey; 820 821 sent += len; 822 rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr); 823 824 remote_addr += len; 825 scat++; 826 } 827 828 rdsdebug("send %p wr %p num_sge %u next %p\n", send, 829 &send->s_wr, send->s_wr.num_sge, send->s_wr.next); 830 831 prev = send; 832 if (++send == &ic->i_sends[ic->i_send_ring.w_nr]) 833 send = ic->i_sends; 834 } 835 836 /* if we finished the message then send completion owns it */ 837 if (scat == &op->r_sg[op->r_count]) 838 prev->s_wr.send_flags = IB_SEND_SIGNALED; 839 840 if (i < work_alloc) { 841 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); 842 work_alloc = i; 843 } 844 845 failed_wr = &first->s_wr; 846 ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); 847 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, 848 first, &first->s_wr, ret, failed_wr); 849 BUG_ON(failed_wr != &first->s_wr); 850 if (ret) { 851 printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 " 852 "returned %d\n", &conn->c_faddr, ret); 853 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 854 goto out; 855 } 856 857 if (unlikely(failed_wr != &first->s_wr)) { 858 printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret); 859 BUG_ON(failed_wr != &first->s_wr); 860 } 861 862 863 out: 864 return ret; 865 } 866 867 void rds_ib_xmit_complete(struct rds_connection *conn) 868 { 869 struct rds_ib_connection *ic = conn->c_transport_data; 870 871 /* We may have a pending ACK or window update we were unable 872 * to send previously (due to flow control). Try again. */ 873 rds_ib_attempt_ack(ic); 874 } 875