xref: /openbmc/linux/net/rds/ib_send.c (revision 0edbfea5)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
38 
39 #include "rds.h"
40 #include "ib.h"
41 
42 /*
43  * Convert IB-specific error message to RDS error message and call core
44  * completion handler.
45  */
46 static void rds_ib_send_complete(struct rds_message *rm,
47 				 int wc_status,
48 				 void (*complete)(struct rds_message *rm, int status))
49 {
50 	int notify_status;
51 
52 	switch (wc_status) {
53 	case IB_WC_WR_FLUSH_ERR:
54 		return;
55 
56 	case IB_WC_SUCCESS:
57 		notify_status = RDS_RDMA_SUCCESS;
58 		break;
59 
60 	case IB_WC_REM_ACCESS_ERR:
61 		notify_status = RDS_RDMA_REMOTE_ERROR;
62 		break;
63 
64 	default:
65 		notify_status = RDS_RDMA_OTHER_ERROR;
66 		break;
67 	}
68 	complete(rm, notify_status);
69 }
70 
71 static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
72 				   struct rm_data_op *op,
73 				   int wc_status)
74 {
75 	if (op->op_nents)
76 		ib_dma_unmap_sg(ic->i_cm_id->device,
77 				op->op_sg, op->op_nents,
78 				DMA_TO_DEVICE);
79 }
80 
81 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
82 				   struct rm_rdma_op *op,
83 				   int wc_status)
84 {
85 	if (op->op_mapped) {
86 		ib_dma_unmap_sg(ic->i_cm_id->device,
87 				op->op_sg, op->op_nents,
88 				op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
89 		op->op_mapped = 0;
90 	}
91 
92 	/* If the user asked for a completion notification on this
93 	 * message, we can implement three different semantics:
94 	 *  1.	Notify when we received the ACK on the RDS message
95 	 *	that was queued with the RDMA. This provides reliable
96 	 *	notification of RDMA status at the expense of a one-way
97 	 *	packet delay.
98 	 *  2.	Notify when the IB stack gives us the completion event for
99 	 *	the RDMA operation.
100 	 *  3.	Notify when the IB stack gives us the completion event for
101 	 *	the accompanying RDS messages.
102 	 * Here, we implement approach #3. To implement approach #2,
103 	 * we would need to take an event for the rdma WR. To implement #1,
104 	 * don't call rds_rdma_send_complete at all, and fall back to the notify
105 	 * handling in the ACK processing code.
106 	 *
107 	 * Note: There's no need to explicitly sync any RDMA buffers using
108 	 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
109 	 * operation itself unmapped the RDMA buffers, which takes care
110 	 * of synching.
111 	 */
112 	rds_ib_send_complete(container_of(op, struct rds_message, rdma),
113 			     wc_status, rds_rdma_send_complete);
114 
115 	if (op->op_write)
116 		rds_stats_add(s_send_rdma_bytes, op->op_bytes);
117 	else
118 		rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
119 }
120 
121 static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
122 				     struct rm_atomic_op *op,
123 				     int wc_status)
124 {
125 	/* unmap atomic recvbuf */
126 	if (op->op_mapped) {
127 		ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
128 				DMA_FROM_DEVICE);
129 		op->op_mapped = 0;
130 	}
131 
132 	rds_ib_send_complete(container_of(op, struct rds_message, atomic),
133 			     wc_status, rds_atomic_send_complete);
134 
135 	if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
136 		rds_ib_stats_inc(s_ib_atomic_cswp);
137 	else
138 		rds_ib_stats_inc(s_ib_atomic_fadd);
139 }
140 
141 /*
142  * Unmap the resources associated with a struct send_work.
143  *
144  * Returns the rm for no good reason other than it is unobtainable
145  * other than by switching on wr.opcode, currently, and the caller,
146  * the event handler, needs it.
147  */
148 static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
149 						struct rds_ib_send_work *send,
150 						int wc_status)
151 {
152 	struct rds_message *rm = NULL;
153 
154 	/* In the error case, wc.opcode sometimes contains garbage */
155 	switch (send->s_wr.opcode) {
156 	case IB_WR_SEND:
157 		if (send->s_op) {
158 			rm = container_of(send->s_op, struct rds_message, data);
159 			rds_ib_send_unmap_data(ic, send->s_op, wc_status);
160 		}
161 		break;
162 	case IB_WR_RDMA_WRITE:
163 	case IB_WR_RDMA_READ:
164 		if (send->s_op) {
165 			rm = container_of(send->s_op, struct rds_message, rdma);
166 			rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
167 		}
168 		break;
169 	case IB_WR_ATOMIC_FETCH_AND_ADD:
170 	case IB_WR_ATOMIC_CMP_AND_SWP:
171 		if (send->s_op) {
172 			rm = container_of(send->s_op, struct rds_message, atomic);
173 			rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
174 		}
175 		break;
176 	default:
177 		printk_ratelimited(KERN_NOTICE
178 			       "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
179 			       __func__, send->s_wr.opcode);
180 		break;
181 	}
182 
183 	send->s_wr.opcode = 0xdead;
184 
185 	return rm;
186 }
187 
188 void rds_ib_send_init_ring(struct rds_ib_connection *ic)
189 {
190 	struct rds_ib_send_work *send;
191 	u32 i;
192 
193 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
194 		struct ib_sge *sge;
195 
196 		send->s_op = NULL;
197 
198 		send->s_wr.wr_id = i;
199 		send->s_wr.sg_list = send->s_sge;
200 		send->s_wr.ex.imm_data = 0;
201 
202 		sge = &send->s_sge[0];
203 		sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
204 		sge->length = sizeof(struct rds_header);
205 		sge->lkey = ic->i_pd->local_dma_lkey;
206 
207 		send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
208 	}
209 }
210 
211 void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
212 {
213 	struct rds_ib_send_work *send;
214 	u32 i;
215 
216 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
217 		if (send->s_op && send->s_wr.opcode != 0xdead)
218 			rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
219 	}
220 }
221 
222 /*
223  * The only fast path caller always has a non-zero nr, so we don't
224  * bother testing nr before performing the atomic sub.
225  */
226 static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
227 {
228 	if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
229 	    waitqueue_active(&rds_ib_ring_empty_wait))
230 		wake_up(&rds_ib_ring_empty_wait);
231 	BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
232 }
233 
234 /*
235  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
236  * operations performed in the send path.  As the sender allocs and potentially
237  * unallocs the next free entry in the ring it doesn't alter which is
238  * the next to be freed, which is what this is concerned with.
239  */
240 void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc)
241 {
242 	struct rds_message *rm = NULL;
243 	struct rds_connection *conn = ic->conn;
244 	struct rds_ib_send_work *send;
245 	u32 completed;
246 	u32 oldest;
247 	u32 i = 0;
248 	int nr_sig = 0;
249 
250 
251 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
252 		 (unsigned long long)wc->wr_id, wc->status,
253 		 ib_wc_status_msg(wc->status), wc->byte_len,
254 		 be32_to_cpu(wc->ex.imm_data));
255 	rds_ib_stats_inc(s_ib_tx_cq_event);
256 
257 	if (wc->wr_id == RDS_IB_ACK_WR_ID) {
258 		if (time_after(jiffies, ic->i_ack_queued + HZ / 2))
259 			rds_ib_stats_inc(s_ib_tx_stalled);
260 		rds_ib_ack_send_complete(ic);
261 		return;
262 	}
263 
264 	oldest = rds_ib_ring_oldest(&ic->i_send_ring);
265 
266 	completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest);
267 
268 	for (i = 0; i < completed; i++) {
269 		send = &ic->i_sends[oldest];
270 		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
271 			nr_sig++;
272 
273 		rm = rds_ib_send_unmap_op(ic, send, wc->status);
274 
275 		if (time_after(jiffies, send->s_queued + HZ / 2))
276 			rds_ib_stats_inc(s_ib_tx_stalled);
277 
278 		if (send->s_op) {
279 			if (send->s_op == rm->m_final_op) {
280 				/* If anyone waited for this message to get
281 				 * flushed out, wake them up now
282 				 */
283 				rds_message_unmapped(rm);
284 			}
285 			rds_message_put(rm);
286 			send->s_op = NULL;
287 		}
288 
289 		oldest = (oldest + 1) % ic->i_send_ring.w_nr;
290 	}
291 
292 	rds_ib_ring_free(&ic->i_send_ring, completed);
293 	rds_ib_sub_signaled(ic, nr_sig);
294 	nr_sig = 0;
295 
296 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
297 	    test_bit(0, &conn->c_map_queued))
298 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
299 
300 	/* We expect errors as the qp is drained during shutdown */
301 	if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) {
302 		rds_ib_conn_error(conn, "send completion on %pI4 had status %u (%s), disconnecting and reconnecting\n",
303 				  &conn->c_faddr, wc->status,
304 				  ib_wc_status_msg(wc->status));
305 	}
306 }
307 
308 /*
309  * This is the main function for allocating credits when sending
310  * messages.
311  *
312  * Conceptually, we have two counters:
313  *  -	send credits: this tells us how many WRs we're allowed
314  *	to submit without overruning the receiver's queue. For
315  *	each SEND WR we post, we decrement this by one.
316  *
317  *  -	posted credits: this tells us how many WRs we recently
318  *	posted to the receive queue. This value is transferred
319  *	to the peer as a "credit update" in a RDS header field.
320  *	Every time we transmit credits to the peer, we subtract
321  *	the amount of transferred credits from this counter.
322  *
323  * It is essential that we avoid situations where both sides have
324  * exhausted their send credits, and are unable to send new credits
325  * to the peer. We achieve this by requiring that we send at least
326  * one credit update to the peer before exhausting our credits.
327  * When new credits arrive, we subtract one credit that is withheld
328  * until we've posted new buffers and are ready to transmit these
329  * credits (see rds_ib_send_add_credits below).
330  *
331  * The RDS send code is essentially single-threaded; rds_send_xmit
332  * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
333  * However, the ACK sending code is independent and can race with
334  * message SENDs.
335  *
336  * In the send path, we need to update the counters for send credits
337  * and the counter of posted buffers atomically - when we use the
338  * last available credit, we cannot allow another thread to race us
339  * and grab the posted credits counter.  Hence, we have to use a
340  * spinlock to protect the credit counter, or use atomics.
341  *
342  * Spinlocks shared between the send and the receive path are bad,
343  * because they create unnecessary delays. An early implementation
344  * using a spinlock showed a 5% degradation in throughput at some
345  * loads.
346  *
347  * This implementation avoids spinlocks completely, putting both
348  * counters into a single atomic, and updating that atomic using
349  * atomic_add (in the receive path, when receiving fresh credits),
350  * and using atomic_cmpxchg when updating the two counters.
351  */
352 int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
353 			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
354 {
355 	unsigned int avail, posted, got = 0, advertise;
356 	long oldval, newval;
357 
358 	*adv_credits = 0;
359 	if (!ic->i_flowctl)
360 		return wanted;
361 
362 try_again:
363 	advertise = 0;
364 	oldval = newval = atomic_read(&ic->i_credits);
365 	posted = IB_GET_POST_CREDITS(oldval);
366 	avail = IB_GET_SEND_CREDITS(oldval);
367 
368 	rdsdebug("wanted=%u credits=%u posted=%u\n",
369 			wanted, avail, posted);
370 
371 	/* The last credit must be used to send a credit update. */
372 	if (avail && !posted)
373 		avail--;
374 
375 	if (avail < wanted) {
376 		struct rds_connection *conn = ic->i_cm_id->context;
377 
378 		/* Oops, there aren't that many credits left! */
379 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
380 		got = avail;
381 	} else {
382 		/* Sometimes you get what you want, lalala. */
383 		got = wanted;
384 	}
385 	newval -= IB_SET_SEND_CREDITS(got);
386 
387 	/*
388 	 * If need_posted is non-zero, then the caller wants
389 	 * the posted regardless of whether any send credits are
390 	 * available.
391 	 */
392 	if (posted && (got || need_posted)) {
393 		advertise = min_t(unsigned int, posted, max_posted);
394 		newval -= IB_SET_POST_CREDITS(advertise);
395 	}
396 
397 	/* Finally bill everything */
398 	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
399 		goto try_again;
400 
401 	*adv_credits = advertise;
402 	return got;
403 }
404 
405 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
406 {
407 	struct rds_ib_connection *ic = conn->c_transport_data;
408 
409 	if (credits == 0)
410 		return;
411 
412 	rdsdebug("credits=%u current=%u%s\n",
413 			credits,
414 			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
415 			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
416 
417 	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
418 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
419 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
420 
421 	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
422 
423 	rds_ib_stats_inc(s_ib_rx_credit_updates);
424 }
425 
426 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
427 {
428 	struct rds_ib_connection *ic = conn->c_transport_data;
429 
430 	if (posted == 0)
431 		return;
432 
433 	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
434 
435 	/* Decide whether to send an update to the peer now.
436 	 * If we would send a credit update for every single buffer we
437 	 * post, we would end up with an ACK storm (ACK arrives,
438 	 * consumes buffer, we refill the ring, send ACK to remote
439 	 * advertising the newly posted buffer... ad inf)
440 	 *
441 	 * Performance pretty much depends on how often we send
442 	 * credit updates - too frequent updates mean lots of ACKs.
443 	 * Too infrequent updates, and the peer will run out of
444 	 * credits and has to throttle.
445 	 * For the time being, 16 seems to be a good compromise.
446 	 */
447 	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
448 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
449 }
450 
451 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
452 					     struct rds_ib_send_work *send,
453 					     bool notify)
454 {
455 	/*
456 	 * We want to delay signaling completions just enough to get
457 	 * the batching benefits but not so much that we create dead time
458 	 * on the wire.
459 	 */
460 	if (ic->i_unsignaled_wrs-- == 0 || notify) {
461 		ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
462 		send->s_wr.send_flags |= IB_SEND_SIGNALED;
463 		return 1;
464 	}
465 	return 0;
466 }
467 
468 /*
469  * This can be called multiple times for a given message.  The first time
470  * we see a message we map its scatterlist into the IB device so that
471  * we can provide that mapped address to the IB scatter gather entries
472  * in the IB work requests.  We translate the scatterlist into a series
473  * of work requests that fragment the message.  These work requests complete
474  * in order so we pass ownership of the message to the completion handler
475  * once we send the final fragment.
476  *
477  * The RDS core uses the c_send_lock to only enter this function once
478  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
479  * don't get out of sync and confuse the ring.
480  */
481 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
482 		unsigned int hdr_off, unsigned int sg, unsigned int off)
483 {
484 	struct rds_ib_connection *ic = conn->c_transport_data;
485 	struct ib_device *dev = ic->i_cm_id->device;
486 	struct rds_ib_send_work *send = NULL;
487 	struct rds_ib_send_work *first;
488 	struct rds_ib_send_work *prev;
489 	struct ib_send_wr *failed_wr;
490 	struct scatterlist *scat;
491 	u32 pos;
492 	u32 i;
493 	u32 work_alloc;
494 	u32 credit_alloc = 0;
495 	u32 posted;
496 	u32 adv_credits = 0;
497 	int send_flags = 0;
498 	int bytes_sent = 0;
499 	int ret;
500 	int flow_controlled = 0;
501 	int nr_sig = 0;
502 
503 	BUG_ON(off % RDS_FRAG_SIZE);
504 	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
505 
506 	/* Do not send cong updates to IB loopback */
507 	if (conn->c_loopback
508 	    && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
509 		rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
510 		scat = &rm->data.op_sg[sg];
511 		ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
512 		return sizeof(struct rds_header) + ret;
513 	}
514 
515 	/* FIXME we may overallocate here */
516 	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
517 		i = 1;
518 	else
519 		i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
520 
521 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
522 	if (work_alloc == 0) {
523 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
524 		rds_ib_stats_inc(s_ib_tx_ring_full);
525 		ret = -ENOMEM;
526 		goto out;
527 	}
528 
529 	if (ic->i_flowctl) {
530 		credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
531 		adv_credits += posted;
532 		if (credit_alloc < work_alloc) {
533 			rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
534 			work_alloc = credit_alloc;
535 			flow_controlled = 1;
536 		}
537 		if (work_alloc == 0) {
538 			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
539 			rds_ib_stats_inc(s_ib_tx_throttle);
540 			ret = -ENOMEM;
541 			goto out;
542 		}
543 	}
544 
545 	/* map the message the first time we see it */
546 	if (!ic->i_data_op) {
547 		if (rm->data.op_nents) {
548 			rm->data.op_count = ib_dma_map_sg(dev,
549 							  rm->data.op_sg,
550 							  rm->data.op_nents,
551 							  DMA_TO_DEVICE);
552 			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
553 			if (rm->data.op_count == 0) {
554 				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
555 				rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
556 				ret = -ENOMEM; /* XXX ? */
557 				goto out;
558 			}
559 		} else {
560 			rm->data.op_count = 0;
561 		}
562 
563 		rds_message_addref(rm);
564 		rm->data.op_dmasg = 0;
565 		rm->data.op_dmaoff = 0;
566 		ic->i_data_op = &rm->data;
567 
568 		/* Finalize the header */
569 		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
570 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
571 		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
572 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
573 
574 		/* If it has a RDMA op, tell the peer we did it. This is
575 		 * used by the peer to release use-once RDMA MRs. */
576 		if (rm->rdma.op_active) {
577 			struct rds_ext_header_rdma ext_hdr;
578 
579 			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
580 			rds_message_add_extension(&rm->m_inc.i_hdr,
581 					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
582 		}
583 		if (rm->m_rdma_cookie) {
584 			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
585 					rds_rdma_cookie_key(rm->m_rdma_cookie),
586 					rds_rdma_cookie_offset(rm->m_rdma_cookie));
587 		}
588 
589 		/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
590 		 * we should not do this unless we have a chance of at least
591 		 * sticking the header into the send ring. Which is why we
592 		 * should call rds_ib_ring_alloc first. */
593 		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
594 		rds_message_make_checksum(&rm->m_inc.i_hdr);
595 
596 		/*
597 		 * Update adv_credits since we reset the ACK_REQUIRED bit.
598 		 */
599 		if (ic->i_flowctl) {
600 			rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
601 			adv_credits += posted;
602 			BUG_ON(adv_credits > 255);
603 		}
604 	}
605 
606 	/* Sometimes you want to put a fence between an RDMA
607 	 * READ and the following SEND.
608 	 * We could either do this all the time
609 	 * or when requested by the user. Right now, we let
610 	 * the application choose.
611 	 */
612 	if (rm->rdma.op_active && rm->rdma.op_fence)
613 		send_flags = IB_SEND_FENCE;
614 
615 	/* Each frag gets a header. Msgs may be 0 bytes */
616 	send = &ic->i_sends[pos];
617 	first = send;
618 	prev = NULL;
619 	scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
620 	i = 0;
621 	do {
622 		unsigned int len = 0;
623 
624 		/* Set up the header */
625 		send->s_wr.send_flags = send_flags;
626 		send->s_wr.opcode = IB_WR_SEND;
627 		send->s_wr.num_sge = 1;
628 		send->s_wr.next = NULL;
629 		send->s_queued = jiffies;
630 		send->s_op = NULL;
631 
632 		send->s_sge[0].addr = ic->i_send_hdrs_dma
633 			+ (pos * sizeof(struct rds_header));
634 		send->s_sge[0].length = sizeof(struct rds_header);
635 
636 		memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
637 
638 		/* Set up the data, if present */
639 		if (i < work_alloc
640 		    && scat != &rm->data.op_sg[rm->data.op_count]) {
641 			len = min(RDS_FRAG_SIZE,
642 				ib_sg_dma_len(dev, scat) - rm->data.op_dmaoff);
643 			send->s_wr.num_sge = 2;
644 
645 			send->s_sge[1].addr = ib_sg_dma_address(dev, scat);
646 			send->s_sge[1].addr += rm->data.op_dmaoff;
647 			send->s_sge[1].length = len;
648 
649 			bytes_sent += len;
650 			rm->data.op_dmaoff += len;
651 			if (rm->data.op_dmaoff == ib_sg_dma_len(dev, scat)) {
652 				scat++;
653 				rm->data.op_dmasg++;
654 				rm->data.op_dmaoff = 0;
655 			}
656 		}
657 
658 		rds_ib_set_wr_signal_state(ic, send, 0);
659 
660 		/*
661 		 * Always signal the last one if we're stopping due to flow control.
662 		 */
663 		if (ic->i_flowctl && flow_controlled && i == (work_alloc-1))
664 			send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED;
665 
666 		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
667 			nr_sig++;
668 
669 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
670 			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
671 
672 		if (ic->i_flowctl && adv_credits) {
673 			struct rds_header *hdr = &ic->i_send_hdrs[pos];
674 
675 			/* add credit and redo the header checksum */
676 			hdr->h_credit = adv_credits;
677 			rds_message_make_checksum(hdr);
678 			adv_credits = 0;
679 			rds_ib_stats_inc(s_ib_tx_credit_updates);
680 		}
681 
682 		if (prev)
683 			prev->s_wr.next = &send->s_wr;
684 		prev = send;
685 
686 		pos = (pos + 1) % ic->i_send_ring.w_nr;
687 		send = &ic->i_sends[pos];
688 		i++;
689 
690 	} while (i < work_alloc
691 		 && scat != &rm->data.op_sg[rm->data.op_count]);
692 
693 	/* Account the RDS header in the number of bytes we sent, but just once.
694 	 * The caller has no concept of fragmentation. */
695 	if (hdr_off == 0)
696 		bytes_sent += sizeof(struct rds_header);
697 
698 	/* if we finished the message then send completion owns it */
699 	if (scat == &rm->data.op_sg[rm->data.op_count]) {
700 		prev->s_op = ic->i_data_op;
701 		prev->s_wr.send_flags |= IB_SEND_SOLICITED;
702 		if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED)) {
703 			ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
704 			prev->s_wr.send_flags |= IB_SEND_SIGNALED;
705 			nr_sig++;
706 		}
707 		ic->i_data_op = NULL;
708 	}
709 
710 	/* Put back wrs & credits we didn't use */
711 	if (i < work_alloc) {
712 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
713 		work_alloc = i;
714 	}
715 	if (ic->i_flowctl && i < credit_alloc)
716 		rds_ib_send_add_credits(conn, credit_alloc - i);
717 
718 	if (nr_sig)
719 		atomic_add(nr_sig, &ic->i_signaled_sends);
720 
721 	/* XXX need to worry about failed_wr and partial sends. */
722 	failed_wr = &first->s_wr;
723 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
724 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
725 		 first, &first->s_wr, ret, failed_wr);
726 	BUG_ON(failed_wr != &first->s_wr);
727 	if (ret) {
728 		printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 "
729 		       "returned %d\n", &conn->c_faddr, ret);
730 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
731 		rds_ib_sub_signaled(ic, nr_sig);
732 		if (prev->s_op) {
733 			ic->i_data_op = prev->s_op;
734 			prev->s_op = NULL;
735 		}
736 
737 		rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
738 		goto out;
739 	}
740 
741 	ret = bytes_sent;
742 out:
743 	BUG_ON(adv_credits);
744 	return ret;
745 }
746 
747 /*
748  * Issue atomic operation.
749  * A simplified version of the rdma case, we always map 1 SG, and
750  * only 8 bytes, for the return value from the atomic operation.
751  */
752 int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
753 {
754 	struct rds_ib_connection *ic = conn->c_transport_data;
755 	struct rds_ib_send_work *send = NULL;
756 	struct ib_send_wr *failed_wr;
757 	struct rds_ib_device *rds_ibdev;
758 	u32 pos;
759 	u32 work_alloc;
760 	int ret;
761 	int nr_sig = 0;
762 
763 	rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client);
764 
765 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
766 	if (work_alloc != 1) {
767 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
768 		rds_ib_stats_inc(s_ib_tx_ring_full);
769 		ret = -ENOMEM;
770 		goto out;
771 	}
772 
773 	/* address of send request in ring */
774 	send = &ic->i_sends[pos];
775 	send->s_queued = jiffies;
776 
777 	if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
778 		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
779 		send->s_atomic_wr.compare_add = op->op_m_cswp.compare;
780 		send->s_atomic_wr.swap = op->op_m_cswp.swap;
781 		send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask;
782 		send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask;
783 	} else { /* FADD */
784 		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
785 		send->s_atomic_wr.compare_add = op->op_m_fadd.add;
786 		send->s_atomic_wr.swap = 0;
787 		send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask;
788 		send->s_atomic_wr.swap_mask = 0;
789 	}
790 	nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
791 	send->s_atomic_wr.wr.num_sge = 1;
792 	send->s_atomic_wr.wr.next = NULL;
793 	send->s_atomic_wr.remote_addr = op->op_remote_addr;
794 	send->s_atomic_wr.rkey = op->op_rkey;
795 	send->s_op = op;
796 	rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
797 
798 	/* map 8 byte retval buffer to the device */
799 	ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
800 	rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
801 	if (ret != 1) {
802 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
803 		rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
804 		ret = -ENOMEM; /* XXX ? */
805 		goto out;
806 	}
807 
808 	/* Convert our struct scatterlist to struct ib_sge */
809 	send->s_sge[0].addr = ib_sg_dma_address(ic->i_cm_id->device, op->op_sg);
810 	send->s_sge[0].length = ib_sg_dma_len(ic->i_cm_id->device, op->op_sg);
811 	send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
812 
813 	rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
814 		 send->s_sge[0].addr, send->s_sge[0].length);
815 
816 	if (nr_sig)
817 		atomic_add(nr_sig, &ic->i_signaled_sends);
818 
819 	failed_wr = &send->s_atomic_wr.wr;
820 	ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr);
821 	rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
822 		 send, &send->s_atomic_wr, ret, failed_wr);
823 	BUG_ON(failed_wr != &send->s_atomic_wr.wr);
824 	if (ret) {
825 		printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI4 "
826 		       "returned %d\n", &conn->c_faddr, ret);
827 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
828 		rds_ib_sub_signaled(ic, nr_sig);
829 		goto out;
830 	}
831 
832 	if (unlikely(failed_wr != &send->s_atomic_wr.wr)) {
833 		printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
834 		BUG_ON(failed_wr != &send->s_atomic_wr.wr);
835 	}
836 
837 out:
838 	return ret;
839 }
840 
841 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
842 {
843 	struct rds_ib_connection *ic = conn->c_transport_data;
844 	struct rds_ib_send_work *send = NULL;
845 	struct rds_ib_send_work *first;
846 	struct rds_ib_send_work *prev;
847 	struct ib_send_wr *failed_wr;
848 	struct scatterlist *scat;
849 	unsigned long len;
850 	u64 remote_addr = op->op_remote_addr;
851 	u32 max_sge = ic->rds_ibdev->max_sge;
852 	u32 pos;
853 	u32 work_alloc;
854 	u32 i;
855 	u32 j;
856 	int sent;
857 	int ret;
858 	int num_sge;
859 	int nr_sig = 0;
860 
861 	/* map the op the first time we see it */
862 	if (!op->op_mapped) {
863 		op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
864 					     op->op_sg, op->op_nents, (op->op_write) ?
865 					     DMA_TO_DEVICE : DMA_FROM_DEVICE);
866 		rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
867 		if (op->op_count == 0) {
868 			rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
869 			ret = -ENOMEM; /* XXX ? */
870 			goto out;
871 		}
872 
873 		op->op_mapped = 1;
874 	}
875 
876 	/*
877 	 * Instead of knowing how to return a partial rdma read/write we insist that there
878 	 * be enough work requests to send the entire message.
879 	 */
880 	i = ceil(op->op_count, max_sge);
881 
882 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
883 	if (work_alloc != i) {
884 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
885 		rds_ib_stats_inc(s_ib_tx_ring_full);
886 		ret = -ENOMEM;
887 		goto out;
888 	}
889 
890 	send = &ic->i_sends[pos];
891 	first = send;
892 	prev = NULL;
893 	scat = &op->op_sg[0];
894 	sent = 0;
895 	num_sge = op->op_count;
896 
897 	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
898 		send->s_wr.send_flags = 0;
899 		send->s_queued = jiffies;
900 		send->s_op = NULL;
901 
902 		nr_sig += rds_ib_set_wr_signal_state(ic, send, op->op_notify);
903 
904 		send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
905 		send->s_rdma_wr.remote_addr = remote_addr;
906 		send->s_rdma_wr.rkey = op->op_rkey;
907 
908 		if (num_sge > max_sge) {
909 			send->s_rdma_wr.wr.num_sge = max_sge;
910 			num_sge -= max_sge;
911 		} else {
912 			send->s_rdma_wr.wr.num_sge = num_sge;
913 		}
914 
915 		send->s_rdma_wr.wr.next = NULL;
916 
917 		if (prev)
918 			prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr;
919 
920 		for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
921 		     scat != &op->op_sg[op->op_count]; j++) {
922 			len = ib_sg_dma_len(ic->i_cm_id->device, scat);
923 			send->s_sge[j].addr =
924 				 ib_sg_dma_address(ic->i_cm_id->device, scat);
925 			send->s_sge[j].length = len;
926 			send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
927 
928 			sent += len;
929 			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
930 
931 			remote_addr += len;
932 			scat++;
933 		}
934 
935 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
936 			&send->s_rdma_wr.wr,
937 			send->s_rdma_wr.wr.num_sge,
938 			send->s_rdma_wr.wr.next);
939 
940 		prev = send;
941 		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
942 			send = ic->i_sends;
943 	}
944 
945 	/* give a reference to the last op */
946 	if (scat == &op->op_sg[op->op_count]) {
947 		prev->s_op = op;
948 		rds_message_addref(container_of(op, struct rds_message, rdma));
949 	}
950 
951 	if (i < work_alloc) {
952 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
953 		work_alloc = i;
954 	}
955 
956 	if (nr_sig)
957 		atomic_add(nr_sig, &ic->i_signaled_sends);
958 
959 	failed_wr = &first->s_rdma_wr.wr;
960 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
961 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
962 		 first, &first->s_rdma_wr.wr, ret, failed_wr);
963 	BUG_ON(failed_wr != &first->s_rdma_wr.wr);
964 	if (ret) {
965 		printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 "
966 		       "returned %d\n", &conn->c_faddr, ret);
967 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
968 		rds_ib_sub_signaled(ic, nr_sig);
969 		goto out;
970 	}
971 
972 	if (unlikely(failed_wr != &first->s_rdma_wr.wr)) {
973 		printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
974 		BUG_ON(failed_wr != &first->s_rdma_wr.wr);
975 	}
976 
977 
978 out:
979 	return ret;
980 }
981 
982 void rds_ib_xmit_complete(struct rds_connection *conn)
983 {
984 	struct rds_ib_connection *ic = conn->c_transport_data;
985 
986 	/* We may have a pending ACK or window update we were unable
987 	 * to send previously (due to flow control). Try again. */
988 	rds_ib_attempt_ack(ic);
989 }
990