xref: /openbmc/linux/net/rds/ib_send.c (revision 0ad53fe3)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
38 
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42 #include "ib_mr.h"
43 
44 /*
45  * Convert IB-specific error message to RDS error message and call core
46  * completion handler.
47  */
48 static void rds_ib_send_complete(struct rds_message *rm,
49 				 int wc_status,
50 				 void (*complete)(struct rds_message *rm, int status))
51 {
52 	int notify_status;
53 
54 	switch (wc_status) {
55 	case IB_WC_WR_FLUSH_ERR:
56 		return;
57 
58 	case IB_WC_SUCCESS:
59 		notify_status = RDS_RDMA_SUCCESS;
60 		break;
61 
62 	case IB_WC_REM_ACCESS_ERR:
63 		notify_status = RDS_RDMA_REMOTE_ERROR;
64 		break;
65 
66 	default:
67 		notify_status = RDS_RDMA_OTHER_ERROR;
68 		break;
69 	}
70 	complete(rm, notify_status);
71 }
72 
73 static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
74 				   struct rm_data_op *op,
75 				   int wc_status)
76 {
77 	if (op->op_nents)
78 		ib_dma_unmap_sg(ic->i_cm_id->device,
79 				op->op_sg, op->op_nents,
80 				DMA_TO_DEVICE);
81 }
82 
83 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
84 				   struct rm_rdma_op *op,
85 				   int wc_status)
86 {
87 	if (op->op_mapped) {
88 		ib_dma_unmap_sg(ic->i_cm_id->device,
89 				op->op_sg, op->op_nents,
90 				op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
91 		op->op_mapped = 0;
92 	}
93 
94 	/* If the user asked for a completion notification on this
95 	 * message, we can implement three different semantics:
96 	 *  1.	Notify when we received the ACK on the RDS message
97 	 *	that was queued with the RDMA. This provides reliable
98 	 *	notification of RDMA status at the expense of a one-way
99 	 *	packet delay.
100 	 *  2.	Notify when the IB stack gives us the completion event for
101 	 *	the RDMA operation.
102 	 *  3.	Notify when the IB stack gives us the completion event for
103 	 *	the accompanying RDS messages.
104 	 * Here, we implement approach #3. To implement approach #2,
105 	 * we would need to take an event for the rdma WR. To implement #1,
106 	 * don't call rds_rdma_send_complete at all, and fall back to the notify
107 	 * handling in the ACK processing code.
108 	 *
109 	 * Note: There's no need to explicitly sync any RDMA buffers using
110 	 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
111 	 * operation itself unmapped the RDMA buffers, which takes care
112 	 * of synching.
113 	 */
114 	rds_ib_send_complete(container_of(op, struct rds_message, rdma),
115 			     wc_status, rds_rdma_send_complete);
116 
117 	if (op->op_write)
118 		rds_stats_add(s_send_rdma_bytes, op->op_bytes);
119 	else
120 		rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
121 }
122 
123 static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
124 				     struct rm_atomic_op *op,
125 				     int wc_status)
126 {
127 	/* unmap atomic recvbuf */
128 	if (op->op_mapped) {
129 		ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
130 				DMA_FROM_DEVICE);
131 		op->op_mapped = 0;
132 	}
133 
134 	rds_ib_send_complete(container_of(op, struct rds_message, atomic),
135 			     wc_status, rds_atomic_send_complete);
136 
137 	if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
138 		rds_ib_stats_inc(s_ib_atomic_cswp);
139 	else
140 		rds_ib_stats_inc(s_ib_atomic_fadd);
141 }
142 
143 /*
144  * Unmap the resources associated with a struct send_work.
145  *
146  * Returns the rm for no good reason other than it is unobtainable
147  * other than by switching on wr.opcode, currently, and the caller,
148  * the event handler, needs it.
149  */
150 static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
151 						struct rds_ib_send_work *send,
152 						int wc_status)
153 {
154 	struct rds_message *rm = NULL;
155 
156 	/* In the error case, wc.opcode sometimes contains garbage */
157 	switch (send->s_wr.opcode) {
158 	case IB_WR_SEND:
159 		if (send->s_op) {
160 			rm = container_of(send->s_op, struct rds_message, data);
161 			rds_ib_send_unmap_data(ic, send->s_op, wc_status);
162 		}
163 		break;
164 	case IB_WR_RDMA_WRITE:
165 	case IB_WR_RDMA_READ:
166 		if (send->s_op) {
167 			rm = container_of(send->s_op, struct rds_message, rdma);
168 			rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
169 		}
170 		break;
171 	case IB_WR_ATOMIC_FETCH_AND_ADD:
172 	case IB_WR_ATOMIC_CMP_AND_SWP:
173 		if (send->s_op) {
174 			rm = container_of(send->s_op, struct rds_message, atomic);
175 			rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
176 		}
177 		break;
178 	default:
179 		printk_ratelimited(KERN_NOTICE
180 			       "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
181 			       __func__, send->s_wr.opcode);
182 		break;
183 	}
184 
185 	send->s_wr.opcode = 0xdead;
186 
187 	return rm;
188 }
189 
190 void rds_ib_send_init_ring(struct rds_ib_connection *ic)
191 {
192 	struct rds_ib_send_work *send;
193 	u32 i;
194 
195 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
196 		struct ib_sge *sge;
197 
198 		send->s_op = NULL;
199 
200 		send->s_wr.wr_id = i;
201 		send->s_wr.sg_list = send->s_sge;
202 		send->s_wr.ex.imm_data = 0;
203 
204 		sge = &send->s_sge[0];
205 		sge->addr = ic->i_send_hdrs_dma[i];
206 
207 		sge->length = sizeof(struct rds_header);
208 		sge->lkey = ic->i_pd->local_dma_lkey;
209 
210 		send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
211 	}
212 }
213 
214 void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
215 {
216 	struct rds_ib_send_work *send;
217 	u32 i;
218 
219 	for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
220 		if (send->s_op && send->s_wr.opcode != 0xdead)
221 			rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
222 	}
223 }
224 
225 /*
226  * The only fast path caller always has a non-zero nr, so we don't
227  * bother testing nr before performing the atomic sub.
228  */
229 static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
230 {
231 	if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
232 	    waitqueue_active(&rds_ib_ring_empty_wait))
233 		wake_up(&rds_ib_ring_empty_wait);
234 	BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
235 }
236 
237 /*
238  * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
239  * operations performed in the send path.  As the sender allocs and potentially
240  * unallocs the next free entry in the ring it doesn't alter which is
241  * the next to be freed, which is what this is concerned with.
242  */
243 void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc)
244 {
245 	struct rds_message *rm = NULL;
246 	struct rds_connection *conn = ic->conn;
247 	struct rds_ib_send_work *send;
248 	u32 completed;
249 	u32 oldest;
250 	u32 i = 0;
251 	int nr_sig = 0;
252 
253 
254 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
255 		 (unsigned long long)wc->wr_id, wc->status,
256 		 ib_wc_status_msg(wc->status), wc->byte_len,
257 		 be32_to_cpu(wc->ex.imm_data));
258 	rds_ib_stats_inc(s_ib_tx_cq_event);
259 
260 	if (wc->wr_id == RDS_IB_ACK_WR_ID) {
261 		if (time_after(jiffies, ic->i_ack_queued + HZ / 2))
262 			rds_ib_stats_inc(s_ib_tx_stalled);
263 		rds_ib_ack_send_complete(ic);
264 		return;
265 	}
266 
267 	oldest = rds_ib_ring_oldest(&ic->i_send_ring);
268 
269 	completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest);
270 
271 	for (i = 0; i < completed; i++) {
272 		send = &ic->i_sends[oldest];
273 		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
274 			nr_sig++;
275 
276 		rm = rds_ib_send_unmap_op(ic, send, wc->status);
277 
278 		if (time_after(jiffies, send->s_queued + HZ / 2))
279 			rds_ib_stats_inc(s_ib_tx_stalled);
280 
281 		if (send->s_op) {
282 			if (send->s_op == rm->m_final_op) {
283 				/* If anyone waited for this message to get
284 				 * flushed out, wake them up now
285 				 */
286 				rds_message_unmapped(rm);
287 			}
288 			rds_message_put(rm);
289 			send->s_op = NULL;
290 		}
291 
292 		oldest = (oldest + 1) % ic->i_send_ring.w_nr;
293 	}
294 
295 	rds_ib_ring_free(&ic->i_send_ring, completed);
296 	rds_ib_sub_signaled(ic, nr_sig);
297 
298 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
299 	    test_bit(0, &conn->c_map_queued))
300 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
301 
302 	/* We expect errors as the qp is drained during shutdown */
303 	if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) {
304 		rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
305 				  &conn->c_laddr, &conn->c_faddr,
306 				  conn->c_tos, wc->status,
307 				  ib_wc_status_msg(wc->status), wc->vendor_err);
308 	}
309 }
310 
311 /*
312  * This is the main function for allocating credits when sending
313  * messages.
314  *
315  * Conceptually, we have two counters:
316  *  -	send credits: this tells us how many WRs we're allowed
317  *	to submit without overruning the receiver's queue. For
318  *	each SEND WR we post, we decrement this by one.
319  *
320  *  -	posted credits: this tells us how many WRs we recently
321  *	posted to the receive queue. This value is transferred
322  *	to the peer as a "credit update" in a RDS header field.
323  *	Every time we transmit credits to the peer, we subtract
324  *	the amount of transferred credits from this counter.
325  *
326  * It is essential that we avoid situations where both sides have
327  * exhausted their send credits, and are unable to send new credits
328  * to the peer. We achieve this by requiring that we send at least
329  * one credit update to the peer before exhausting our credits.
330  * When new credits arrive, we subtract one credit that is withheld
331  * until we've posted new buffers and are ready to transmit these
332  * credits (see rds_ib_send_add_credits below).
333  *
334  * The RDS send code is essentially single-threaded; rds_send_xmit
335  * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
336  * However, the ACK sending code is independent and can race with
337  * message SENDs.
338  *
339  * In the send path, we need to update the counters for send credits
340  * and the counter of posted buffers atomically - when we use the
341  * last available credit, we cannot allow another thread to race us
342  * and grab the posted credits counter.  Hence, we have to use a
343  * spinlock to protect the credit counter, or use atomics.
344  *
345  * Spinlocks shared between the send and the receive path are bad,
346  * because they create unnecessary delays. An early implementation
347  * using a spinlock showed a 5% degradation in throughput at some
348  * loads.
349  *
350  * This implementation avoids spinlocks completely, putting both
351  * counters into a single atomic, and updating that atomic using
352  * atomic_add (in the receive path, when receiving fresh credits),
353  * and using atomic_cmpxchg when updating the two counters.
354  */
355 int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
356 			     u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
357 {
358 	unsigned int avail, posted, got = 0, advertise;
359 	long oldval, newval;
360 
361 	*adv_credits = 0;
362 	if (!ic->i_flowctl)
363 		return wanted;
364 
365 try_again:
366 	advertise = 0;
367 	oldval = newval = atomic_read(&ic->i_credits);
368 	posted = IB_GET_POST_CREDITS(oldval);
369 	avail = IB_GET_SEND_CREDITS(oldval);
370 
371 	rdsdebug("wanted=%u credits=%u posted=%u\n",
372 			wanted, avail, posted);
373 
374 	/* The last credit must be used to send a credit update. */
375 	if (avail && !posted)
376 		avail--;
377 
378 	if (avail < wanted) {
379 		struct rds_connection *conn = ic->i_cm_id->context;
380 
381 		/* Oops, there aren't that many credits left! */
382 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
383 		got = avail;
384 	} else {
385 		/* Sometimes you get what you want, lalala. */
386 		got = wanted;
387 	}
388 	newval -= IB_SET_SEND_CREDITS(got);
389 
390 	/*
391 	 * If need_posted is non-zero, then the caller wants
392 	 * the posted regardless of whether any send credits are
393 	 * available.
394 	 */
395 	if (posted && (got || need_posted)) {
396 		advertise = min_t(unsigned int, posted, max_posted);
397 		newval -= IB_SET_POST_CREDITS(advertise);
398 	}
399 
400 	/* Finally bill everything */
401 	if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
402 		goto try_again;
403 
404 	*adv_credits = advertise;
405 	return got;
406 }
407 
408 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
409 {
410 	struct rds_ib_connection *ic = conn->c_transport_data;
411 
412 	if (credits == 0)
413 		return;
414 
415 	rdsdebug("credits=%u current=%u%s\n",
416 			credits,
417 			IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
418 			test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
419 
420 	atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
421 	if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
422 		queue_delayed_work(rds_wq, &conn->c_send_w, 0);
423 
424 	WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
425 
426 	rds_ib_stats_inc(s_ib_rx_credit_updates);
427 }
428 
429 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
430 {
431 	struct rds_ib_connection *ic = conn->c_transport_data;
432 
433 	if (posted == 0)
434 		return;
435 
436 	atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
437 
438 	/* Decide whether to send an update to the peer now.
439 	 * If we would send a credit update for every single buffer we
440 	 * post, we would end up with an ACK storm (ACK arrives,
441 	 * consumes buffer, we refill the ring, send ACK to remote
442 	 * advertising the newly posted buffer... ad inf)
443 	 *
444 	 * Performance pretty much depends on how often we send
445 	 * credit updates - too frequent updates mean lots of ACKs.
446 	 * Too infrequent updates, and the peer will run out of
447 	 * credits and has to throttle.
448 	 * For the time being, 16 seems to be a good compromise.
449 	 */
450 	if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
451 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
452 }
453 
454 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
455 					     struct rds_ib_send_work *send,
456 					     bool notify)
457 {
458 	/*
459 	 * We want to delay signaling completions just enough to get
460 	 * the batching benefits but not so much that we create dead time
461 	 * on the wire.
462 	 */
463 	if (ic->i_unsignaled_wrs-- == 0 || notify) {
464 		ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
465 		send->s_wr.send_flags |= IB_SEND_SIGNALED;
466 		return 1;
467 	}
468 	return 0;
469 }
470 
471 /*
472  * This can be called multiple times for a given message.  The first time
473  * we see a message we map its scatterlist into the IB device so that
474  * we can provide that mapped address to the IB scatter gather entries
475  * in the IB work requests.  We translate the scatterlist into a series
476  * of work requests that fragment the message.  These work requests complete
477  * in order so we pass ownership of the message to the completion handler
478  * once we send the final fragment.
479  *
480  * The RDS core uses the c_send_lock to only enter this function once
481  * per connection.  This makes sure that the tx ring alloc/unalloc pairs
482  * don't get out of sync and confuse the ring.
483  */
484 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
485 		unsigned int hdr_off, unsigned int sg, unsigned int off)
486 {
487 	struct rds_ib_connection *ic = conn->c_transport_data;
488 	struct ib_device *dev = ic->i_cm_id->device;
489 	struct rds_ib_send_work *send = NULL;
490 	struct rds_ib_send_work *first;
491 	struct rds_ib_send_work *prev;
492 	const struct ib_send_wr *failed_wr;
493 	struct scatterlist *scat;
494 	u32 pos;
495 	u32 i;
496 	u32 work_alloc;
497 	u32 credit_alloc = 0;
498 	u32 posted;
499 	u32 adv_credits = 0;
500 	int send_flags = 0;
501 	int bytes_sent = 0;
502 	int ret;
503 	int flow_controlled = 0;
504 	int nr_sig = 0;
505 
506 	BUG_ON(off % RDS_FRAG_SIZE);
507 	BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
508 
509 	/* Do not send cong updates to IB loopback */
510 	if (conn->c_loopback
511 	    && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
512 		rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
513 		scat = &rm->data.op_sg[sg];
514 		ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
515 		return sizeof(struct rds_header) + ret;
516 	}
517 
518 	/* FIXME we may overallocate here */
519 	if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
520 		i = 1;
521 	else
522 		i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
523 
524 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
525 	if (work_alloc == 0) {
526 		set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
527 		rds_ib_stats_inc(s_ib_tx_ring_full);
528 		ret = -ENOMEM;
529 		goto out;
530 	}
531 
532 	if (ic->i_flowctl) {
533 		credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
534 		adv_credits += posted;
535 		if (credit_alloc < work_alloc) {
536 			rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
537 			work_alloc = credit_alloc;
538 			flow_controlled = 1;
539 		}
540 		if (work_alloc == 0) {
541 			set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
542 			rds_ib_stats_inc(s_ib_tx_throttle);
543 			ret = -ENOMEM;
544 			goto out;
545 		}
546 	}
547 
548 	/* map the message the first time we see it */
549 	if (!ic->i_data_op) {
550 		if (rm->data.op_nents) {
551 			rm->data.op_count = ib_dma_map_sg(dev,
552 							  rm->data.op_sg,
553 							  rm->data.op_nents,
554 							  DMA_TO_DEVICE);
555 			rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
556 			if (rm->data.op_count == 0) {
557 				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
558 				rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
559 				ret = -ENOMEM; /* XXX ? */
560 				goto out;
561 			}
562 		} else {
563 			rm->data.op_count = 0;
564 		}
565 
566 		rds_message_addref(rm);
567 		rm->data.op_dmasg = 0;
568 		rm->data.op_dmaoff = 0;
569 		ic->i_data_op = &rm->data;
570 
571 		/* Finalize the header */
572 		if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
573 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
574 		if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
575 			rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
576 
577 		/* If it has a RDMA op, tell the peer we did it. This is
578 		 * used by the peer to release use-once RDMA MRs. */
579 		if (rm->rdma.op_active) {
580 			struct rds_ext_header_rdma ext_hdr;
581 
582 			ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
583 			rds_message_add_extension(&rm->m_inc.i_hdr,
584 					RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
585 		}
586 		if (rm->m_rdma_cookie) {
587 			rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
588 					rds_rdma_cookie_key(rm->m_rdma_cookie),
589 					rds_rdma_cookie_offset(rm->m_rdma_cookie));
590 		}
591 
592 		/* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
593 		 * we should not do this unless we have a chance of at least
594 		 * sticking the header into the send ring. Which is why we
595 		 * should call rds_ib_ring_alloc first. */
596 		rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
597 		rds_message_make_checksum(&rm->m_inc.i_hdr);
598 
599 		/*
600 		 * Update adv_credits since we reset the ACK_REQUIRED bit.
601 		 */
602 		if (ic->i_flowctl) {
603 			rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
604 			adv_credits += posted;
605 			BUG_ON(adv_credits > 255);
606 		}
607 	}
608 
609 	/* Sometimes you want to put a fence between an RDMA
610 	 * READ and the following SEND.
611 	 * We could either do this all the time
612 	 * or when requested by the user. Right now, we let
613 	 * the application choose.
614 	 */
615 	if (rm->rdma.op_active && rm->rdma.op_fence)
616 		send_flags = IB_SEND_FENCE;
617 
618 	/* Each frag gets a header. Msgs may be 0 bytes */
619 	send = &ic->i_sends[pos];
620 	first = send;
621 	prev = NULL;
622 	scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
623 	i = 0;
624 	do {
625 		unsigned int len = 0;
626 
627 		/* Set up the header */
628 		send->s_wr.send_flags = send_flags;
629 		send->s_wr.opcode = IB_WR_SEND;
630 		send->s_wr.num_sge = 1;
631 		send->s_wr.next = NULL;
632 		send->s_queued = jiffies;
633 		send->s_op = NULL;
634 
635 		send->s_sge[0].addr = ic->i_send_hdrs_dma[pos];
636 
637 		send->s_sge[0].length = sizeof(struct rds_header);
638 		send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
639 
640 		ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev,
641 					   ic->i_send_hdrs_dma[pos],
642 					   sizeof(struct rds_header),
643 					   DMA_TO_DEVICE);
644 		memcpy(ic->i_send_hdrs[pos], &rm->m_inc.i_hdr,
645 		       sizeof(struct rds_header));
646 
647 
648 		/* Set up the data, if present */
649 		if (i < work_alloc
650 		    && scat != &rm->data.op_sg[rm->data.op_count]) {
651 			len = min(RDS_FRAG_SIZE,
652 				  sg_dma_len(scat) - rm->data.op_dmaoff);
653 			send->s_wr.num_sge = 2;
654 
655 			send->s_sge[1].addr = sg_dma_address(scat);
656 			send->s_sge[1].addr += rm->data.op_dmaoff;
657 			send->s_sge[1].length = len;
658 			send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
659 
660 			bytes_sent += len;
661 			rm->data.op_dmaoff += len;
662 			if (rm->data.op_dmaoff == sg_dma_len(scat)) {
663 				scat++;
664 				rm->data.op_dmasg++;
665 				rm->data.op_dmaoff = 0;
666 			}
667 		}
668 
669 		rds_ib_set_wr_signal_state(ic, send, false);
670 
671 		/*
672 		 * Always signal the last one if we're stopping due to flow control.
673 		 */
674 		if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) {
675 			rds_ib_set_wr_signal_state(ic, send, true);
676 			send->s_wr.send_flags |= IB_SEND_SOLICITED;
677 		}
678 
679 		if (send->s_wr.send_flags & IB_SEND_SIGNALED)
680 			nr_sig++;
681 
682 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
683 			 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
684 
685 		if (ic->i_flowctl && adv_credits) {
686 			struct rds_header *hdr = ic->i_send_hdrs[pos];
687 
688 			/* add credit and redo the header checksum */
689 			hdr->h_credit = adv_credits;
690 			rds_message_make_checksum(hdr);
691 			adv_credits = 0;
692 			rds_ib_stats_inc(s_ib_tx_credit_updates);
693 		}
694 		ib_dma_sync_single_for_device(ic->rds_ibdev->dev,
695 					      ic->i_send_hdrs_dma[pos],
696 					      sizeof(struct rds_header),
697 					      DMA_TO_DEVICE);
698 
699 		if (prev)
700 			prev->s_wr.next = &send->s_wr;
701 		prev = send;
702 
703 		pos = (pos + 1) % ic->i_send_ring.w_nr;
704 		send = &ic->i_sends[pos];
705 		i++;
706 
707 	} while (i < work_alloc
708 		 && scat != &rm->data.op_sg[rm->data.op_count]);
709 
710 	/* Account the RDS header in the number of bytes we sent, but just once.
711 	 * The caller has no concept of fragmentation. */
712 	if (hdr_off == 0)
713 		bytes_sent += sizeof(struct rds_header);
714 
715 	/* if we finished the message then send completion owns it */
716 	if (scat == &rm->data.op_sg[rm->data.op_count]) {
717 		prev->s_op = ic->i_data_op;
718 		prev->s_wr.send_flags |= IB_SEND_SOLICITED;
719 		if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED))
720 			nr_sig += rds_ib_set_wr_signal_state(ic, prev, true);
721 		ic->i_data_op = NULL;
722 	}
723 
724 	/* Put back wrs & credits we didn't use */
725 	if (i < work_alloc) {
726 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
727 		work_alloc = i;
728 	}
729 	if (ic->i_flowctl && i < credit_alloc)
730 		rds_ib_send_add_credits(conn, credit_alloc - i);
731 
732 	if (nr_sig)
733 		atomic_add(nr_sig, &ic->i_signaled_sends);
734 
735 	/* XXX need to worry about failed_wr and partial sends. */
736 	failed_wr = &first->s_wr;
737 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
738 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
739 		 first, &first->s_wr, ret, failed_wr);
740 	BUG_ON(failed_wr != &first->s_wr);
741 	if (ret) {
742 		printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c "
743 		       "returned %d\n", &conn->c_faddr, ret);
744 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
745 		rds_ib_sub_signaled(ic, nr_sig);
746 		if (prev->s_op) {
747 			ic->i_data_op = prev->s_op;
748 			prev->s_op = NULL;
749 		}
750 
751 		rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
752 		goto out;
753 	}
754 
755 	ret = bytes_sent;
756 out:
757 	BUG_ON(adv_credits);
758 	return ret;
759 }
760 
761 /*
762  * Issue atomic operation.
763  * A simplified version of the rdma case, we always map 1 SG, and
764  * only 8 bytes, for the return value from the atomic operation.
765  */
766 int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
767 {
768 	struct rds_ib_connection *ic = conn->c_transport_data;
769 	struct rds_ib_send_work *send = NULL;
770 	const struct ib_send_wr *failed_wr;
771 	u32 pos;
772 	u32 work_alloc;
773 	int ret;
774 	int nr_sig = 0;
775 
776 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
777 	if (work_alloc != 1) {
778 		rds_ib_stats_inc(s_ib_tx_ring_full);
779 		ret = -ENOMEM;
780 		goto out;
781 	}
782 
783 	/* address of send request in ring */
784 	send = &ic->i_sends[pos];
785 	send->s_queued = jiffies;
786 
787 	if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
788 		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
789 		send->s_atomic_wr.compare_add = op->op_m_cswp.compare;
790 		send->s_atomic_wr.swap = op->op_m_cswp.swap;
791 		send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask;
792 		send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask;
793 	} else { /* FADD */
794 		send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
795 		send->s_atomic_wr.compare_add = op->op_m_fadd.add;
796 		send->s_atomic_wr.swap = 0;
797 		send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask;
798 		send->s_atomic_wr.swap_mask = 0;
799 	}
800 	send->s_wr.send_flags = 0;
801 	nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
802 	send->s_atomic_wr.wr.num_sge = 1;
803 	send->s_atomic_wr.wr.next = NULL;
804 	send->s_atomic_wr.remote_addr = op->op_remote_addr;
805 	send->s_atomic_wr.rkey = op->op_rkey;
806 	send->s_op = op;
807 	rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
808 
809 	/* map 8 byte retval buffer to the device */
810 	ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
811 	rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
812 	if (ret != 1) {
813 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
814 		rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
815 		ret = -ENOMEM; /* XXX ? */
816 		goto out;
817 	}
818 
819 	/* Convert our struct scatterlist to struct ib_sge */
820 	send->s_sge[0].addr = sg_dma_address(op->op_sg);
821 	send->s_sge[0].length = sg_dma_len(op->op_sg);
822 	send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
823 
824 	rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
825 		 send->s_sge[0].addr, send->s_sge[0].length);
826 
827 	if (nr_sig)
828 		atomic_add(nr_sig, &ic->i_signaled_sends);
829 
830 	failed_wr = &send->s_atomic_wr.wr;
831 	ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr);
832 	rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
833 		 send, &send->s_atomic_wr, ret, failed_wr);
834 	BUG_ON(failed_wr != &send->s_atomic_wr.wr);
835 	if (ret) {
836 		printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c "
837 		       "returned %d\n", &conn->c_faddr, ret);
838 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
839 		rds_ib_sub_signaled(ic, nr_sig);
840 		goto out;
841 	}
842 
843 	if (unlikely(failed_wr != &send->s_atomic_wr.wr)) {
844 		printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
845 		BUG_ON(failed_wr != &send->s_atomic_wr.wr);
846 	}
847 
848 out:
849 	return ret;
850 }
851 
852 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
853 {
854 	struct rds_ib_connection *ic = conn->c_transport_data;
855 	struct rds_ib_send_work *send = NULL;
856 	struct rds_ib_send_work *first;
857 	struct rds_ib_send_work *prev;
858 	const struct ib_send_wr *failed_wr;
859 	struct scatterlist *scat;
860 	unsigned long len;
861 	u64 remote_addr = op->op_remote_addr;
862 	u32 max_sge = ic->rds_ibdev->max_sge;
863 	u32 pos;
864 	u32 work_alloc;
865 	u32 i;
866 	u32 j;
867 	int sent;
868 	int ret;
869 	int num_sge;
870 	int nr_sig = 0;
871 	u64 odp_addr = op->op_odp_addr;
872 	u32 odp_lkey = 0;
873 
874 	/* map the op the first time we see it */
875 	if (!op->op_odp_mr) {
876 		if (!op->op_mapped) {
877 			op->op_count =
878 				ib_dma_map_sg(ic->i_cm_id->device, op->op_sg,
879 					      op->op_nents,
880 					      (op->op_write) ? DMA_TO_DEVICE :
881 							       DMA_FROM_DEVICE);
882 			rdsdebug("ic %p mapping op %p: %d\n", ic, op,
883 				 op->op_count);
884 			if (op->op_count == 0) {
885 				rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
886 				ret = -ENOMEM; /* XXX ? */
887 				goto out;
888 			}
889 			op->op_mapped = 1;
890 		}
891 	} else {
892 		op->op_count = op->op_nents;
893 		odp_lkey = rds_ib_get_lkey(op->op_odp_mr->r_trans_private);
894 	}
895 
896 	/*
897 	 * Instead of knowing how to return a partial rdma read/write we insist that there
898 	 * be enough work requests to send the entire message.
899 	 */
900 	i = DIV_ROUND_UP(op->op_count, max_sge);
901 
902 	work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
903 	if (work_alloc != i) {
904 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
905 		rds_ib_stats_inc(s_ib_tx_ring_full);
906 		ret = -ENOMEM;
907 		goto out;
908 	}
909 
910 	send = &ic->i_sends[pos];
911 	first = send;
912 	prev = NULL;
913 	scat = &op->op_sg[0];
914 	sent = 0;
915 	num_sge = op->op_count;
916 
917 	for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
918 		send->s_wr.send_flags = 0;
919 		send->s_queued = jiffies;
920 		send->s_op = NULL;
921 
922 		if (!op->op_notify)
923 			nr_sig += rds_ib_set_wr_signal_state(ic, send,
924 							     op->op_notify);
925 
926 		send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
927 		send->s_rdma_wr.remote_addr = remote_addr;
928 		send->s_rdma_wr.rkey = op->op_rkey;
929 
930 		if (num_sge > max_sge) {
931 			send->s_rdma_wr.wr.num_sge = max_sge;
932 			num_sge -= max_sge;
933 		} else {
934 			send->s_rdma_wr.wr.num_sge = num_sge;
935 		}
936 
937 		send->s_rdma_wr.wr.next = NULL;
938 
939 		if (prev)
940 			prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr;
941 
942 		for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
943 		     scat != &op->op_sg[op->op_count]; j++) {
944 			len = sg_dma_len(scat);
945 			if (!op->op_odp_mr) {
946 				send->s_sge[j].addr = sg_dma_address(scat);
947 				send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
948 			} else {
949 				send->s_sge[j].addr = odp_addr;
950 				send->s_sge[j].lkey = odp_lkey;
951 			}
952 			send->s_sge[j].length = len;
953 
954 			sent += len;
955 			rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
956 
957 			remote_addr += len;
958 			odp_addr += len;
959 			scat++;
960 		}
961 
962 		rdsdebug("send %p wr %p num_sge %u next %p\n", send,
963 			&send->s_rdma_wr.wr,
964 			send->s_rdma_wr.wr.num_sge,
965 			send->s_rdma_wr.wr.next);
966 
967 		prev = send;
968 		if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
969 			send = ic->i_sends;
970 	}
971 
972 	/* give a reference to the last op */
973 	if (scat == &op->op_sg[op->op_count]) {
974 		prev->s_op = op;
975 		rds_message_addref(container_of(op, struct rds_message, rdma));
976 	}
977 
978 	if (i < work_alloc) {
979 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
980 		work_alloc = i;
981 	}
982 
983 	if (nr_sig)
984 		atomic_add(nr_sig, &ic->i_signaled_sends);
985 
986 	failed_wr = &first->s_rdma_wr.wr;
987 	ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
988 	rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
989 		 first, &first->s_rdma_wr.wr, ret, failed_wr);
990 	BUG_ON(failed_wr != &first->s_rdma_wr.wr);
991 	if (ret) {
992 		printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c "
993 		       "returned %d\n", &conn->c_faddr, ret);
994 		rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
995 		rds_ib_sub_signaled(ic, nr_sig);
996 		goto out;
997 	}
998 
999 	if (unlikely(failed_wr != &first->s_rdma_wr.wr)) {
1000 		printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
1001 		BUG_ON(failed_wr != &first->s_rdma_wr.wr);
1002 	}
1003 
1004 
1005 out:
1006 	return ret;
1007 }
1008 
1009 void rds_ib_xmit_path_complete(struct rds_conn_path *cp)
1010 {
1011 	struct rds_connection *conn = cp->cp_conn;
1012 	struct rds_ib_connection *ic = conn->c_transport_data;
1013 
1014 	/* We may have a pending ACK or window update we were unable
1015 	 * to send previously (due to flow control). Try again. */
1016 	rds_ib_attempt_ack(ic);
1017 }
1018