1 /* 2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/in.h> 35 #include <linux/device.h> 36 #include <linux/dmapool.h> 37 #include <linux/ratelimit.h> 38 39 #include "rds_single_path.h" 40 #include "rds.h" 41 #include "ib.h" 42 43 /* 44 * Convert IB-specific error message to RDS error message and call core 45 * completion handler. 46 */ 47 static void rds_ib_send_complete(struct rds_message *rm, 48 int wc_status, 49 void (*complete)(struct rds_message *rm, int status)) 50 { 51 int notify_status; 52 53 switch (wc_status) { 54 case IB_WC_WR_FLUSH_ERR: 55 return; 56 57 case IB_WC_SUCCESS: 58 notify_status = RDS_RDMA_SUCCESS; 59 break; 60 61 case IB_WC_REM_ACCESS_ERR: 62 notify_status = RDS_RDMA_REMOTE_ERROR; 63 break; 64 65 default: 66 notify_status = RDS_RDMA_OTHER_ERROR; 67 break; 68 } 69 complete(rm, notify_status); 70 } 71 72 static void rds_ib_send_unmap_data(struct rds_ib_connection *ic, 73 struct rm_data_op *op, 74 int wc_status) 75 { 76 if (op->op_nents) 77 ib_dma_unmap_sg(ic->i_cm_id->device, 78 op->op_sg, op->op_nents, 79 DMA_TO_DEVICE); 80 } 81 82 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic, 83 struct rm_rdma_op *op, 84 int wc_status) 85 { 86 if (op->op_mapped) { 87 ib_dma_unmap_sg(ic->i_cm_id->device, 88 op->op_sg, op->op_nents, 89 op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 90 op->op_mapped = 0; 91 } 92 93 /* If the user asked for a completion notification on this 94 * message, we can implement three different semantics: 95 * 1. Notify when we received the ACK on the RDS message 96 * that was queued with the RDMA. This provides reliable 97 * notification of RDMA status at the expense of a one-way 98 * packet delay. 99 * 2. Notify when the IB stack gives us the completion event for 100 * the RDMA operation. 101 * 3. Notify when the IB stack gives us the completion event for 102 * the accompanying RDS messages. 103 * Here, we implement approach #3. To implement approach #2, 104 * we would need to take an event for the rdma WR. To implement #1, 105 * don't call rds_rdma_send_complete at all, and fall back to the notify 106 * handling in the ACK processing code. 107 * 108 * Note: There's no need to explicitly sync any RDMA buffers using 109 * ib_dma_sync_sg_for_cpu - the completion for the RDMA 110 * operation itself unmapped the RDMA buffers, which takes care 111 * of synching. 112 */ 113 rds_ib_send_complete(container_of(op, struct rds_message, rdma), 114 wc_status, rds_rdma_send_complete); 115 116 if (op->op_write) 117 rds_stats_add(s_send_rdma_bytes, op->op_bytes); 118 else 119 rds_stats_add(s_recv_rdma_bytes, op->op_bytes); 120 } 121 122 static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic, 123 struct rm_atomic_op *op, 124 int wc_status) 125 { 126 /* unmap atomic recvbuf */ 127 if (op->op_mapped) { 128 ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1, 129 DMA_FROM_DEVICE); 130 op->op_mapped = 0; 131 } 132 133 rds_ib_send_complete(container_of(op, struct rds_message, atomic), 134 wc_status, rds_atomic_send_complete); 135 136 if (op->op_type == RDS_ATOMIC_TYPE_CSWP) 137 rds_ib_stats_inc(s_ib_atomic_cswp); 138 else 139 rds_ib_stats_inc(s_ib_atomic_fadd); 140 } 141 142 /* 143 * Unmap the resources associated with a struct send_work. 144 * 145 * Returns the rm for no good reason other than it is unobtainable 146 * other than by switching on wr.opcode, currently, and the caller, 147 * the event handler, needs it. 148 */ 149 static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic, 150 struct rds_ib_send_work *send, 151 int wc_status) 152 { 153 struct rds_message *rm = NULL; 154 155 /* In the error case, wc.opcode sometimes contains garbage */ 156 switch (send->s_wr.opcode) { 157 case IB_WR_SEND: 158 if (send->s_op) { 159 rm = container_of(send->s_op, struct rds_message, data); 160 rds_ib_send_unmap_data(ic, send->s_op, wc_status); 161 } 162 break; 163 case IB_WR_RDMA_WRITE: 164 case IB_WR_RDMA_READ: 165 if (send->s_op) { 166 rm = container_of(send->s_op, struct rds_message, rdma); 167 rds_ib_send_unmap_rdma(ic, send->s_op, wc_status); 168 } 169 break; 170 case IB_WR_ATOMIC_FETCH_AND_ADD: 171 case IB_WR_ATOMIC_CMP_AND_SWP: 172 if (send->s_op) { 173 rm = container_of(send->s_op, struct rds_message, atomic); 174 rds_ib_send_unmap_atomic(ic, send->s_op, wc_status); 175 } 176 break; 177 default: 178 printk_ratelimited(KERN_NOTICE 179 "RDS/IB: %s: unexpected opcode 0x%x in WR!\n", 180 __func__, send->s_wr.opcode); 181 break; 182 } 183 184 send->s_wr.opcode = 0xdead; 185 186 return rm; 187 } 188 189 void rds_ib_send_init_ring(struct rds_ib_connection *ic) 190 { 191 struct rds_ib_send_work *send; 192 u32 i; 193 194 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { 195 struct ib_sge *sge; 196 197 send->s_op = NULL; 198 199 send->s_wr.wr_id = i; 200 send->s_wr.sg_list = send->s_sge; 201 send->s_wr.ex.imm_data = 0; 202 203 sge = &send->s_sge[0]; 204 sge->addr = ic->i_send_hdrs_dma[i]; 205 206 sge->length = sizeof(struct rds_header); 207 sge->lkey = ic->i_pd->local_dma_lkey; 208 209 send->s_sge[1].lkey = ic->i_pd->local_dma_lkey; 210 } 211 } 212 213 void rds_ib_send_clear_ring(struct rds_ib_connection *ic) 214 { 215 struct rds_ib_send_work *send; 216 u32 i; 217 218 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { 219 if (send->s_op && send->s_wr.opcode != 0xdead) 220 rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR); 221 } 222 } 223 224 /* 225 * The only fast path caller always has a non-zero nr, so we don't 226 * bother testing nr before performing the atomic sub. 227 */ 228 static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr) 229 { 230 if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) && 231 waitqueue_active(&rds_ib_ring_empty_wait)) 232 wake_up(&rds_ib_ring_empty_wait); 233 BUG_ON(atomic_read(&ic->i_signaled_sends) < 0); 234 } 235 236 /* 237 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc 238 * operations performed in the send path. As the sender allocs and potentially 239 * unallocs the next free entry in the ring it doesn't alter which is 240 * the next to be freed, which is what this is concerned with. 241 */ 242 void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc) 243 { 244 struct rds_message *rm = NULL; 245 struct rds_connection *conn = ic->conn; 246 struct rds_ib_send_work *send; 247 u32 completed; 248 u32 oldest; 249 u32 i = 0; 250 int nr_sig = 0; 251 252 253 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", 254 (unsigned long long)wc->wr_id, wc->status, 255 ib_wc_status_msg(wc->status), wc->byte_len, 256 be32_to_cpu(wc->ex.imm_data)); 257 rds_ib_stats_inc(s_ib_tx_cq_event); 258 259 if (wc->wr_id == RDS_IB_ACK_WR_ID) { 260 if (time_after(jiffies, ic->i_ack_queued + HZ / 2)) 261 rds_ib_stats_inc(s_ib_tx_stalled); 262 rds_ib_ack_send_complete(ic); 263 return; 264 } 265 266 oldest = rds_ib_ring_oldest(&ic->i_send_ring); 267 268 completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest); 269 270 for (i = 0; i < completed; i++) { 271 send = &ic->i_sends[oldest]; 272 if (send->s_wr.send_flags & IB_SEND_SIGNALED) 273 nr_sig++; 274 275 rm = rds_ib_send_unmap_op(ic, send, wc->status); 276 277 if (time_after(jiffies, send->s_queued + HZ / 2)) 278 rds_ib_stats_inc(s_ib_tx_stalled); 279 280 if (send->s_op) { 281 if (send->s_op == rm->m_final_op) { 282 /* If anyone waited for this message to get 283 * flushed out, wake them up now 284 */ 285 rds_message_unmapped(rm); 286 } 287 rds_message_put(rm); 288 send->s_op = NULL; 289 } 290 291 oldest = (oldest + 1) % ic->i_send_ring.w_nr; 292 } 293 294 rds_ib_ring_free(&ic->i_send_ring, completed); 295 rds_ib_sub_signaled(ic, nr_sig); 296 nr_sig = 0; 297 298 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) || 299 test_bit(0, &conn->c_map_queued)) 300 queue_delayed_work(rds_wq, &conn->c_send_w, 0); 301 302 /* We expect errors as the qp is drained during shutdown */ 303 if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) { 304 rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n", 305 &conn->c_laddr, &conn->c_faddr, 306 conn->c_tos, wc->status, 307 ib_wc_status_msg(wc->status), wc->vendor_err); 308 } 309 } 310 311 /* 312 * This is the main function for allocating credits when sending 313 * messages. 314 * 315 * Conceptually, we have two counters: 316 * - send credits: this tells us how many WRs we're allowed 317 * to submit without overruning the receiver's queue. For 318 * each SEND WR we post, we decrement this by one. 319 * 320 * - posted credits: this tells us how many WRs we recently 321 * posted to the receive queue. This value is transferred 322 * to the peer as a "credit update" in a RDS header field. 323 * Every time we transmit credits to the peer, we subtract 324 * the amount of transferred credits from this counter. 325 * 326 * It is essential that we avoid situations where both sides have 327 * exhausted their send credits, and are unable to send new credits 328 * to the peer. We achieve this by requiring that we send at least 329 * one credit update to the peer before exhausting our credits. 330 * When new credits arrive, we subtract one credit that is withheld 331 * until we've posted new buffers and are ready to transmit these 332 * credits (see rds_ib_send_add_credits below). 333 * 334 * The RDS send code is essentially single-threaded; rds_send_xmit 335 * sets RDS_IN_XMIT to ensure exclusive access to the send ring. 336 * However, the ACK sending code is independent and can race with 337 * message SENDs. 338 * 339 * In the send path, we need to update the counters for send credits 340 * and the counter of posted buffers atomically - when we use the 341 * last available credit, we cannot allow another thread to race us 342 * and grab the posted credits counter. Hence, we have to use a 343 * spinlock to protect the credit counter, or use atomics. 344 * 345 * Spinlocks shared between the send and the receive path are bad, 346 * because they create unnecessary delays. An early implementation 347 * using a spinlock showed a 5% degradation in throughput at some 348 * loads. 349 * 350 * This implementation avoids spinlocks completely, putting both 351 * counters into a single atomic, and updating that atomic using 352 * atomic_add (in the receive path, when receiving fresh credits), 353 * and using atomic_cmpxchg when updating the two counters. 354 */ 355 int rds_ib_send_grab_credits(struct rds_ib_connection *ic, 356 u32 wanted, u32 *adv_credits, int need_posted, int max_posted) 357 { 358 unsigned int avail, posted, got = 0, advertise; 359 long oldval, newval; 360 361 *adv_credits = 0; 362 if (!ic->i_flowctl) 363 return wanted; 364 365 try_again: 366 advertise = 0; 367 oldval = newval = atomic_read(&ic->i_credits); 368 posted = IB_GET_POST_CREDITS(oldval); 369 avail = IB_GET_SEND_CREDITS(oldval); 370 371 rdsdebug("wanted=%u credits=%u posted=%u\n", 372 wanted, avail, posted); 373 374 /* The last credit must be used to send a credit update. */ 375 if (avail && !posted) 376 avail--; 377 378 if (avail < wanted) { 379 struct rds_connection *conn = ic->i_cm_id->context; 380 381 /* Oops, there aren't that many credits left! */ 382 set_bit(RDS_LL_SEND_FULL, &conn->c_flags); 383 got = avail; 384 } else { 385 /* Sometimes you get what you want, lalala. */ 386 got = wanted; 387 } 388 newval -= IB_SET_SEND_CREDITS(got); 389 390 /* 391 * If need_posted is non-zero, then the caller wants 392 * the posted regardless of whether any send credits are 393 * available. 394 */ 395 if (posted && (got || need_posted)) { 396 advertise = min_t(unsigned int, posted, max_posted); 397 newval -= IB_SET_POST_CREDITS(advertise); 398 } 399 400 /* Finally bill everything */ 401 if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval) 402 goto try_again; 403 404 *adv_credits = advertise; 405 return got; 406 } 407 408 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits) 409 { 410 struct rds_ib_connection *ic = conn->c_transport_data; 411 412 if (credits == 0) 413 return; 414 415 rdsdebug("credits=%u current=%u%s\n", 416 credits, 417 IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)), 418 test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : ""); 419 420 atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits); 421 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags)) 422 queue_delayed_work(rds_wq, &conn->c_send_w, 0); 423 424 WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384); 425 426 rds_ib_stats_inc(s_ib_rx_credit_updates); 427 } 428 429 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted) 430 { 431 struct rds_ib_connection *ic = conn->c_transport_data; 432 433 if (posted == 0) 434 return; 435 436 atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits); 437 438 /* Decide whether to send an update to the peer now. 439 * If we would send a credit update for every single buffer we 440 * post, we would end up with an ACK storm (ACK arrives, 441 * consumes buffer, we refill the ring, send ACK to remote 442 * advertising the newly posted buffer... ad inf) 443 * 444 * Performance pretty much depends on how often we send 445 * credit updates - too frequent updates mean lots of ACKs. 446 * Too infrequent updates, and the peer will run out of 447 * credits and has to throttle. 448 * For the time being, 16 seems to be a good compromise. 449 */ 450 if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16) 451 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 452 } 453 454 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic, 455 struct rds_ib_send_work *send, 456 bool notify) 457 { 458 /* 459 * We want to delay signaling completions just enough to get 460 * the batching benefits but not so much that we create dead time 461 * on the wire. 462 */ 463 if (ic->i_unsignaled_wrs-- == 0 || notify) { 464 ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs; 465 send->s_wr.send_flags |= IB_SEND_SIGNALED; 466 return 1; 467 } 468 return 0; 469 } 470 471 /* 472 * This can be called multiple times for a given message. The first time 473 * we see a message we map its scatterlist into the IB device so that 474 * we can provide that mapped address to the IB scatter gather entries 475 * in the IB work requests. We translate the scatterlist into a series 476 * of work requests that fragment the message. These work requests complete 477 * in order so we pass ownership of the message to the completion handler 478 * once we send the final fragment. 479 * 480 * The RDS core uses the c_send_lock to only enter this function once 481 * per connection. This makes sure that the tx ring alloc/unalloc pairs 482 * don't get out of sync and confuse the ring. 483 */ 484 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm, 485 unsigned int hdr_off, unsigned int sg, unsigned int off) 486 { 487 struct rds_ib_connection *ic = conn->c_transport_data; 488 struct ib_device *dev = ic->i_cm_id->device; 489 struct rds_ib_send_work *send = NULL; 490 struct rds_ib_send_work *first; 491 struct rds_ib_send_work *prev; 492 const struct ib_send_wr *failed_wr; 493 struct scatterlist *scat; 494 u32 pos; 495 u32 i; 496 u32 work_alloc; 497 u32 credit_alloc = 0; 498 u32 posted; 499 u32 adv_credits = 0; 500 int send_flags = 0; 501 int bytes_sent = 0; 502 int ret; 503 int flow_controlled = 0; 504 int nr_sig = 0; 505 506 BUG_ON(off % RDS_FRAG_SIZE); 507 BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header)); 508 509 /* Do not send cong updates to IB loopback */ 510 if (conn->c_loopback 511 && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) { 512 rds_cong_map_updated(conn->c_fcong, ~(u64) 0); 513 scat = &rm->data.op_sg[sg]; 514 ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length); 515 return sizeof(struct rds_header) + ret; 516 } 517 518 /* FIXME we may overallocate here */ 519 if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) 520 i = 1; 521 else 522 i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE); 523 524 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); 525 if (work_alloc == 0) { 526 set_bit(RDS_LL_SEND_FULL, &conn->c_flags); 527 rds_ib_stats_inc(s_ib_tx_ring_full); 528 ret = -ENOMEM; 529 goto out; 530 } 531 532 if (ic->i_flowctl) { 533 credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT); 534 adv_credits += posted; 535 if (credit_alloc < work_alloc) { 536 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc); 537 work_alloc = credit_alloc; 538 flow_controlled = 1; 539 } 540 if (work_alloc == 0) { 541 set_bit(RDS_LL_SEND_FULL, &conn->c_flags); 542 rds_ib_stats_inc(s_ib_tx_throttle); 543 ret = -ENOMEM; 544 goto out; 545 } 546 } 547 548 /* map the message the first time we see it */ 549 if (!ic->i_data_op) { 550 if (rm->data.op_nents) { 551 rm->data.op_count = ib_dma_map_sg(dev, 552 rm->data.op_sg, 553 rm->data.op_nents, 554 DMA_TO_DEVICE); 555 rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count); 556 if (rm->data.op_count == 0) { 557 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); 558 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 559 ret = -ENOMEM; /* XXX ? */ 560 goto out; 561 } 562 } else { 563 rm->data.op_count = 0; 564 } 565 566 rds_message_addref(rm); 567 rm->data.op_dmasg = 0; 568 rm->data.op_dmaoff = 0; 569 ic->i_data_op = &rm->data; 570 571 /* Finalize the header */ 572 if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags)) 573 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED; 574 if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) 575 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED; 576 577 /* If it has a RDMA op, tell the peer we did it. This is 578 * used by the peer to release use-once RDMA MRs. */ 579 if (rm->rdma.op_active) { 580 struct rds_ext_header_rdma ext_hdr; 581 582 ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey); 583 rds_message_add_extension(&rm->m_inc.i_hdr, 584 RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr)); 585 } 586 if (rm->m_rdma_cookie) { 587 rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr, 588 rds_rdma_cookie_key(rm->m_rdma_cookie), 589 rds_rdma_cookie_offset(rm->m_rdma_cookie)); 590 } 591 592 /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so 593 * we should not do this unless we have a chance of at least 594 * sticking the header into the send ring. Which is why we 595 * should call rds_ib_ring_alloc first. */ 596 rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic)); 597 rds_message_make_checksum(&rm->m_inc.i_hdr); 598 599 /* 600 * Update adv_credits since we reset the ACK_REQUIRED bit. 601 */ 602 if (ic->i_flowctl) { 603 rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits); 604 adv_credits += posted; 605 BUG_ON(adv_credits > 255); 606 } 607 } 608 609 /* Sometimes you want to put a fence between an RDMA 610 * READ and the following SEND. 611 * We could either do this all the time 612 * or when requested by the user. Right now, we let 613 * the application choose. 614 */ 615 if (rm->rdma.op_active && rm->rdma.op_fence) 616 send_flags = IB_SEND_FENCE; 617 618 /* Each frag gets a header. Msgs may be 0 bytes */ 619 send = &ic->i_sends[pos]; 620 first = send; 621 prev = NULL; 622 scat = &ic->i_data_op->op_sg[rm->data.op_dmasg]; 623 i = 0; 624 do { 625 unsigned int len = 0; 626 627 /* Set up the header */ 628 send->s_wr.send_flags = send_flags; 629 send->s_wr.opcode = IB_WR_SEND; 630 send->s_wr.num_sge = 1; 631 send->s_wr.next = NULL; 632 send->s_queued = jiffies; 633 send->s_op = NULL; 634 635 send->s_sge[0].addr = ic->i_send_hdrs_dma[pos]; 636 637 send->s_sge[0].length = sizeof(struct rds_header); 638 639 memcpy(ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, 640 sizeof(struct rds_header)); 641 642 643 /* Set up the data, if present */ 644 if (i < work_alloc 645 && scat != &rm->data.op_sg[rm->data.op_count]) { 646 len = min(RDS_FRAG_SIZE, 647 sg_dma_len(scat) - rm->data.op_dmaoff); 648 send->s_wr.num_sge = 2; 649 650 send->s_sge[1].addr = sg_dma_address(scat); 651 send->s_sge[1].addr += rm->data.op_dmaoff; 652 send->s_sge[1].length = len; 653 654 bytes_sent += len; 655 rm->data.op_dmaoff += len; 656 if (rm->data.op_dmaoff == sg_dma_len(scat)) { 657 scat++; 658 rm->data.op_dmasg++; 659 rm->data.op_dmaoff = 0; 660 } 661 } 662 663 rds_ib_set_wr_signal_state(ic, send, false); 664 665 /* 666 * Always signal the last one if we're stopping due to flow control. 667 */ 668 if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) { 669 rds_ib_set_wr_signal_state(ic, send, true); 670 send->s_wr.send_flags |= IB_SEND_SOLICITED; 671 } 672 673 if (send->s_wr.send_flags & IB_SEND_SIGNALED) 674 nr_sig++; 675 676 rdsdebug("send %p wr %p num_sge %u next %p\n", send, 677 &send->s_wr, send->s_wr.num_sge, send->s_wr.next); 678 679 if (ic->i_flowctl && adv_credits) { 680 struct rds_header *hdr = ic->i_send_hdrs[pos]; 681 682 /* add credit and redo the header checksum */ 683 hdr->h_credit = adv_credits; 684 rds_message_make_checksum(hdr); 685 adv_credits = 0; 686 rds_ib_stats_inc(s_ib_tx_credit_updates); 687 } 688 689 if (prev) 690 prev->s_wr.next = &send->s_wr; 691 prev = send; 692 693 pos = (pos + 1) % ic->i_send_ring.w_nr; 694 send = &ic->i_sends[pos]; 695 i++; 696 697 } while (i < work_alloc 698 && scat != &rm->data.op_sg[rm->data.op_count]); 699 700 /* Account the RDS header in the number of bytes we sent, but just once. 701 * The caller has no concept of fragmentation. */ 702 if (hdr_off == 0) 703 bytes_sent += sizeof(struct rds_header); 704 705 /* if we finished the message then send completion owns it */ 706 if (scat == &rm->data.op_sg[rm->data.op_count]) { 707 prev->s_op = ic->i_data_op; 708 prev->s_wr.send_flags |= IB_SEND_SOLICITED; 709 if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED)) 710 nr_sig += rds_ib_set_wr_signal_state(ic, prev, true); 711 ic->i_data_op = NULL; 712 } 713 714 /* Put back wrs & credits we didn't use */ 715 if (i < work_alloc) { 716 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); 717 work_alloc = i; 718 } 719 if (ic->i_flowctl && i < credit_alloc) 720 rds_ib_send_add_credits(conn, credit_alloc - i); 721 722 if (nr_sig) 723 atomic_add(nr_sig, &ic->i_signaled_sends); 724 725 /* XXX need to worry about failed_wr and partial sends. */ 726 failed_wr = &first->s_wr; 727 ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); 728 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, 729 first, &first->s_wr, ret, failed_wr); 730 BUG_ON(failed_wr != &first->s_wr); 731 if (ret) { 732 printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c " 733 "returned %d\n", &conn->c_faddr, ret); 734 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 735 rds_ib_sub_signaled(ic, nr_sig); 736 if (prev->s_op) { 737 ic->i_data_op = prev->s_op; 738 prev->s_op = NULL; 739 } 740 741 rds_ib_conn_error(ic->conn, "ib_post_send failed\n"); 742 goto out; 743 } 744 745 ret = bytes_sent; 746 out: 747 BUG_ON(adv_credits); 748 return ret; 749 } 750 751 /* 752 * Issue atomic operation. 753 * A simplified version of the rdma case, we always map 1 SG, and 754 * only 8 bytes, for the return value from the atomic operation. 755 */ 756 int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op) 757 { 758 struct rds_ib_connection *ic = conn->c_transport_data; 759 struct rds_ib_send_work *send = NULL; 760 const struct ib_send_wr *failed_wr; 761 u32 pos; 762 u32 work_alloc; 763 int ret; 764 int nr_sig = 0; 765 766 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos); 767 if (work_alloc != 1) { 768 rds_ib_stats_inc(s_ib_tx_ring_full); 769 ret = -ENOMEM; 770 goto out; 771 } 772 773 /* address of send request in ring */ 774 send = &ic->i_sends[pos]; 775 send->s_queued = jiffies; 776 777 if (op->op_type == RDS_ATOMIC_TYPE_CSWP) { 778 send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP; 779 send->s_atomic_wr.compare_add = op->op_m_cswp.compare; 780 send->s_atomic_wr.swap = op->op_m_cswp.swap; 781 send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask; 782 send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask; 783 } else { /* FADD */ 784 send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD; 785 send->s_atomic_wr.compare_add = op->op_m_fadd.add; 786 send->s_atomic_wr.swap = 0; 787 send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask; 788 send->s_atomic_wr.swap_mask = 0; 789 } 790 send->s_wr.send_flags = 0; 791 nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify); 792 send->s_atomic_wr.wr.num_sge = 1; 793 send->s_atomic_wr.wr.next = NULL; 794 send->s_atomic_wr.remote_addr = op->op_remote_addr; 795 send->s_atomic_wr.rkey = op->op_rkey; 796 send->s_op = op; 797 rds_message_addref(container_of(send->s_op, struct rds_message, atomic)); 798 799 /* map 8 byte retval buffer to the device */ 800 ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE); 801 rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret); 802 if (ret != 1) { 803 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 804 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); 805 ret = -ENOMEM; /* XXX ? */ 806 goto out; 807 } 808 809 /* Convert our struct scatterlist to struct ib_sge */ 810 send->s_sge[0].addr = sg_dma_address(op->op_sg); 811 send->s_sge[0].length = sg_dma_len(op->op_sg); 812 send->s_sge[0].lkey = ic->i_pd->local_dma_lkey; 813 814 rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr, 815 send->s_sge[0].addr, send->s_sge[0].length); 816 817 if (nr_sig) 818 atomic_add(nr_sig, &ic->i_signaled_sends); 819 820 failed_wr = &send->s_atomic_wr.wr; 821 ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr); 822 rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic, 823 send, &send->s_atomic_wr, ret, failed_wr); 824 BUG_ON(failed_wr != &send->s_atomic_wr.wr); 825 if (ret) { 826 printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c " 827 "returned %d\n", &conn->c_faddr, ret); 828 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 829 rds_ib_sub_signaled(ic, nr_sig); 830 goto out; 831 } 832 833 if (unlikely(failed_wr != &send->s_atomic_wr.wr)) { 834 printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret); 835 BUG_ON(failed_wr != &send->s_atomic_wr.wr); 836 } 837 838 out: 839 return ret; 840 } 841 842 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op) 843 { 844 struct rds_ib_connection *ic = conn->c_transport_data; 845 struct rds_ib_send_work *send = NULL; 846 struct rds_ib_send_work *first; 847 struct rds_ib_send_work *prev; 848 const struct ib_send_wr *failed_wr; 849 struct scatterlist *scat; 850 unsigned long len; 851 u64 remote_addr = op->op_remote_addr; 852 u32 max_sge = ic->rds_ibdev->max_sge; 853 u32 pos; 854 u32 work_alloc; 855 u32 i; 856 u32 j; 857 int sent; 858 int ret; 859 int num_sge; 860 int nr_sig = 0; 861 862 /* map the op the first time we see it */ 863 if (!op->op_mapped) { 864 op->op_count = ib_dma_map_sg(ic->i_cm_id->device, 865 op->op_sg, op->op_nents, (op->op_write) ? 866 DMA_TO_DEVICE : DMA_FROM_DEVICE); 867 rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count); 868 if (op->op_count == 0) { 869 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); 870 ret = -ENOMEM; /* XXX ? */ 871 goto out; 872 } 873 874 op->op_mapped = 1; 875 } 876 877 /* 878 * Instead of knowing how to return a partial rdma read/write we insist that there 879 * be enough work requests to send the entire message. 880 */ 881 i = DIV_ROUND_UP(op->op_count, max_sge); 882 883 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); 884 if (work_alloc != i) { 885 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 886 rds_ib_stats_inc(s_ib_tx_ring_full); 887 ret = -ENOMEM; 888 goto out; 889 } 890 891 send = &ic->i_sends[pos]; 892 first = send; 893 prev = NULL; 894 scat = &op->op_sg[0]; 895 sent = 0; 896 num_sge = op->op_count; 897 898 for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) { 899 send->s_wr.send_flags = 0; 900 send->s_queued = jiffies; 901 send->s_op = NULL; 902 903 if (!op->op_notify) 904 nr_sig += rds_ib_set_wr_signal_state(ic, send, 905 op->op_notify); 906 907 send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ; 908 send->s_rdma_wr.remote_addr = remote_addr; 909 send->s_rdma_wr.rkey = op->op_rkey; 910 911 if (num_sge > max_sge) { 912 send->s_rdma_wr.wr.num_sge = max_sge; 913 num_sge -= max_sge; 914 } else { 915 send->s_rdma_wr.wr.num_sge = num_sge; 916 } 917 918 send->s_rdma_wr.wr.next = NULL; 919 920 if (prev) 921 prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr; 922 923 for (j = 0; j < send->s_rdma_wr.wr.num_sge && 924 scat != &op->op_sg[op->op_count]; j++) { 925 len = sg_dma_len(scat); 926 send->s_sge[j].addr = sg_dma_address(scat); 927 send->s_sge[j].length = len; 928 send->s_sge[j].lkey = ic->i_pd->local_dma_lkey; 929 930 sent += len; 931 rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr); 932 933 remote_addr += len; 934 scat++; 935 } 936 937 rdsdebug("send %p wr %p num_sge %u next %p\n", send, 938 &send->s_rdma_wr.wr, 939 send->s_rdma_wr.wr.num_sge, 940 send->s_rdma_wr.wr.next); 941 942 prev = send; 943 if (++send == &ic->i_sends[ic->i_send_ring.w_nr]) 944 send = ic->i_sends; 945 } 946 947 /* give a reference to the last op */ 948 if (scat == &op->op_sg[op->op_count]) { 949 prev->s_op = op; 950 rds_message_addref(container_of(op, struct rds_message, rdma)); 951 } 952 953 if (i < work_alloc) { 954 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); 955 work_alloc = i; 956 } 957 958 if (nr_sig) 959 atomic_add(nr_sig, &ic->i_signaled_sends); 960 961 failed_wr = &first->s_rdma_wr.wr; 962 ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr); 963 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, 964 first, &first->s_rdma_wr.wr, ret, failed_wr); 965 BUG_ON(failed_wr != &first->s_rdma_wr.wr); 966 if (ret) { 967 printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c " 968 "returned %d\n", &conn->c_faddr, ret); 969 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); 970 rds_ib_sub_signaled(ic, nr_sig); 971 goto out; 972 } 973 974 if (unlikely(failed_wr != &first->s_rdma_wr.wr)) { 975 printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret); 976 BUG_ON(failed_wr != &first->s_rdma_wr.wr); 977 } 978 979 980 out: 981 return ret; 982 } 983 984 void rds_ib_xmit_path_complete(struct rds_conn_path *cp) 985 { 986 struct rds_connection *conn = cp->cp_conn; 987 struct rds_ib_connection *ic = conn->c_transport_data; 988 989 /* We may have a pending ACK or window update we were unable 990 * to send previously (due to flow control). Try again. */ 991 rds_ib_attempt_ack(ic); 992 } 993