xref: /openbmc/linux/net/rds/ib_recv.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42 
43 static struct kmem_cache *rds_ib_incoming_slab;
44 static struct kmem_cache *rds_ib_frag_slab;
45 static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
46 
47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
48 {
49 	struct rds_ib_recv_work *recv;
50 	u32 i;
51 
52 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
53 		struct ib_sge *sge;
54 
55 		recv->r_ibinc = NULL;
56 		recv->r_frag = NULL;
57 
58 		recv->r_wr.next = NULL;
59 		recv->r_wr.wr_id = i;
60 		recv->r_wr.sg_list = recv->r_sge;
61 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
62 
63 		sge = &recv->r_sge[0];
64 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
65 		sge->length = sizeof(struct rds_header);
66 		sge->lkey = ic->i_pd->local_dma_lkey;
67 
68 		sge = &recv->r_sge[1];
69 		sge->addr = 0;
70 		sge->length = RDS_FRAG_SIZE;
71 		sge->lkey = ic->i_pd->local_dma_lkey;
72 	}
73 }
74 
75 /*
76  * The entire 'from' list, including the from element itself, is put on
77  * to the tail of the 'to' list.
78  */
79 static void list_splice_entire_tail(struct list_head *from,
80 				    struct list_head *to)
81 {
82 	struct list_head *from_last = from->prev;
83 
84 	list_splice_tail(from_last, to);
85 	list_add_tail(from_last, to);
86 }
87 
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
89 {
90 	struct list_head *tmp;
91 
92 	tmp = xchg(&cache->xfer, NULL);
93 	if (tmp) {
94 		if (cache->ready)
95 			list_splice_entire_tail(tmp, cache->ready);
96 		else
97 			cache->ready = tmp;
98 	}
99 }
100 
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
102 {
103 	struct rds_ib_cache_head *head;
104 	int cpu;
105 
106 	cache->percpu = alloc_percpu(struct rds_ib_cache_head);
107 	if (!cache->percpu)
108 	       return -ENOMEM;
109 
110 	for_each_possible_cpu(cpu) {
111 		head = per_cpu_ptr(cache->percpu, cpu);
112 		head->first = NULL;
113 		head->count = 0;
114 	}
115 	cache->xfer = NULL;
116 	cache->ready = NULL;
117 
118 	return 0;
119 }
120 
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
122 {
123 	int ret;
124 
125 	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
126 	if (!ret) {
127 		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
128 		if (ret)
129 			free_percpu(ic->i_cache_incs.percpu);
130 	}
131 
132 	return ret;
133 }
134 
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
136 					  struct list_head *caller_list)
137 {
138 	struct rds_ib_cache_head *head;
139 	int cpu;
140 
141 	for_each_possible_cpu(cpu) {
142 		head = per_cpu_ptr(cache->percpu, cpu);
143 		if (head->first) {
144 			list_splice_entire_tail(head->first, caller_list);
145 			head->first = NULL;
146 		}
147 	}
148 
149 	if (cache->ready) {
150 		list_splice_entire_tail(cache->ready, caller_list);
151 		cache->ready = NULL;
152 	}
153 }
154 
155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
156 {
157 	struct rds_ib_incoming *inc;
158 	struct rds_ib_incoming *inc_tmp;
159 	struct rds_page_frag *frag;
160 	struct rds_page_frag *frag_tmp;
161 	LIST_HEAD(list);
162 
163 	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
164 	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
165 	free_percpu(ic->i_cache_incs.percpu);
166 
167 	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
168 		list_del(&inc->ii_cache_entry);
169 		WARN_ON(!list_empty(&inc->ii_frags));
170 		kmem_cache_free(rds_ib_incoming_slab, inc);
171 	}
172 
173 	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
174 	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
175 	free_percpu(ic->i_cache_frags.percpu);
176 
177 	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
178 		list_del(&frag->f_cache_entry);
179 		WARN_ON(!list_empty(&frag->f_item));
180 		kmem_cache_free(rds_ib_frag_slab, frag);
181 	}
182 }
183 
184 /* fwd decl */
185 static void rds_ib_recv_cache_put(struct list_head *new_item,
186 				  struct rds_ib_refill_cache *cache);
187 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
188 
189 
190 /* Recycle frag and attached recv buffer f_sg */
191 static void rds_ib_frag_free(struct rds_ib_connection *ic,
192 			     struct rds_page_frag *frag)
193 {
194 	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
195 
196 	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
197 }
198 
199 /* Recycle inc after freeing attached frags */
200 void rds_ib_inc_free(struct rds_incoming *inc)
201 {
202 	struct rds_ib_incoming *ibinc;
203 	struct rds_page_frag *frag;
204 	struct rds_page_frag *pos;
205 	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
206 
207 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
208 
209 	/* Free attached frags */
210 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
211 		list_del_init(&frag->f_item);
212 		rds_ib_frag_free(ic, frag);
213 	}
214 	BUG_ON(!list_empty(&ibinc->ii_frags));
215 
216 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
217 	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
218 }
219 
220 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
221 				  struct rds_ib_recv_work *recv)
222 {
223 	if (recv->r_ibinc) {
224 		rds_inc_put(&recv->r_ibinc->ii_inc);
225 		recv->r_ibinc = NULL;
226 	}
227 	if (recv->r_frag) {
228 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
229 		rds_ib_frag_free(ic, recv->r_frag);
230 		recv->r_frag = NULL;
231 	}
232 }
233 
234 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
235 {
236 	u32 i;
237 
238 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
239 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
240 }
241 
242 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
243 						     gfp_t slab_mask)
244 {
245 	struct rds_ib_incoming *ibinc;
246 	struct list_head *cache_item;
247 	int avail_allocs;
248 
249 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
250 	if (cache_item) {
251 		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
252 	} else {
253 		avail_allocs = atomic_add_unless(&rds_ib_allocation,
254 						 1, rds_ib_sysctl_max_recv_allocation);
255 		if (!avail_allocs) {
256 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
257 			return NULL;
258 		}
259 		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
260 		if (!ibinc) {
261 			atomic_dec(&rds_ib_allocation);
262 			return NULL;
263 		}
264 	}
265 	INIT_LIST_HEAD(&ibinc->ii_frags);
266 	rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
267 
268 	return ibinc;
269 }
270 
271 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
272 						    gfp_t slab_mask, gfp_t page_mask)
273 {
274 	struct rds_page_frag *frag;
275 	struct list_head *cache_item;
276 	int ret;
277 
278 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
279 	if (cache_item) {
280 		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
281 	} else {
282 		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
283 		if (!frag)
284 			return NULL;
285 
286 		sg_init_table(&frag->f_sg, 1);
287 		ret = rds_page_remainder_alloc(&frag->f_sg,
288 					       RDS_FRAG_SIZE, page_mask);
289 		if (ret) {
290 			kmem_cache_free(rds_ib_frag_slab, frag);
291 			return NULL;
292 		}
293 	}
294 
295 	INIT_LIST_HEAD(&frag->f_item);
296 
297 	return frag;
298 }
299 
300 static int rds_ib_recv_refill_one(struct rds_connection *conn,
301 				  struct rds_ib_recv_work *recv, gfp_t gfp)
302 {
303 	struct rds_ib_connection *ic = conn->c_transport_data;
304 	struct ib_sge *sge;
305 	int ret = -ENOMEM;
306 	gfp_t slab_mask = GFP_NOWAIT;
307 	gfp_t page_mask = GFP_NOWAIT;
308 
309 	if (gfp & __GFP_DIRECT_RECLAIM) {
310 		slab_mask = GFP_KERNEL;
311 		page_mask = GFP_HIGHUSER;
312 	}
313 
314 	if (!ic->i_cache_incs.ready)
315 		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
316 	if (!ic->i_cache_frags.ready)
317 		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
318 
319 	/*
320 	 * ibinc was taken from recv if recv contained the start of a message.
321 	 * recvs that were continuations will still have this allocated.
322 	 */
323 	if (!recv->r_ibinc) {
324 		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
325 		if (!recv->r_ibinc)
326 			goto out;
327 	}
328 
329 	WARN_ON(recv->r_frag); /* leak! */
330 	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
331 	if (!recv->r_frag)
332 		goto out;
333 
334 	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
335 			    1, DMA_FROM_DEVICE);
336 	WARN_ON(ret != 1);
337 
338 	sge = &recv->r_sge[0];
339 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
340 	sge->length = sizeof(struct rds_header);
341 
342 	sge = &recv->r_sge[1];
343 	sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
344 	sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
345 
346 	ret = 0;
347 out:
348 	return ret;
349 }
350 
351 static int acquire_refill(struct rds_connection *conn)
352 {
353 	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
354 }
355 
356 static void release_refill(struct rds_connection *conn)
357 {
358 	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
359 
360 	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
361 	 * hot path and finding waiters is very rare.  We don't want to walk
362 	 * the system-wide hashed waitqueue buckets in the fast path only to
363 	 * almost never find waiters.
364 	 */
365 	if (waitqueue_active(&conn->c_waitq))
366 		wake_up_all(&conn->c_waitq);
367 }
368 
369 /*
370  * This tries to allocate and post unused work requests after making sure that
371  * they have all the allocations they need to queue received fragments into
372  * sockets.
373  *
374  * -1 is returned if posting fails due to temporary resource exhaustion.
375  */
376 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
377 {
378 	struct rds_ib_connection *ic = conn->c_transport_data;
379 	struct rds_ib_recv_work *recv;
380 	struct ib_recv_wr *failed_wr;
381 	unsigned int posted = 0;
382 	int ret = 0;
383 	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
384 	u32 pos;
385 
386 	/* the goal here is to just make sure that someone, somewhere
387 	 * is posting buffers.  If we can't get the refill lock,
388 	 * let them do their thing
389 	 */
390 	if (!acquire_refill(conn))
391 		return;
392 
393 	while ((prefill || rds_conn_up(conn)) &&
394 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
395 		if (pos >= ic->i_recv_ring.w_nr) {
396 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
397 					pos);
398 			break;
399 		}
400 
401 		recv = &ic->i_recvs[pos];
402 		ret = rds_ib_recv_refill_one(conn, recv, gfp);
403 		if (ret) {
404 			break;
405 		}
406 
407 		/* XXX when can this fail? */
408 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
409 		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
410 			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
411 			 (long) ib_sg_dma_address(
412 				ic->i_cm_id->device,
413 				&recv->r_frag->f_sg),
414 			ret);
415 		if (ret) {
416 			rds_ib_conn_error(conn, "recv post on "
417 			       "%pI4 returned %d, disconnecting and "
418 			       "reconnecting\n", &conn->c_faddr,
419 			       ret);
420 			break;
421 		}
422 
423 		posted++;
424 	}
425 
426 	/* We're doing flow control - update the window. */
427 	if (ic->i_flowctl && posted)
428 		rds_ib_advertise_credits(conn, posted);
429 
430 	if (ret)
431 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
432 
433 	release_refill(conn);
434 
435 	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
436 	 * in this case the ring being low is going to lead to more interrupts
437 	 * and we can safely let the softirq code take care of it unless the
438 	 * ring is completely empty.
439 	 *
440 	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
441 	 * we might have raced with the softirq code while we had the refill
442 	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
443 	 * if we should requeue.
444 	 */
445 	if (rds_conn_up(conn) &&
446 	    ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
447 	    rds_ib_ring_empty(&ic->i_recv_ring))) {
448 		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
449 	}
450 }
451 
452 /*
453  * We want to recycle several types of recv allocations, like incs and frags.
454  * To use this, the *_free() function passes in the ptr to a list_head within
455  * the recyclee, as well as the cache to put it on.
456  *
457  * First, we put the memory on a percpu list. When this reaches a certain size,
458  * We move it to an intermediate non-percpu list in a lockless manner, with some
459  * xchg/compxchg wizardry.
460  *
461  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
462  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
463  * list_empty() will return true with one element is actually present.
464  */
465 static void rds_ib_recv_cache_put(struct list_head *new_item,
466 				 struct rds_ib_refill_cache *cache)
467 {
468 	unsigned long flags;
469 	struct list_head *old, *chpfirst;
470 
471 	local_irq_save(flags);
472 
473 	chpfirst = __this_cpu_read(cache->percpu->first);
474 	if (!chpfirst)
475 		INIT_LIST_HEAD(new_item);
476 	else /* put on front */
477 		list_add_tail(new_item, chpfirst);
478 
479 	__this_cpu_write(cache->percpu->first, new_item);
480 	__this_cpu_inc(cache->percpu->count);
481 
482 	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
483 		goto end;
484 
485 	/*
486 	 * Return our per-cpu first list to the cache's xfer by atomically
487 	 * grabbing the current xfer list, appending it to our per-cpu list,
488 	 * and then atomically returning that entire list back to the
489 	 * cache's xfer list as long as it's still empty.
490 	 */
491 	do {
492 		old = xchg(&cache->xfer, NULL);
493 		if (old)
494 			list_splice_entire_tail(old, chpfirst);
495 		old = cmpxchg(&cache->xfer, NULL, chpfirst);
496 	} while (old);
497 
498 
499 	__this_cpu_write(cache->percpu->first, NULL);
500 	__this_cpu_write(cache->percpu->count, 0);
501 end:
502 	local_irq_restore(flags);
503 }
504 
505 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
506 {
507 	struct list_head *head = cache->ready;
508 
509 	if (head) {
510 		if (!list_empty(head)) {
511 			cache->ready = head->next;
512 			list_del_init(head);
513 		} else
514 			cache->ready = NULL;
515 	}
516 
517 	return head;
518 }
519 
520 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
521 {
522 	struct rds_ib_incoming *ibinc;
523 	struct rds_page_frag *frag;
524 	unsigned long to_copy;
525 	unsigned long frag_off = 0;
526 	int copied = 0;
527 	int ret;
528 	u32 len;
529 
530 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
531 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
532 	len = be32_to_cpu(inc->i_hdr.h_len);
533 
534 	while (iov_iter_count(to) && copied < len) {
535 		if (frag_off == RDS_FRAG_SIZE) {
536 			frag = list_entry(frag->f_item.next,
537 					  struct rds_page_frag, f_item);
538 			frag_off = 0;
539 		}
540 		to_copy = min_t(unsigned long, iov_iter_count(to),
541 				RDS_FRAG_SIZE - frag_off);
542 		to_copy = min_t(unsigned long, to_copy, len - copied);
543 
544 		/* XXX needs + offset for multiple recvs per page */
545 		rds_stats_add(s_copy_to_user, to_copy);
546 		ret = copy_page_to_iter(sg_page(&frag->f_sg),
547 					frag->f_sg.offset + frag_off,
548 					to_copy,
549 					to);
550 		if (ret != to_copy)
551 			return -EFAULT;
552 
553 		frag_off += to_copy;
554 		copied += to_copy;
555 	}
556 
557 	return copied;
558 }
559 
560 /* ic starts out kzalloc()ed */
561 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
562 {
563 	struct ib_send_wr *wr = &ic->i_ack_wr;
564 	struct ib_sge *sge = &ic->i_ack_sge;
565 
566 	sge->addr = ic->i_ack_dma;
567 	sge->length = sizeof(struct rds_header);
568 	sge->lkey = ic->i_pd->local_dma_lkey;
569 
570 	wr->sg_list = sge;
571 	wr->num_sge = 1;
572 	wr->opcode = IB_WR_SEND;
573 	wr->wr_id = RDS_IB_ACK_WR_ID;
574 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
575 }
576 
577 /*
578  * You'd think that with reliable IB connections you wouldn't need to ack
579  * messages that have been received.  The problem is that IB hardware generates
580  * an ack message before it has DMAed the message into memory.  This creates a
581  * potential message loss if the HCA is disabled for any reason between when it
582  * sends the ack and before the message is DMAed and processed.  This is only a
583  * potential issue if another HCA is available for fail-over.
584  *
585  * When the remote host receives our ack they'll free the sent message from
586  * their send queue.  To decrease the latency of this we always send an ack
587  * immediately after we've received messages.
588  *
589  * For simplicity, we only have one ack in flight at a time.  This puts
590  * pressure on senders to have deep enough send queues to absorb the latency of
591  * a single ack frame being in flight.  This might not be good enough.
592  *
593  * This is implemented by have a long-lived send_wr and sge which point to a
594  * statically allocated ack frame.  This ack wr does not fall under the ring
595  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
596  * room for it beyond the ring size.  Send completion notices its special
597  * wr_id and avoids working with the ring in that case.
598  */
599 #ifndef KERNEL_HAS_ATOMIC64
600 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
601 {
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&ic->i_ack_lock, flags);
605 	ic->i_ack_next = seq;
606 	if (ack_required)
607 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
608 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
609 }
610 
611 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
612 {
613 	unsigned long flags;
614 	u64 seq;
615 
616 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
617 
618 	spin_lock_irqsave(&ic->i_ack_lock, flags);
619 	seq = ic->i_ack_next;
620 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
621 
622 	return seq;
623 }
624 #else
625 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
626 {
627 	atomic64_set(&ic->i_ack_next, seq);
628 	if (ack_required) {
629 		smp_mb__before_atomic();
630 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
631 	}
632 }
633 
634 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
635 {
636 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
637 	smp_mb__after_atomic();
638 
639 	return atomic64_read(&ic->i_ack_next);
640 }
641 #endif
642 
643 
644 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
645 {
646 	struct rds_header *hdr = ic->i_ack;
647 	struct ib_send_wr *failed_wr;
648 	u64 seq;
649 	int ret;
650 
651 	seq = rds_ib_get_ack(ic);
652 
653 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
654 	rds_message_populate_header(hdr, 0, 0, 0);
655 	hdr->h_ack = cpu_to_be64(seq);
656 	hdr->h_credit = adv_credits;
657 	rds_message_make_checksum(hdr);
658 	ic->i_ack_queued = jiffies;
659 
660 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
661 	if (unlikely(ret)) {
662 		/* Failed to send. Release the WR, and
663 		 * force another ACK.
664 		 */
665 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
666 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
667 
668 		rds_ib_stats_inc(s_ib_ack_send_failure);
669 
670 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
671 	} else
672 		rds_ib_stats_inc(s_ib_ack_sent);
673 }
674 
675 /*
676  * There are 3 ways of getting acknowledgements to the peer:
677  *  1.	We call rds_ib_attempt_ack from the recv completion handler
678  *	to send an ACK-only frame.
679  *	However, there can be only one such frame in the send queue
680  *	at any time, so we may have to postpone it.
681  *  2.	When another (data) packet is transmitted while there's
682  *	an ACK in the queue, we piggyback the ACK sequence number
683  *	on the data packet.
684  *  3.	If the ACK WR is done sending, we get called from the
685  *	send queue completion handler, and check whether there's
686  *	another ACK pending (postponed because the WR was on the
687  *	queue). If so, we transmit it.
688  *
689  * We maintain 2 variables:
690  *  -	i_ack_flags, which keeps track of whether the ACK WR
691  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
692  *  -	i_ack_next, which is the last sequence number we received
693  *
694  * Potentially, send queue and receive queue handlers can run concurrently.
695  * It would be nice to not have to use a spinlock to synchronize things,
696  * but the one problem that rules this out is that 64bit updates are
697  * not atomic on all platforms. Things would be a lot simpler if
698  * we had atomic64 or maybe cmpxchg64 everywhere.
699  *
700  * Reconnecting complicates this picture just slightly. When we
701  * reconnect, we may be seeing duplicate packets. The peer
702  * is retransmitting them, because it hasn't seen an ACK for
703  * them. It is important that we ACK these.
704  *
705  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
706  * this flag set *MUST* be acknowledged immediately.
707  */
708 
709 /*
710  * When we get here, we're called from the recv queue handler.
711  * Check whether we ought to transmit an ACK.
712  */
713 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
714 {
715 	unsigned int adv_credits;
716 
717 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
718 		return;
719 
720 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
721 		rds_ib_stats_inc(s_ib_ack_send_delayed);
722 		return;
723 	}
724 
725 	/* Can we get a send credit? */
726 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
727 		rds_ib_stats_inc(s_ib_tx_throttle);
728 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
729 		return;
730 	}
731 
732 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
733 	rds_ib_send_ack(ic, adv_credits);
734 }
735 
736 /*
737  * We get here from the send completion handler, when the
738  * adapter tells us the ACK frame was sent.
739  */
740 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
741 {
742 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
743 	rds_ib_attempt_ack(ic);
744 }
745 
746 /*
747  * This is called by the regular xmit code when it wants to piggyback
748  * an ACK on an outgoing frame.
749  */
750 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
751 {
752 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
753 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
754 	return rds_ib_get_ack(ic);
755 }
756 
757 /*
758  * It's kind of lame that we're copying from the posted receive pages into
759  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
760  * them.  But receiving new congestion bitmaps should be a *rare* event, so
761  * hopefully we won't need to invest that complexity in making it more
762  * efficient.  By copying we can share a simpler core with TCP which has to
763  * copy.
764  */
765 static void rds_ib_cong_recv(struct rds_connection *conn,
766 			      struct rds_ib_incoming *ibinc)
767 {
768 	struct rds_cong_map *map;
769 	unsigned int map_off;
770 	unsigned int map_page;
771 	struct rds_page_frag *frag;
772 	unsigned long frag_off;
773 	unsigned long to_copy;
774 	unsigned long copied;
775 	uint64_t uncongested = 0;
776 	void *addr;
777 
778 	/* catch completely corrupt packets */
779 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
780 		return;
781 
782 	map = conn->c_fcong;
783 	map_page = 0;
784 	map_off = 0;
785 
786 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
787 	frag_off = 0;
788 
789 	copied = 0;
790 
791 	while (copied < RDS_CONG_MAP_BYTES) {
792 		uint64_t *src, *dst;
793 		unsigned int k;
794 
795 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
796 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
797 
798 		addr = kmap_atomic(sg_page(&frag->f_sg));
799 
800 		src = addr + frag->f_sg.offset + frag_off;
801 		dst = (void *)map->m_page_addrs[map_page] + map_off;
802 		for (k = 0; k < to_copy; k += 8) {
803 			/* Record ports that became uncongested, ie
804 			 * bits that changed from 0 to 1. */
805 			uncongested |= ~(*src) & *dst;
806 			*dst++ = *src++;
807 		}
808 		kunmap_atomic(addr);
809 
810 		copied += to_copy;
811 
812 		map_off += to_copy;
813 		if (map_off == PAGE_SIZE) {
814 			map_off = 0;
815 			map_page++;
816 		}
817 
818 		frag_off += to_copy;
819 		if (frag_off == RDS_FRAG_SIZE) {
820 			frag = list_entry(frag->f_item.next,
821 					  struct rds_page_frag, f_item);
822 			frag_off = 0;
823 		}
824 	}
825 
826 	/* the congestion map is in little endian order */
827 	uncongested = le64_to_cpu(uncongested);
828 
829 	rds_cong_map_updated(map, uncongested);
830 }
831 
832 static void rds_ib_process_recv(struct rds_connection *conn,
833 				struct rds_ib_recv_work *recv, u32 data_len,
834 				struct rds_ib_ack_state *state)
835 {
836 	struct rds_ib_connection *ic = conn->c_transport_data;
837 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
838 	struct rds_header *ihdr, *hdr;
839 
840 	/* XXX shut down the connection if port 0,0 are seen? */
841 
842 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
843 		 data_len);
844 
845 	if (data_len < sizeof(struct rds_header)) {
846 		rds_ib_conn_error(conn, "incoming message "
847 		       "from %pI4 didn't include a "
848 		       "header, disconnecting and "
849 		       "reconnecting\n",
850 		       &conn->c_faddr);
851 		return;
852 	}
853 	data_len -= sizeof(struct rds_header);
854 
855 	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
856 
857 	/* Validate the checksum. */
858 	if (!rds_message_verify_checksum(ihdr)) {
859 		rds_ib_conn_error(conn, "incoming message "
860 		       "from %pI4 has corrupted header - "
861 		       "forcing a reconnect\n",
862 		       &conn->c_faddr);
863 		rds_stats_inc(s_recv_drop_bad_checksum);
864 		return;
865 	}
866 
867 	/* Process the ACK sequence which comes with every packet */
868 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
869 	state->ack_recv_valid = 1;
870 
871 	/* Process the credits update if there was one */
872 	if (ihdr->h_credit)
873 		rds_ib_send_add_credits(conn, ihdr->h_credit);
874 
875 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
876 		/* This is an ACK-only packet. The fact that it gets
877 		 * special treatment here is that historically, ACKs
878 		 * were rather special beasts.
879 		 */
880 		rds_ib_stats_inc(s_ib_ack_received);
881 
882 		/*
883 		 * Usually the frags make their way on to incs and are then freed as
884 		 * the inc is freed.  We don't go that route, so we have to drop the
885 		 * page ref ourselves.  We can't just leave the page on the recv
886 		 * because that confuses the dma mapping of pages and each recv's use
887 		 * of a partial page.
888 		 *
889 		 * FIXME: Fold this into the code path below.
890 		 */
891 		rds_ib_frag_free(ic, recv->r_frag);
892 		recv->r_frag = NULL;
893 		return;
894 	}
895 
896 	/*
897 	 * If we don't already have an inc on the connection then this
898 	 * fragment has a header and starts a message.. copy its header
899 	 * into the inc and save the inc so we can hang upcoming fragments
900 	 * off its list.
901 	 */
902 	if (!ibinc) {
903 		ibinc = recv->r_ibinc;
904 		recv->r_ibinc = NULL;
905 		ic->i_ibinc = ibinc;
906 
907 		hdr = &ibinc->ii_inc.i_hdr;
908 		memcpy(hdr, ihdr, sizeof(*hdr));
909 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
910 
911 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
912 			 ic->i_recv_data_rem, hdr->h_flags);
913 	} else {
914 		hdr = &ibinc->ii_inc.i_hdr;
915 		/* We can't just use memcmp here; fragments of a
916 		 * single message may carry different ACKs */
917 		if (hdr->h_sequence != ihdr->h_sequence ||
918 		    hdr->h_len != ihdr->h_len ||
919 		    hdr->h_sport != ihdr->h_sport ||
920 		    hdr->h_dport != ihdr->h_dport) {
921 			rds_ib_conn_error(conn,
922 				"fragment header mismatch; forcing reconnect\n");
923 			return;
924 		}
925 	}
926 
927 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
928 	recv->r_frag = NULL;
929 
930 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
931 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
932 	else {
933 		ic->i_recv_data_rem = 0;
934 		ic->i_ibinc = NULL;
935 
936 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
937 			rds_ib_cong_recv(conn, ibinc);
938 		else {
939 			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
940 					  &ibinc->ii_inc, GFP_ATOMIC);
941 			state->ack_next = be64_to_cpu(hdr->h_sequence);
942 			state->ack_next_valid = 1;
943 		}
944 
945 		/* Evaluate the ACK_REQUIRED flag *after* we received
946 		 * the complete frame, and after bumping the next_rx
947 		 * sequence. */
948 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
949 			rds_stats_inc(s_recv_ack_required);
950 			state->ack_required = 1;
951 		}
952 
953 		rds_inc_put(&ibinc->ii_inc);
954 	}
955 }
956 
957 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
958 			     struct ib_wc *wc,
959 			     struct rds_ib_ack_state *state)
960 {
961 	struct rds_connection *conn = ic->conn;
962 	struct rds_ib_recv_work *recv;
963 
964 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
965 		 (unsigned long long)wc->wr_id, wc->status,
966 		 ib_wc_status_msg(wc->status), wc->byte_len,
967 		 be32_to_cpu(wc->ex.imm_data));
968 
969 	rds_ib_stats_inc(s_ib_rx_cq_event);
970 	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
971 	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
972 			DMA_FROM_DEVICE);
973 
974 	/* Also process recvs in connecting state because it is possible
975 	 * to get a recv completion _before_ the rdmacm ESTABLISHED
976 	 * event is processed.
977 	 */
978 	if (wc->status == IB_WC_SUCCESS) {
979 		rds_ib_process_recv(conn, recv, wc->byte_len, state);
980 	} else {
981 		/* We expect errors as the qp is drained during shutdown */
982 		if (rds_conn_up(conn) || rds_conn_connecting(conn))
983 			rds_ib_conn_error(conn, "recv completion on %pI4 had status %u (%s), disconnecting and reconnecting\n",
984 					  &conn->c_faddr,
985 					  wc->status,
986 					  ib_wc_status_msg(wc->status));
987 	}
988 
989 	/* rds_ib_process_recv() doesn't always consume the frag, and
990 	 * we might not have called it at all if the wc didn't indicate
991 	 * success. We already unmapped the frag's pages, though, and
992 	 * the following rds_ib_ring_free() call tells the refill path
993 	 * that it will not find an allocated frag here. Make sure we
994 	 * keep that promise by freeing a frag that's still on the ring.
995 	 */
996 	if (recv->r_frag) {
997 		rds_ib_frag_free(ic, recv->r_frag);
998 		recv->r_frag = NULL;
999 	}
1000 	rds_ib_ring_free(&ic->i_recv_ring, 1);
1001 
1002 	/* If we ever end up with a really empty receive ring, we're
1003 	 * in deep trouble, as the sender will definitely see RNR
1004 	 * timeouts. */
1005 	if (rds_ib_ring_empty(&ic->i_recv_ring))
1006 		rds_ib_stats_inc(s_ib_rx_ring_empty);
1007 
1008 	if (rds_ib_ring_low(&ic->i_recv_ring))
1009 		rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
1010 }
1011 
1012 int rds_ib_recv_path(struct rds_conn_path *cp)
1013 {
1014 	struct rds_connection *conn = cp->cp_conn;
1015 	struct rds_ib_connection *ic = conn->c_transport_data;
1016 	int ret = 0;
1017 
1018 	rdsdebug("conn %p\n", conn);
1019 	if (rds_conn_up(conn)) {
1020 		rds_ib_attempt_ack(ic);
1021 		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1022 	}
1023 
1024 	return ret;
1025 }
1026 
1027 int rds_ib_recv_init(void)
1028 {
1029 	struct sysinfo si;
1030 	int ret = -ENOMEM;
1031 
1032 	/* Default to 30% of all available RAM for recv memory */
1033 	si_meminfo(&si);
1034 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1035 
1036 	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1037 					sizeof(struct rds_ib_incoming),
1038 					0, SLAB_HWCACHE_ALIGN, NULL);
1039 	if (!rds_ib_incoming_slab)
1040 		goto out;
1041 
1042 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1043 					sizeof(struct rds_page_frag),
1044 					0, SLAB_HWCACHE_ALIGN, NULL);
1045 	if (!rds_ib_frag_slab) {
1046 		kmem_cache_destroy(rds_ib_incoming_slab);
1047 		rds_ib_incoming_slab = NULL;
1048 	} else
1049 		ret = 0;
1050 out:
1051 	return ret;
1052 }
1053 
1054 void rds_ib_recv_exit(void)
1055 {
1056 	kmem_cache_destroy(rds_ib_incoming_slab);
1057 	kmem_cache_destroy(rds_ib_frag_slab);
1058 }
1059