xref: /openbmc/linux/net/rds/ib_recv.c (revision b85d4594)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds.h"
40 #include "ib.h"
41 
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
45 
46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
47 {
48 	struct rds_ib_recv_work *recv;
49 	u32 i;
50 
51 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
52 		struct ib_sge *sge;
53 
54 		recv->r_ibinc = NULL;
55 		recv->r_frag = NULL;
56 
57 		recv->r_wr.next = NULL;
58 		recv->r_wr.wr_id = i;
59 		recv->r_wr.sg_list = recv->r_sge;
60 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
61 
62 		sge = &recv->r_sge[0];
63 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
64 		sge->length = sizeof(struct rds_header);
65 		sge->lkey = ic->i_pd->local_dma_lkey;
66 
67 		sge = &recv->r_sge[1];
68 		sge->addr = 0;
69 		sge->length = RDS_FRAG_SIZE;
70 		sge->lkey = ic->i_pd->local_dma_lkey;
71 	}
72 }
73 
74 /*
75  * The entire 'from' list, including the from element itself, is put on
76  * to the tail of the 'to' list.
77  */
78 static void list_splice_entire_tail(struct list_head *from,
79 				    struct list_head *to)
80 {
81 	struct list_head *from_last = from->prev;
82 
83 	list_splice_tail(from_last, to);
84 	list_add_tail(from_last, to);
85 }
86 
87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
88 {
89 	struct list_head *tmp;
90 
91 	tmp = xchg(&cache->xfer, NULL);
92 	if (tmp) {
93 		if (cache->ready)
94 			list_splice_entire_tail(tmp, cache->ready);
95 		else
96 			cache->ready = tmp;
97 	}
98 }
99 
100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
101 {
102 	struct rds_ib_cache_head *head;
103 	int cpu;
104 
105 	cache->percpu = alloc_percpu(struct rds_ib_cache_head);
106 	if (!cache->percpu)
107 	       return -ENOMEM;
108 
109 	for_each_possible_cpu(cpu) {
110 		head = per_cpu_ptr(cache->percpu, cpu);
111 		head->first = NULL;
112 		head->count = 0;
113 	}
114 	cache->xfer = NULL;
115 	cache->ready = NULL;
116 
117 	return 0;
118 }
119 
120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
121 {
122 	int ret;
123 
124 	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
125 	if (!ret) {
126 		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
127 		if (ret)
128 			free_percpu(ic->i_cache_incs.percpu);
129 	}
130 
131 	return ret;
132 }
133 
134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
135 					  struct list_head *caller_list)
136 {
137 	struct rds_ib_cache_head *head;
138 	int cpu;
139 
140 	for_each_possible_cpu(cpu) {
141 		head = per_cpu_ptr(cache->percpu, cpu);
142 		if (head->first) {
143 			list_splice_entire_tail(head->first, caller_list);
144 			head->first = NULL;
145 		}
146 	}
147 
148 	if (cache->ready) {
149 		list_splice_entire_tail(cache->ready, caller_list);
150 		cache->ready = NULL;
151 	}
152 }
153 
154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
155 {
156 	struct rds_ib_incoming *inc;
157 	struct rds_ib_incoming *inc_tmp;
158 	struct rds_page_frag *frag;
159 	struct rds_page_frag *frag_tmp;
160 	LIST_HEAD(list);
161 
162 	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
163 	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
164 	free_percpu(ic->i_cache_incs.percpu);
165 
166 	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
167 		list_del(&inc->ii_cache_entry);
168 		WARN_ON(!list_empty(&inc->ii_frags));
169 		kmem_cache_free(rds_ib_incoming_slab, inc);
170 	}
171 
172 	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
173 	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
174 	free_percpu(ic->i_cache_frags.percpu);
175 
176 	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
177 		list_del(&frag->f_cache_entry);
178 		WARN_ON(!list_empty(&frag->f_item));
179 		kmem_cache_free(rds_ib_frag_slab, frag);
180 	}
181 }
182 
183 /* fwd decl */
184 static void rds_ib_recv_cache_put(struct list_head *new_item,
185 				  struct rds_ib_refill_cache *cache);
186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
187 
188 
189 /* Recycle frag and attached recv buffer f_sg */
190 static void rds_ib_frag_free(struct rds_ib_connection *ic,
191 			     struct rds_page_frag *frag)
192 {
193 	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
194 
195 	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
196 }
197 
198 /* Recycle inc after freeing attached frags */
199 void rds_ib_inc_free(struct rds_incoming *inc)
200 {
201 	struct rds_ib_incoming *ibinc;
202 	struct rds_page_frag *frag;
203 	struct rds_page_frag *pos;
204 	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
205 
206 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
207 
208 	/* Free attached frags */
209 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
210 		list_del_init(&frag->f_item);
211 		rds_ib_frag_free(ic, frag);
212 	}
213 	BUG_ON(!list_empty(&ibinc->ii_frags));
214 
215 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
216 	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
217 }
218 
219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
220 				  struct rds_ib_recv_work *recv)
221 {
222 	if (recv->r_ibinc) {
223 		rds_inc_put(&recv->r_ibinc->ii_inc);
224 		recv->r_ibinc = NULL;
225 	}
226 	if (recv->r_frag) {
227 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
228 		rds_ib_frag_free(ic, recv->r_frag);
229 		recv->r_frag = NULL;
230 	}
231 }
232 
233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
234 {
235 	u32 i;
236 
237 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
238 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
239 }
240 
241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
242 						     gfp_t slab_mask)
243 {
244 	struct rds_ib_incoming *ibinc;
245 	struct list_head *cache_item;
246 	int avail_allocs;
247 
248 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
249 	if (cache_item) {
250 		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
251 	} else {
252 		avail_allocs = atomic_add_unless(&rds_ib_allocation,
253 						 1, rds_ib_sysctl_max_recv_allocation);
254 		if (!avail_allocs) {
255 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
256 			return NULL;
257 		}
258 		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
259 		if (!ibinc) {
260 			atomic_dec(&rds_ib_allocation);
261 			return NULL;
262 		}
263 	}
264 	INIT_LIST_HEAD(&ibinc->ii_frags);
265 	rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
266 
267 	return ibinc;
268 }
269 
270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
271 						    gfp_t slab_mask, gfp_t page_mask)
272 {
273 	struct rds_page_frag *frag;
274 	struct list_head *cache_item;
275 	int ret;
276 
277 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
278 	if (cache_item) {
279 		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
280 	} else {
281 		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
282 		if (!frag)
283 			return NULL;
284 
285 		sg_init_table(&frag->f_sg, 1);
286 		ret = rds_page_remainder_alloc(&frag->f_sg,
287 					       RDS_FRAG_SIZE, page_mask);
288 		if (ret) {
289 			kmem_cache_free(rds_ib_frag_slab, frag);
290 			return NULL;
291 		}
292 	}
293 
294 	INIT_LIST_HEAD(&frag->f_item);
295 
296 	return frag;
297 }
298 
299 static int rds_ib_recv_refill_one(struct rds_connection *conn,
300 				  struct rds_ib_recv_work *recv, gfp_t gfp)
301 {
302 	struct rds_ib_connection *ic = conn->c_transport_data;
303 	struct ib_sge *sge;
304 	int ret = -ENOMEM;
305 	gfp_t slab_mask = GFP_NOWAIT;
306 	gfp_t page_mask = GFP_NOWAIT;
307 
308 	if (gfp & __GFP_WAIT) {
309 		slab_mask = GFP_KERNEL;
310 		page_mask = GFP_HIGHUSER;
311 	}
312 
313 	if (!ic->i_cache_incs.ready)
314 		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
315 	if (!ic->i_cache_frags.ready)
316 		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
317 
318 	/*
319 	 * ibinc was taken from recv if recv contained the start of a message.
320 	 * recvs that were continuations will still have this allocated.
321 	 */
322 	if (!recv->r_ibinc) {
323 		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
324 		if (!recv->r_ibinc)
325 			goto out;
326 	}
327 
328 	WARN_ON(recv->r_frag); /* leak! */
329 	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
330 	if (!recv->r_frag)
331 		goto out;
332 
333 	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
334 			    1, DMA_FROM_DEVICE);
335 	WARN_ON(ret != 1);
336 
337 	sge = &recv->r_sge[0];
338 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
339 	sge->length = sizeof(struct rds_header);
340 
341 	sge = &recv->r_sge[1];
342 	sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
343 	sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
344 
345 	ret = 0;
346 out:
347 	return ret;
348 }
349 
350 static int acquire_refill(struct rds_connection *conn)
351 {
352 	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
353 }
354 
355 static void release_refill(struct rds_connection *conn)
356 {
357 	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
358 
359 	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
360 	 * hot path and finding waiters is very rare.  We don't want to walk
361 	 * the system-wide hashed waitqueue buckets in the fast path only to
362 	 * almost never find waiters.
363 	 */
364 	if (waitqueue_active(&conn->c_waitq))
365 		wake_up_all(&conn->c_waitq);
366 }
367 
368 /*
369  * This tries to allocate and post unused work requests after making sure that
370  * they have all the allocations they need to queue received fragments into
371  * sockets.
372  *
373  * -1 is returned if posting fails due to temporary resource exhaustion.
374  */
375 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
376 {
377 	struct rds_ib_connection *ic = conn->c_transport_data;
378 	struct rds_ib_recv_work *recv;
379 	struct ib_recv_wr *failed_wr;
380 	unsigned int posted = 0;
381 	int ret = 0;
382 	bool can_wait = !!(gfp & __GFP_WAIT);
383 	u32 pos;
384 
385 	/* the goal here is to just make sure that someone, somewhere
386 	 * is posting buffers.  If we can't get the refill lock,
387 	 * let them do their thing
388 	 */
389 	if (!acquire_refill(conn))
390 		return;
391 
392 	while ((prefill || rds_conn_up(conn)) &&
393 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
394 		if (pos >= ic->i_recv_ring.w_nr) {
395 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
396 					pos);
397 			break;
398 		}
399 
400 		recv = &ic->i_recvs[pos];
401 		ret = rds_ib_recv_refill_one(conn, recv, gfp);
402 		if (ret) {
403 			break;
404 		}
405 
406 		/* XXX when can this fail? */
407 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
408 		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
409 			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
410 			 (long) ib_sg_dma_address(
411 				ic->i_cm_id->device,
412 				&recv->r_frag->f_sg),
413 			ret);
414 		if (ret) {
415 			rds_ib_conn_error(conn, "recv post on "
416 			       "%pI4 returned %d, disconnecting and "
417 			       "reconnecting\n", &conn->c_faddr,
418 			       ret);
419 			break;
420 		}
421 
422 		posted++;
423 	}
424 
425 	/* We're doing flow control - update the window. */
426 	if (ic->i_flowctl && posted)
427 		rds_ib_advertise_credits(conn, posted);
428 
429 	if (ret)
430 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
431 
432 	release_refill(conn);
433 
434 	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
435 	 * in this case the ring being low is going to lead to more interrupts
436 	 * and we can safely let the softirq code take care of it unless the
437 	 * ring is completely empty.
438 	 *
439 	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
440 	 * we might have raced with the softirq code while we had the refill
441 	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
442 	 * if we should requeue.
443 	 */
444 	if (rds_conn_up(conn) &&
445 	    ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
446 	    rds_ib_ring_empty(&ic->i_recv_ring))) {
447 		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
448 	}
449 }
450 
451 /*
452  * We want to recycle several types of recv allocations, like incs and frags.
453  * To use this, the *_free() function passes in the ptr to a list_head within
454  * the recyclee, as well as the cache to put it on.
455  *
456  * First, we put the memory on a percpu list. When this reaches a certain size,
457  * We move it to an intermediate non-percpu list in a lockless manner, with some
458  * xchg/compxchg wizardry.
459  *
460  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
461  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
462  * list_empty() will return true with one element is actually present.
463  */
464 static void rds_ib_recv_cache_put(struct list_head *new_item,
465 				 struct rds_ib_refill_cache *cache)
466 {
467 	unsigned long flags;
468 	struct list_head *old, *chpfirst;
469 
470 	local_irq_save(flags);
471 
472 	chpfirst = __this_cpu_read(cache->percpu->first);
473 	if (!chpfirst)
474 		INIT_LIST_HEAD(new_item);
475 	else /* put on front */
476 		list_add_tail(new_item, chpfirst);
477 
478 	__this_cpu_write(cache->percpu->first, new_item);
479 	__this_cpu_inc(cache->percpu->count);
480 
481 	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
482 		goto end;
483 
484 	/*
485 	 * Return our per-cpu first list to the cache's xfer by atomically
486 	 * grabbing the current xfer list, appending it to our per-cpu list,
487 	 * and then atomically returning that entire list back to the
488 	 * cache's xfer list as long as it's still empty.
489 	 */
490 	do {
491 		old = xchg(&cache->xfer, NULL);
492 		if (old)
493 			list_splice_entire_tail(old, chpfirst);
494 		old = cmpxchg(&cache->xfer, NULL, chpfirst);
495 	} while (old);
496 
497 
498 	__this_cpu_write(cache->percpu->first, NULL);
499 	__this_cpu_write(cache->percpu->count, 0);
500 end:
501 	local_irq_restore(flags);
502 }
503 
504 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
505 {
506 	struct list_head *head = cache->ready;
507 
508 	if (head) {
509 		if (!list_empty(head)) {
510 			cache->ready = head->next;
511 			list_del_init(head);
512 		} else
513 			cache->ready = NULL;
514 	}
515 
516 	return head;
517 }
518 
519 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
520 {
521 	struct rds_ib_incoming *ibinc;
522 	struct rds_page_frag *frag;
523 	unsigned long to_copy;
524 	unsigned long frag_off = 0;
525 	int copied = 0;
526 	int ret;
527 	u32 len;
528 
529 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
530 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
531 	len = be32_to_cpu(inc->i_hdr.h_len);
532 
533 	while (iov_iter_count(to) && copied < len) {
534 		if (frag_off == RDS_FRAG_SIZE) {
535 			frag = list_entry(frag->f_item.next,
536 					  struct rds_page_frag, f_item);
537 			frag_off = 0;
538 		}
539 		to_copy = min_t(unsigned long, iov_iter_count(to),
540 				RDS_FRAG_SIZE - frag_off);
541 		to_copy = min_t(unsigned long, to_copy, len - copied);
542 
543 		/* XXX needs + offset for multiple recvs per page */
544 		rds_stats_add(s_copy_to_user, to_copy);
545 		ret = copy_page_to_iter(sg_page(&frag->f_sg),
546 					frag->f_sg.offset + frag_off,
547 					to_copy,
548 					to);
549 		if (ret != to_copy)
550 			return -EFAULT;
551 
552 		frag_off += to_copy;
553 		copied += to_copy;
554 	}
555 
556 	return copied;
557 }
558 
559 /* ic starts out kzalloc()ed */
560 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
561 {
562 	struct ib_send_wr *wr = &ic->i_ack_wr;
563 	struct ib_sge *sge = &ic->i_ack_sge;
564 
565 	sge->addr = ic->i_ack_dma;
566 	sge->length = sizeof(struct rds_header);
567 	sge->lkey = ic->i_pd->local_dma_lkey;
568 
569 	wr->sg_list = sge;
570 	wr->num_sge = 1;
571 	wr->opcode = IB_WR_SEND;
572 	wr->wr_id = RDS_IB_ACK_WR_ID;
573 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
574 }
575 
576 /*
577  * You'd think that with reliable IB connections you wouldn't need to ack
578  * messages that have been received.  The problem is that IB hardware generates
579  * an ack message before it has DMAed the message into memory.  This creates a
580  * potential message loss if the HCA is disabled for any reason between when it
581  * sends the ack and before the message is DMAed and processed.  This is only a
582  * potential issue if another HCA is available for fail-over.
583  *
584  * When the remote host receives our ack they'll free the sent message from
585  * their send queue.  To decrease the latency of this we always send an ack
586  * immediately after we've received messages.
587  *
588  * For simplicity, we only have one ack in flight at a time.  This puts
589  * pressure on senders to have deep enough send queues to absorb the latency of
590  * a single ack frame being in flight.  This might not be good enough.
591  *
592  * This is implemented by have a long-lived send_wr and sge which point to a
593  * statically allocated ack frame.  This ack wr does not fall under the ring
594  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
595  * room for it beyond the ring size.  Send completion notices its special
596  * wr_id and avoids working with the ring in that case.
597  */
598 #ifndef KERNEL_HAS_ATOMIC64
599 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
600 				int ack_required)
601 {
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&ic->i_ack_lock, flags);
605 	ic->i_ack_next = seq;
606 	if (ack_required)
607 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
608 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
609 }
610 
611 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
612 {
613 	unsigned long flags;
614 	u64 seq;
615 
616 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
617 
618 	spin_lock_irqsave(&ic->i_ack_lock, flags);
619 	seq = ic->i_ack_next;
620 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
621 
622 	return seq;
623 }
624 #else
625 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
626 				int ack_required)
627 {
628 	atomic64_set(&ic->i_ack_next, seq);
629 	if (ack_required) {
630 		smp_mb__before_atomic();
631 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
632 	}
633 }
634 
635 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
636 {
637 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
638 	smp_mb__after_atomic();
639 
640 	return atomic64_read(&ic->i_ack_next);
641 }
642 #endif
643 
644 
645 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
646 {
647 	struct rds_header *hdr = ic->i_ack;
648 	struct ib_send_wr *failed_wr;
649 	u64 seq;
650 	int ret;
651 
652 	seq = rds_ib_get_ack(ic);
653 
654 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
655 	rds_message_populate_header(hdr, 0, 0, 0);
656 	hdr->h_ack = cpu_to_be64(seq);
657 	hdr->h_credit = adv_credits;
658 	rds_message_make_checksum(hdr);
659 	ic->i_ack_queued = jiffies;
660 
661 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
662 	if (unlikely(ret)) {
663 		/* Failed to send. Release the WR, and
664 		 * force another ACK.
665 		 */
666 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
667 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
668 
669 		rds_ib_stats_inc(s_ib_ack_send_failure);
670 
671 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
672 	} else
673 		rds_ib_stats_inc(s_ib_ack_sent);
674 }
675 
676 /*
677  * There are 3 ways of getting acknowledgements to the peer:
678  *  1.	We call rds_ib_attempt_ack from the recv completion handler
679  *	to send an ACK-only frame.
680  *	However, there can be only one such frame in the send queue
681  *	at any time, so we may have to postpone it.
682  *  2.	When another (data) packet is transmitted while there's
683  *	an ACK in the queue, we piggyback the ACK sequence number
684  *	on the data packet.
685  *  3.	If the ACK WR is done sending, we get called from the
686  *	send queue completion handler, and check whether there's
687  *	another ACK pending (postponed because the WR was on the
688  *	queue). If so, we transmit it.
689  *
690  * We maintain 2 variables:
691  *  -	i_ack_flags, which keeps track of whether the ACK WR
692  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
693  *  -	i_ack_next, which is the last sequence number we received
694  *
695  * Potentially, send queue and receive queue handlers can run concurrently.
696  * It would be nice to not have to use a spinlock to synchronize things,
697  * but the one problem that rules this out is that 64bit updates are
698  * not atomic on all platforms. Things would be a lot simpler if
699  * we had atomic64 or maybe cmpxchg64 everywhere.
700  *
701  * Reconnecting complicates this picture just slightly. When we
702  * reconnect, we may be seeing duplicate packets. The peer
703  * is retransmitting them, because it hasn't seen an ACK for
704  * them. It is important that we ACK these.
705  *
706  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
707  * this flag set *MUST* be acknowledged immediately.
708  */
709 
710 /*
711  * When we get here, we're called from the recv queue handler.
712  * Check whether we ought to transmit an ACK.
713  */
714 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
715 {
716 	unsigned int adv_credits;
717 
718 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
719 		return;
720 
721 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
722 		rds_ib_stats_inc(s_ib_ack_send_delayed);
723 		return;
724 	}
725 
726 	/* Can we get a send credit? */
727 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
728 		rds_ib_stats_inc(s_ib_tx_throttle);
729 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
730 		return;
731 	}
732 
733 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
734 	rds_ib_send_ack(ic, adv_credits);
735 }
736 
737 /*
738  * We get here from the send completion handler, when the
739  * adapter tells us the ACK frame was sent.
740  */
741 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
742 {
743 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
744 	rds_ib_attempt_ack(ic);
745 }
746 
747 /*
748  * This is called by the regular xmit code when it wants to piggyback
749  * an ACK on an outgoing frame.
750  */
751 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
752 {
753 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
754 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
755 	return rds_ib_get_ack(ic);
756 }
757 
758 /*
759  * It's kind of lame that we're copying from the posted receive pages into
760  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
761  * them.  But receiving new congestion bitmaps should be a *rare* event, so
762  * hopefully we won't need to invest that complexity in making it more
763  * efficient.  By copying we can share a simpler core with TCP which has to
764  * copy.
765  */
766 static void rds_ib_cong_recv(struct rds_connection *conn,
767 			      struct rds_ib_incoming *ibinc)
768 {
769 	struct rds_cong_map *map;
770 	unsigned int map_off;
771 	unsigned int map_page;
772 	struct rds_page_frag *frag;
773 	unsigned long frag_off;
774 	unsigned long to_copy;
775 	unsigned long copied;
776 	uint64_t uncongested = 0;
777 	void *addr;
778 
779 	/* catch completely corrupt packets */
780 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
781 		return;
782 
783 	map = conn->c_fcong;
784 	map_page = 0;
785 	map_off = 0;
786 
787 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
788 	frag_off = 0;
789 
790 	copied = 0;
791 
792 	while (copied < RDS_CONG_MAP_BYTES) {
793 		uint64_t *src, *dst;
794 		unsigned int k;
795 
796 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
797 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
798 
799 		addr = kmap_atomic(sg_page(&frag->f_sg));
800 
801 		src = addr + frag_off;
802 		dst = (void *)map->m_page_addrs[map_page] + map_off;
803 		for (k = 0; k < to_copy; k += 8) {
804 			/* Record ports that became uncongested, ie
805 			 * bits that changed from 0 to 1. */
806 			uncongested |= ~(*src) & *dst;
807 			*dst++ = *src++;
808 		}
809 		kunmap_atomic(addr);
810 
811 		copied += to_copy;
812 
813 		map_off += to_copy;
814 		if (map_off == PAGE_SIZE) {
815 			map_off = 0;
816 			map_page++;
817 		}
818 
819 		frag_off += to_copy;
820 		if (frag_off == RDS_FRAG_SIZE) {
821 			frag = list_entry(frag->f_item.next,
822 					  struct rds_page_frag, f_item);
823 			frag_off = 0;
824 		}
825 	}
826 
827 	/* the congestion map is in little endian order */
828 	uncongested = le64_to_cpu(uncongested);
829 
830 	rds_cong_map_updated(map, uncongested);
831 }
832 
833 /*
834  * Rings are posted with all the allocations they'll need to queue the
835  * incoming message to the receiving socket so this can't fail.
836  * All fragments start with a header, so we can make sure we're not receiving
837  * garbage, and we can tell a small 8 byte fragment from an ACK frame.
838  */
839 struct rds_ib_ack_state {
840 	u64		ack_next;
841 	u64		ack_recv;
842 	unsigned int	ack_required:1;
843 	unsigned int	ack_next_valid:1;
844 	unsigned int	ack_recv_valid:1;
845 };
846 
847 static void rds_ib_process_recv(struct rds_connection *conn,
848 				struct rds_ib_recv_work *recv, u32 data_len,
849 				struct rds_ib_ack_state *state)
850 {
851 	struct rds_ib_connection *ic = conn->c_transport_data;
852 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
853 	struct rds_header *ihdr, *hdr;
854 
855 	/* XXX shut down the connection if port 0,0 are seen? */
856 
857 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
858 		 data_len);
859 
860 	if (data_len < sizeof(struct rds_header)) {
861 		rds_ib_conn_error(conn, "incoming message "
862 		       "from %pI4 didn't include a "
863 		       "header, disconnecting and "
864 		       "reconnecting\n",
865 		       &conn->c_faddr);
866 		return;
867 	}
868 	data_len -= sizeof(struct rds_header);
869 
870 	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
871 
872 	/* Validate the checksum. */
873 	if (!rds_message_verify_checksum(ihdr)) {
874 		rds_ib_conn_error(conn, "incoming message "
875 		       "from %pI4 has corrupted header - "
876 		       "forcing a reconnect\n",
877 		       &conn->c_faddr);
878 		rds_stats_inc(s_recv_drop_bad_checksum);
879 		return;
880 	}
881 
882 	/* Process the ACK sequence which comes with every packet */
883 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
884 	state->ack_recv_valid = 1;
885 
886 	/* Process the credits update if there was one */
887 	if (ihdr->h_credit)
888 		rds_ib_send_add_credits(conn, ihdr->h_credit);
889 
890 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
891 		/* This is an ACK-only packet. The fact that it gets
892 		 * special treatment here is that historically, ACKs
893 		 * were rather special beasts.
894 		 */
895 		rds_ib_stats_inc(s_ib_ack_received);
896 
897 		/*
898 		 * Usually the frags make their way on to incs and are then freed as
899 		 * the inc is freed.  We don't go that route, so we have to drop the
900 		 * page ref ourselves.  We can't just leave the page on the recv
901 		 * because that confuses the dma mapping of pages and each recv's use
902 		 * of a partial page.
903 		 *
904 		 * FIXME: Fold this into the code path below.
905 		 */
906 		rds_ib_frag_free(ic, recv->r_frag);
907 		recv->r_frag = NULL;
908 		return;
909 	}
910 
911 	/*
912 	 * If we don't already have an inc on the connection then this
913 	 * fragment has a header and starts a message.. copy its header
914 	 * into the inc and save the inc so we can hang upcoming fragments
915 	 * off its list.
916 	 */
917 	if (!ibinc) {
918 		ibinc = recv->r_ibinc;
919 		recv->r_ibinc = NULL;
920 		ic->i_ibinc = ibinc;
921 
922 		hdr = &ibinc->ii_inc.i_hdr;
923 		memcpy(hdr, ihdr, sizeof(*hdr));
924 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
925 
926 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
927 			 ic->i_recv_data_rem, hdr->h_flags);
928 	} else {
929 		hdr = &ibinc->ii_inc.i_hdr;
930 		/* We can't just use memcmp here; fragments of a
931 		 * single message may carry different ACKs */
932 		if (hdr->h_sequence != ihdr->h_sequence ||
933 		    hdr->h_len != ihdr->h_len ||
934 		    hdr->h_sport != ihdr->h_sport ||
935 		    hdr->h_dport != ihdr->h_dport) {
936 			rds_ib_conn_error(conn,
937 				"fragment header mismatch; forcing reconnect\n");
938 			return;
939 		}
940 	}
941 
942 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
943 	recv->r_frag = NULL;
944 
945 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
946 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
947 	else {
948 		ic->i_recv_data_rem = 0;
949 		ic->i_ibinc = NULL;
950 
951 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
952 			rds_ib_cong_recv(conn, ibinc);
953 		else {
954 			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
955 					  &ibinc->ii_inc, GFP_ATOMIC);
956 			state->ack_next = be64_to_cpu(hdr->h_sequence);
957 			state->ack_next_valid = 1;
958 		}
959 
960 		/* Evaluate the ACK_REQUIRED flag *after* we received
961 		 * the complete frame, and after bumping the next_rx
962 		 * sequence. */
963 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
964 			rds_stats_inc(s_recv_ack_required);
965 			state->ack_required = 1;
966 		}
967 
968 		rds_inc_put(&ibinc->ii_inc);
969 	}
970 }
971 
972 /*
973  * Plucking the oldest entry from the ring can be done concurrently with
974  * the thread refilling the ring.  Each ring operation is protected by
975  * spinlocks and the transient state of refilling doesn't change the
976  * recording of which entry is oldest.
977  *
978  * This relies on IB only calling one cq comp_handler for each cq so that
979  * there will only be one caller of rds_recv_incoming() per RDS connection.
980  */
981 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
982 {
983 	struct rds_connection *conn = context;
984 	struct rds_ib_connection *ic = conn->c_transport_data;
985 
986 	rdsdebug("conn %p cq %p\n", conn, cq);
987 
988 	rds_ib_stats_inc(s_ib_rx_cq_call);
989 
990 	tasklet_schedule(&ic->i_recv_tasklet);
991 }
992 
993 static inline void rds_poll_cq(struct rds_ib_connection *ic,
994 			       struct rds_ib_ack_state *state)
995 {
996 	struct rds_connection *conn = ic->conn;
997 	struct ib_wc wc;
998 	struct rds_ib_recv_work *recv;
999 
1000 	while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
1001 		rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
1002 			 (unsigned long long)wc.wr_id, wc.status,
1003 			 ib_wc_status_msg(wc.status), wc.byte_len,
1004 			 be32_to_cpu(wc.ex.imm_data));
1005 		rds_ib_stats_inc(s_ib_rx_cq_event);
1006 
1007 		recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
1008 
1009 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
1010 
1011 		/*
1012 		 * Also process recvs in connecting state because it is possible
1013 		 * to get a recv completion _before_ the rdmacm ESTABLISHED
1014 		 * event is processed.
1015 		 */
1016 		if (wc.status == IB_WC_SUCCESS) {
1017 			rds_ib_process_recv(conn, recv, wc.byte_len, state);
1018 		} else {
1019 			/* We expect errors as the qp is drained during shutdown */
1020 			if (rds_conn_up(conn) || rds_conn_connecting(conn))
1021 				rds_ib_conn_error(conn, "recv completion on %pI4 had "
1022 						  "status %u (%s), disconnecting and "
1023 						  "reconnecting\n", &conn->c_faddr,
1024 						  wc.status,
1025 						  ib_wc_status_msg(wc.status));
1026 		}
1027 
1028 		/*
1029 		 * rds_ib_process_recv() doesn't always consume the frag, and
1030 		 * we might not have called it at all if the wc didn't indicate
1031 		 * success. We already unmapped the frag's pages, though, and
1032 		 * the following rds_ib_ring_free() call tells the refill path
1033 		 * that it will not find an allocated frag here. Make sure we
1034 		 * keep that promise by freeing a frag that's still on the ring.
1035 		 */
1036 		if (recv->r_frag) {
1037 			rds_ib_frag_free(ic, recv->r_frag);
1038 			recv->r_frag = NULL;
1039 		}
1040 		rds_ib_ring_free(&ic->i_recv_ring, 1);
1041 	}
1042 }
1043 
1044 void rds_ib_recv_tasklet_fn(unsigned long data)
1045 {
1046 	struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
1047 	struct rds_connection *conn = ic->conn;
1048 	struct rds_ib_ack_state state = { 0, };
1049 
1050 	rds_poll_cq(ic, &state);
1051 	ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
1052 	rds_poll_cq(ic, &state);
1053 
1054 	if (state.ack_next_valid)
1055 		rds_ib_set_ack(ic, state.ack_next, state.ack_required);
1056 	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
1057 		rds_send_drop_acked(conn, state.ack_recv, NULL);
1058 		ic->i_ack_recv = state.ack_recv;
1059 	}
1060 	if (rds_conn_up(conn))
1061 		rds_ib_attempt_ack(ic);
1062 
1063 	/* If we ever end up with a really empty receive ring, we're
1064 	 * in deep trouble, as the sender will definitely see RNR
1065 	 * timeouts. */
1066 	if (rds_ib_ring_empty(&ic->i_recv_ring))
1067 		rds_ib_stats_inc(s_ib_rx_ring_empty);
1068 
1069 	if (rds_ib_ring_low(&ic->i_recv_ring))
1070 		rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
1071 }
1072 
1073 int rds_ib_recv(struct rds_connection *conn)
1074 {
1075 	struct rds_ib_connection *ic = conn->c_transport_data;
1076 	int ret = 0;
1077 
1078 	rdsdebug("conn %p\n", conn);
1079 	if (rds_conn_up(conn)) {
1080 		rds_ib_attempt_ack(ic);
1081 		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1082 	}
1083 
1084 	return ret;
1085 }
1086 
1087 int rds_ib_recv_init(void)
1088 {
1089 	struct sysinfo si;
1090 	int ret = -ENOMEM;
1091 
1092 	/* Default to 30% of all available RAM for recv memory */
1093 	si_meminfo(&si);
1094 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1095 
1096 	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1097 					sizeof(struct rds_ib_incoming),
1098 					0, SLAB_HWCACHE_ALIGN, NULL);
1099 	if (!rds_ib_incoming_slab)
1100 		goto out;
1101 
1102 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1103 					sizeof(struct rds_page_frag),
1104 					0, SLAB_HWCACHE_ALIGN, NULL);
1105 	if (!rds_ib_frag_slab) {
1106 		kmem_cache_destroy(rds_ib_incoming_slab);
1107 		rds_ib_incoming_slab = NULL;
1108 	} else
1109 		ret = 0;
1110 out:
1111 	return ret;
1112 }
1113 
1114 void rds_ib_recv_exit(void)
1115 {
1116 	kmem_cache_destroy(rds_ib_incoming_slab);
1117 	kmem_cache_destroy(rds_ib_frag_slab);
1118 }
1119