1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <linux/pci.h> 36 #include <linux/dma-mapping.h> 37 #include <rdma/rdma_cm.h> 38 39 #include "rds.h" 40 #include "ib.h" 41 42 static struct kmem_cache *rds_ib_incoming_slab; 43 static struct kmem_cache *rds_ib_frag_slab; 44 static atomic_t rds_ib_allocation = ATOMIC_INIT(0); 45 46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic) 47 { 48 struct rds_ib_recv_work *recv; 49 u32 i; 50 51 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { 52 struct ib_sge *sge; 53 54 recv->r_ibinc = NULL; 55 recv->r_frag = NULL; 56 57 recv->r_wr.next = NULL; 58 recv->r_wr.wr_id = i; 59 recv->r_wr.sg_list = recv->r_sge; 60 recv->r_wr.num_sge = RDS_IB_RECV_SGE; 61 62 sge = &recv->r_sge[0]; 63 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); 64 sge->length = sizeof(struct rds_header); 65 sge->lkey = ic->i_pd->local_dma_lkey; 66 67 sge = &recv->r_sge[1]; 68 sge->addr = 0; 69 sge->length = RDS_FRAG_SIZE; 70 sge->lkey = ic->i_pd->local_dma_lkey; 71 } 72 } 73 74 /* 75 * The entire 'from' list, including the from element itself, is put on 76 * to the tail of the 'to' list. 77 */ 78 static void list_splice_entire_tail(struct list_head *from, 79 struct list_head *to) 80 { 81 struct list_head *from_last = from->prev; 82 83 list_splice_tail(from_last, to); 84 list_add_tail(from_last, to); 85 } 86 87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache) 88 { 89 struct list_head *tmp; 90 91 tmp = xchg(&cache->xfer, NULL); 92 if (tmp) { 93 if (cache->ready) 94 list_splice_entire_tail(tmp, cache->ready); 95 else 96 cache->ready = tmp; 97 } 98 } 99 100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache) 101 { 102 struct rds_ib_cache_head *head; 103 int cpu; 104 105 cache->percpu = alloc_percpu(struct rds_ib_cache_head); 106 if (!cache->percpu) 107 return -ENOMEM; 108 109 for_each_possible_cpu(cpu) { 110 head = per_cpu_ptr(cache->percpu, cpu); 111 head->first = NULL; 112 head->count = 0; 113 } 114 cache->xfer = NULL; 115 cache->ready = NULL; 116 117 return 0; 118 } 119 120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic) 121 { 122 int ret; 123 124 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs); 125 if (!ret) { 126 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags); 127 if (ret) 128 free_percpu(ic->i_cache_incs.percpu); 129 } 130 131 return ret; 132 } 133 134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache, 135 struct list_head *caller_list) 136 { 137 struct rds_ib_cache_head *head; 138 int cpu; 139 140 for_each_possible_cpu(cpu) { 141 head = per_cpu_ptr(cache->percpu, cpu); 142 if (head->first) { 143 list_splice_entire_tail(head->first, caller_list); 144 head->first = NULL; 145 } 146 } 147 148 if (cache->ready) { 149 list_splice_entire_tail(cache->ready, caller_list); 150 cache->ready = NULL; 151 } 152 } 153 154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic) 155 { 156 struct rds_ib_incoming *inc; 157 struct rds_ib_incoming *inc_tmp; 158 struct rds_page_frag *frag; 159 struct rds_page_frag *frag_tmp; 160 LIST_HEAD(list); 161 162 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 163 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list); 164 free_percpu(ic->i_cache_incs.percpu); 165 166 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) { 167 list_del(&inc->ii_cache_entry); 168 WARN_ON(!list_empty(&inc->ii_frags)); 169 kmem_cache_free(rds_ib_incoming_slab, inc); 170 } 171 172 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 173 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list); 174 free_percpu(ic->i_cache_frags.percpu); 175 176 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) { 177 list_del(&frag->f_cache_entry); 178 WARN_ON(!list_empty(&frag->f_item)); 179 kmem_cache_free(rds_ib_frag_slab, frag); 180 } 181 } 182 183 /* fwd decl */ 184 static void rds_ib_recv_cache_put(struct list_head *new_item, 185 struct rds_ib_refill_cache *cache); 186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache); 187 188 189 /* Recycle frag and attached recv buffer f_sg */ 190 static void rds_ib_frag_free(struct rds_ib_connection *ic, 191 struct rds_page_frag *frag) 192 { 193 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg)); 194 195 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags); 196 } 197 198 /* Recycle inc after freeing attached frags */ 199 void rds_ib_inc_free(struct rds_incoming *inc) 200 { 201 struct rds_ib_incoming *ibinc; 202 struct rds_page_frag *frag; 203 struct rds_page_frag *pos; 204 struct rds_ib_connection *ic = inc->i_conn->c_transport_data; 205 206 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 207 208 /* Free attached frags */ 209 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { 210 list_del_init(&frag->f_item); 211 rds_ib_frag_free(ic, frag); 212 } 213 BUG_ON(!list_empty(&ibinc->ii_frags)); 214 215 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); 216 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs); 217 } 218 219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, 220 struct rds_ib_recv_work *recv) 221 { 222 if (recv->r_ibinc) { 223 rds_inc_put(&recv->r_ibinc->ii_inc); 224 recv->r_ibinc = NULL; 225 } 226 if (recv->r_frag) { 227 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); 228 rds_ib_frag_free(ic, recv->r_frag); 229 recv->r_frag = NULL; 230 } 231 } 232 233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) 234 { 235 u32 i; 236 237 for (i = 0; i < ic->i_recv_ring.w_nr; i++) 238 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); 239 } 240 241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic, 242 gfp_t slab_mask) 243 { 244 struct rds_ib_incoming *ibinc; 245 struct list_head *cache_item; 246 int avail_allocs; 247 248 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs); 249 if (cache_item) { 250 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry); 251 } else { 252 avail_allocs = atomic_add_unless(&rds_ib_allocation, 253 1, rds_ib_sysctl_max_recv_allocation); 254 if (!avail_allocs) { 255 rds_ib_stats_inc(s_ib_rx_alloc_limit); 256 return NULL; 257 } 258 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask); 259 if (!ibinc) { 260 atomic_dec(&rds_ib_allocation); 261 return NULL; 262 } 263 } 264 INIT_LIST_HEAD(&ibinc->ii_frags); 265 rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr); 266 267 return ibinc; 268 } 269 270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic, 271 gfp_t slab_mask, gfp_t page_mask) 272 { 273 struct rds_page_frag *frag; 274 struct list_head *cache_item; 275 int ret; 276 277 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags); 278 if (cache_item) { 279 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry); 280 } else { 281 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask); 282 if (!frag) 283 return NULL; 284 285 sg_init_table(&frag->f_sg, 1); 286 ret = rds_page_remainder_alloc(&frag->f_sg, 287 RDS_FRAG_SIZE, page_mask); 288 if (ret) { 289 kmem_cache_free(rds_ib_frag_slab, frag); 290 return NULL; 291 } 292 } 293 294 INIT_LIST_HEAD(&frag->f_item); 295 296 return frag; 297 } 298 299 static int rds_ib_recv_refill_one(struct rds_connection *conn, 300 struct rds_ib_recv_work *recv, gfp_t gfp) 301 { 302 struct rds_ib_connection *ic = conn->c_transport_data; 303 struct ib_sge *sge; 304 int ret = -ENOMEM; 305 gfp_t slab_mask = GFP_NOWAIT; 306 gfp_t page_mask = GFP_NOWAIT; 307 308 if (gfp & __GFP_DIRECT_RECLAIM) { 309 slab_mask = GFP_KERNEL; 310 page_mask = GFP_HIGHUSER; 311 } 312 313 if (!ic->i_cache_incs.ready) 314 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 315 if (!ic->i_cache_frags.ready) 316 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 317 318 /* 319 * ibinc was taken from recv if recv contained the start of a message. 320 * recvs that were continuations will still have this allocated. 321 */ 322 if (!recv->r_ibinc) { 323 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask); 324 if (!recv->r_ibinc) 325 goto out; 326 } 327 328 WARN_ON(recv->r_frag); /* leak! */ 329 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask); 330 if (!recv->r_frag) 331 goto out; 332 333 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 334 1, DMA_FROM_DEVICE); 335 WARN_ON(ret != 1); 336 337 sge = &recv->r_sge[0]; 338 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); 339 sge->length = sizeof(struct rds_header); 340 341 sge = &recv->r_sge[1]; 342 sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg); 343 sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg); 344 345 ret = 0; 346 out: 347 return ret; 348 } 349 350 static int acquire_refill(struct rds_connection *conn) 351 { 352 return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0; 353 } 354 355 static void release_refill(struct rds_connection *conn) 356 { 357 clear_bit(RDS_RECV_REFILL, &conn->c_flags); 358 359 /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a 360 * hot path and finding waiters is very rare. We don't want to walk 361 * the system-wide hashed waitqueue buckets in the fast path only to 362 * almost never find waiters. 363 */ 364 if (waitqueue_active(&conn->c_waitq)) 365 wake_up_all(&conn->c_waitq); 366 } 367 368 /* 369 * This tries to allocate and post unused work requests after making sure that 370 * they have all the allocations they need to queue received fragments into 371 * sockets. 372 * 373 * -1 is returned if posting fails due to temporary resource exhaustion. 374 */ 375 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp) 376 { 377 struct rds_ib_connection *ic = conn->c_transport_data; 378 struct rds_ib_recv_work *recv; 379 struct ib_recv_wr *failed_wr; 380 unsigned int posted = 0; 381 int ret = 0; 382 bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM); 383 u32 pos; 384 385 /* the goal here is to just make sure that someone, somewhere 386 * is posting buffers. If we can't get the refill lock, 387 * let them do their thing 388 */ 389 if (!acquire_refill(conn)) 390 return; 391 392 while ((prefill || rds_conn_up(conn)) && 393 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { 394 if (pos >= ic->i_recv_ring.w_nr) { 395 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", 396 pos); 397 break; 398 } 399 400 recv = &ic->i_recvs[pos]; 401 ret = rds_ib_recv_refill_one(conn, recv, gfp); 402 if (ret) { 403 break; 404 } 405 406 /* XXX when can this fail? */ 407 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); 408 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv, 409 recv->r_ibinc, sg_page(&recv->r_frag->f_sg), 410 (long) ib_sg_dma_address( 411 ic->i_cm_id->device, 412 &recv->r_frag->f_sg), 413 ret); 414 if (ret) { 415 rds_ib_conn_error(conn, "recv post on " 416 "%pI4 returned %d, disconnecting and " 417 "reconnecting\n", &conn->c_faddr, 418 ret); 419 break; 420 } 421 422 posted++; 423 } 424 425 /* We're doing flow control - update the window. */ 426 if (ic->i_flowctl && posted) 427 rds_ib_advertise_credits(conn, posted); 428 429 if (ret) 430 rds_ib_ring_unalloc(&ic->i_recv_ring, 1); 431 432 release_refill(conn); 433 434 /* if we're called from the softirq handler, we'll be GFP_NOWAIT. 435 * in this case the ring being low is going to lead to more interrupts 436 * and we can safely let the softirq code take care of it unless the 437 * ring is completely empty. 438 * 439 * if we're called from krdsd, we'll be GFP_KERNEL. In this case 440 * we might have raced with the softirq code while we had the refill 441 * lock held. Use rds_ib_ring_low() instead of ring_empty to decide 442 * if we should requeue. 443 */ 444 if (rds_conn_up(conn) && 445 ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) || 446 rds_ib_ring_empty(&ic->i_recv_ring))) { 447 queue_delayed_work(rds_wq, &conn->c_recv_w, 1); 448 } 449 } 450 451 /* 452 * We want to recycle several types of recv allocations, like incs and frags. 453 * To use this, the *_free() function passes in the ptr to a list_head within 454 * the recyclee, as well as the cache to put it on. 455 * 456 * First, we put the memory on a percpu list. When this reaches a certain size, 457 * We move it to an intermediate non-percpu list in a lockless manner, with some 458 * xchg/compxchg wizardry. 459 * 460 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can 461 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and 462 * list_empty() will return true with one element is actually present. 463 */ 464 static void rds_ib_recv_cache_put(struct list_head *new_item, 465 struct rds_ib_refill_cache *cache) 466 { 467 unsigned long flags; 468 struct list_head *old, *chpfirst; 469 470 local_irq_save(flags); 471 472 chpfirst = __this_cpu_read(cache->percpu->first); 473 if (!chpfirst) 474 INIT_LIST_HEAD(new_item); 475 else /* put on front */ 476 list_add_tail(new_item, chpfirst); 477 478 __this_cpu_write(cache->percpu->first, new_item); 479 __this_cpu_inc(cache->percpu->count); 480 481 if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT) 482 goto end; 483 484 /* 485 * Return our per-cpu first list to the cache's xfer by atomically 486 * grabbing the current xfer list, appending it to our per-cpu list, 487 * and then atomically returning that entire list back to the 488 * cache's xfer list as long as it's still empty. 489 */ 490 do { 491 old = xchg(&cache->xfer, NULL); 492 if (old) 493 list_splice_entire_tail(old, chpfirst); 494 old = cmpxchg(&cache->xfer, NULL, chpfirst); 495 } while (old); 496 497 498 __this_cpu_write(cache->percpu->first, NULL); 499 __this_cpu_write(cache->percpu->count, 0); 500 end: 501 local_irq_restore(flags); 502 } 503 504 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache) 505 { 506 struct list_head *head = cache->ready; 507 508 if (head) { 509 if (!list_empty(head)) { 510 cache->ready = head->next; 511 list_del_init(head); 512 } else 513 cache->ready = NULL; 514 } 515 516 return head; 517 } 518 519 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to) 520 { 521 struct rds_ib_incoming *ibinc; 522 struct rds_page_frag *frag; 523 unsigned long to_copy; 524 unsigned long frag_off = 0; 525 int copied = 0; 526 int ret; 527 u32 len; 528 529 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 530 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 531 len = be32_to_cpu(inc->i_hdr.h_len); 532 533 while (iov_iter_count(to) && copied < len) { 534 if (frag_off == RDS_FRAG_SIZE) { 535 frag = list_entry(frag->f_item.next, 536 struct rds_page_frag, f_item); 537 frag_off = 0; 538 } 539 to_copy = min_t(unsigned long, iov_iter_count(to), 540 RDS_FRAG_SIZE - frag_off); 541 to_copy = min_t(unsigned long, to_copy, len - copied); 542 543 /* XXX needs + offset for multiple recvs per page */ 544 rds_stats_add(s_copy_to_user, to_copy); 545 ret = copy_page_to_iter(sg_page(&frag->f_sg), 546 frag->f_sg.offset + frag_off, 547 to_copy, 548 to); 549 if (ret != to_copy) 550 return -EFAULT; 551 552 frag_off += to_copy; 553 copied += to_copy; 554 } 555 556 return copied; 557 } 558 559 /* ic starts out kzalloc()ed */ 560 void rds_ib_recv_init_ack(struct rds_ib_connection *ic) 561 { 562 struct ib_send_wr *wr = &ic->i_ack_wr; 563 struct ib_sge *sge = &ic->i_ack_sge; 564 565 sge->addr = ic->i_ack_dma; 566 sge->length = sizeof(struct rds_header); 567 sge->lkey = ic->i_pd->local_dma_lkey; 568 569 wr->sg_list = sge; 570 wr->num_sge = 1; 571 wr->opcode = IB_WR_SEND; 572 wr->wr_id = RDS_IB_ACK_WR_ID; 573 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; 574 } 575 576 /* 577 * You'd think that with reliable IB connections you wouldn't need to ack 578 * messages that have been received. The problem is that IB hardware generates 579 * an ack message before it has DMAed the message into memory. This creates a 580 * potential message loss if the HCA is disabled for any reason between when it 581 * sends the ack and before the message is DMAed and processed. This is only a 582 * potential issue if another HCA is available for fail-over. 583 * 584 * When the remote host receives our ack they'll free the sent message from 585 * their send queue. To decrease the latency of this we always send an ack 586 * immediately after we've received messages. 587 * 588 * For simplicity, we only have one ack in flight at a time. This puts 589 * pressure on senders to have deep enough send queues to absorb the latency of 590 * a single ack frame being in flight. This might not be good enough. 591 * 592 * This is implemented by have a long-lived send_wr and sge which point to a 593 * statically allocated ack frame. This ack wr does not fall under the ring 594 * accounting that the tx and rx wrs do. The QP attribute specifically makes 595 * room for it beyond the ring size. Send completion notices its special 596 * wr_id and avoids working with the ring in that case. 597 */ 598 #ifndef KERNEL_HAS_ATOMIC64 599 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) 600 { 601 unsigned long flags; 602 603 spin_lock_irqsave(&ic->i_ack_lock, flags); 604 ic->i_ack_next = seq; 605 if (ack_required) 606 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 607 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 608 } 609 610 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 611 { 612 unsigned long flags; 613 u64 seq; 614 615 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 616 617 spin_lock_irqsave(&ic->i_ack_lock, flags); 618 seq = ic->i_ack_next; 619 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 620 621 return seq; 622 } 623 #else 624 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) 625 { 626 atomic64_set(&ic->i_ack_next, seq); 627 if (ack_required) { 628 smp_mb__before_atomic(); 629 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 630 } 631 } 632 633 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 634 { 635 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 636 smp_mb__after_atomic(); 637 638 return atomic64_read(&ic->i_ack_next); 639 } 640 #endif 641 642 643 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) 644 { 645 struct rds_header *hdr = ic->i_ack; 646 struct ib_send_wr *failed_wr; 647 u64 seq; 648 int ret; 649 650 seq = rds_ib_get_ack(ic); 651 652 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); 653 rds_message_populate_header(hdr, 0, 0, 0); 654 hdr->h_ack = cpu_to_be64(seq); 655 hdr->h_credit = adv_credits; 656 rds_message_make_checksum(hdr); 657 ic->i_ack_queued = jiffies; 658 659 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); 660 if (unlikely(ret)) { 661 /* Failed to send. Release the WR, and 662 * force another ACK. 663 */ 664 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 665 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 666 667 rds_ib_stats_inc(s_ib_ack_send_failure); 668 669 rds_ib_conn_error(ic->conn, "sending ack failed\n"); 670 } else 671 rds_ib_stats_inc(s_ib_ack_sent); 672 } 673 674 /* 675 * There are 3 ways of getting acknowledgements to the peer: 676 * 1. We call rds_ib_attempt_ack from the recv completion handler 677 * to send an ACK-only frame. 678 * However, there can be only one such frame in the send queue 679 * at any time, so we may have to postpone it. 680 * 2. When another (data) packet is transmitted while there's 681 * an ACK in the queue, we piggyback the ACK sequence number 682 * on the data packet. 683 * 3. If the ACK WR is done sending, we get called from the 684 * send queue completion handler, and check whether there's 685 * another ACK pending (postponed because the WR was on the 686 * queue). If so, we transmit it. 687 * 688 * We maintain 2 variables: 689 * - i_ack_flags, which keeps track of whether the ACK WR 690 * is currently in the send queue or not (IB_ACK_IN_FLIGHT) 691 * - i_ack_next, which is the last sequence number we received 692 * 693 * Potentially, send queue and receive queue handlers can run concurrently. 694 * It would be nice to not have to use a spinlock to synchronize things, 695 * but the one problem that rules this out is that 64bit updates are 696 * not atomic on all platforms. Things would be a lot simpler if 697 * we had atomic64 or maybe cmpxchg64 everywhere. 698 * 699 * Reconnecting complicates this picture just slightly. When we 700 * reconnect, we may be seeing duplicate packets. The peer 701 * is retransmitting them, because it hasn't seen an ACK for 702 * them. It is important that we ACK these. 703 * 704 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with 705 * this flag set *MUST* be acknowledged immediately. 706 */ 707 708 /* 709 * When we get here, we're called from the recv queue handler. 710 * Check whether we ought to transmit an ACK. 711 */ 712 void rds_ib_attempt_ack(struct rds_ib_connection *ic) 713 { 714 unsigned int adv_credits; 715 716 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 717 return; 718 719 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { 720 rds_ib_stats_inc(s_ib_ack_send_delayed); 721 return; 722 } 723 724 /* Can we get a send credit? */ 725 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { 726 rds_ib_stats_inc(s_ib_tx_throttle); 727 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 728 return; 729 } 730 731 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 732 rds_ib_send_ack(ic, adv_credits); 733 } 734 735 /* 736 * We get here from the send completion handler, when the 737 * adapter tells us the ACK frame was sent. 738 */ 739 void rds_ib_ack_send_complete(struct rds_ib_connection *ic) 740 { 741 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 742 rds_ib_attempt_ack(ic); 743 } 744 745 /* 746 * This is called by the regular xmit code when it wants to piggyback 747 * an ACK on an outgoing frame. 748 */ 749 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) 750 { 751 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 752 rds_ib_stats_inc(s_ib_ack_send_piggybacked); 753 return rds_ib_get_ack(ic); 754 } 755 756 /* 757 * It's kind of lame that we're copying from the posted receive pages into 758 * long-lived bitmaps. We could have posted the bitmaps and rdma written into 759 * them. But receiving new congestion bitmaps should be a *rare* event, so 760 * hopefully we won't need to invest that complexity in making it more 761 * efficient. By copying we can share a simpler core with TCP which has to 762 * copy. 763 */ 764 static void rds_ib_cong_recv(struct rds_connection *conn, 765 struct rds_ib_incoming *ibinc) 766 { 767 struct rds_cong_map *map; 768 unsigned int map_off; 769 unsigned int map_page; 770 struct rds_page_frag *frag; 771 unsigned long frag_off; 772 unsigned long to_copy; 773 unsigned long copied; 774 uint64_t uncongested = 0; 775 void *addr; 776 777 /* catch completely corrupt packets */ 778 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) 779 return; 780 781 map = conn->c_fcong; 782 map_page = 0; 783 map_off = 0; 784 785 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 786 frag_off = 0; 787 788 copied = 0; 789 790 while (copied < RDS_CONG_MAP_BYTES) { 791 uint64_t *src, *dst; 792 unsigned int k; 793 794 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); 795 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ 796 797 addr = kmap_atomic(sg_page(&frag->f_sg)); 798 799 src = addr + frag_off; 800 dst = (void *)map->m_page_addrs[map_page] + map_off; 801 for (k = 0; k < to_copy; k += 8) { 802 /* Record ports that became uncongested, ie 803 * bits that changed from 0 to 1. */ 804 uncongested |= ~(*src) & *dst; 805 *dst++ = *src++; 806 } 807 kunmap_atomic(addr); 808 809 copied += to_copy; 810 811 map_off += to_copy; 812 if (map_off == PAGE_SIZE) { 813 map_off = 0; 814 map_page++; 815 } 816 817 frag_off += to_copy; 818 if (frag_off == RDS_FRAG_SIZE) { 819 frag = list_entry(frag->f_item.next, 820 struct rds_page_frag, f_item); 821 frag_off = 0; 822 } 823 } 824 825 /* the congestion map is in little endian order */ 826 uncongested = le64_to_cpu(uncongested); 827 828 rds_cong_map_updated(map, uncongested); 829 } 830 831 static void rds_ib_process_recv(struct rds_connection *conn, 832 struct rds_ib_recv_work *recv, u32 data_len, 833 struct rds_ib_ack_state *state) 834 { 835 struct rds_ib_connection *ic = conn->c_transport_data; 836 struct rds_ib_incoming *ibinc = ic->i_ibinc; 837 struct rds_header *ihdr, *hdr; 838 839 /* XXX shut down the connection if port 0,0 are seen? */ 840 841 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, 842 data_len); 843 844 if (data_len < sizeof(struct rds_header)) { 845 rds_ib_conn_error(conn, "incoming message " 846 "from %pI4 didn't include a " 847 "header, disconnecting and " 848 "reconnecting\n", 849 &conn->c_faddr); 850 return; 851 } 852 data_len -= sizeof(struct rds_header); 853 854 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; 855 856 /* Validate the checksum. */ 857 if (!rds_message_verify_checksum(ihdr)) { 858 rds_ib_conn_error(conn, "incoming message " 859 "from %pI4 has corrupted header - " 860 "forcing a reconnect\n", 861 &conn->c_faddr); 862 rds_stats_inc(s_recv_drop_bad_checksum); 863 return; 864 } 865 866 /* Process the ACK sequence which comes with every packet */ 867 state->ack_recv = be64_to_cpu(ihdr->h_ack); 868 state->ack_recv_valid = 1; 869 870 /* Process the credits update if there was one */ 871 if (ihdr->h_credit) 872 rds_ib_send_add_credits(conn, ihdr->h_credit); 873 874 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) { 875 /* This is an ACK-only packet. The fact that it gets 876 * special treatment here is that historically, ACKs 877 * were rather special beasts. 878 */ 879 rds_ib_stats_inc(s_ib_ack_received); 880 881 /* 882 * Usually the frags make their way on to incs and are then freed as 883 * the inc is freed. We don't go that route, so we have to drop the 884 * page ref ourselves. We can't just leave the page on the recv 885 * because that confuses the dma mapping of pages and each recv's use 886 * of a partial page. 887 * 888 * FIXME: Fold this into the code path below. 889 */ 890 rds_ib_frag_free(ic, recv->r_frag); 891 recv->r_frag = NULL; 892 return; 893 } 894 895 /* 896 * If we don't already have an inc on the connection then this 897 * fragment has a header and starts a message.. copy its header 898 * into the inc and save the inc so we can hang upcoming fragments 899 * off its list. 900 */ 901 if (!ibinc) { 902 ibinc = recv->r_ibinc; 903 recv->r_ibinc = NULL; 904 ic->i_ibinc = ibinc; 905 906 hdr = &ibinc->ii_inc.i_hdr; 907 memcpy(hdr, ihdr, sizeof(*hdr)); 908 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); 909 910 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, 911 ic->i_recv_data_rem, hdr->h_flags); 912 } else { 913 hdr = &ibinc->ii_inc.i_hdr; 914 /* We can't just use memcmp here; fragments of a 915 * single message may carry different ACKs */ 916 if (hdr->h_sequence != ihdr->h_sequence || 917 hdr->h_len != ihdr->h_len || 918 hdr->h_sport != ihdr->h_sport || 919 hdr->h_dport != ihdr->h_dport) { 920 rds_ib_conn_error(conn, 921 "fragment header mismatch; forcing reconnect\n"); 922 return; 923 } 924 } 925 926 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); 927 recv->r_frag = NULL; 928 929 if (ic->i_recv_data_rem > RDS_FRAG_SIZE) 930 ic->i_recv_data_rem -= RDS_FRAG_SIZE; 931 else { 932 ic->i_recv_data_rem = 0; 933 ic->i_ibinc = NULL; 934 935 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) 936 rds_ib_cong_recv(conn, ibinc); 937 else { 938 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, 939 &ibinc->ii_inc, GFP_ATOMIC); 940 state->ack_next = be64_to_cpu(hdr->h_sequence); 941 state->ack_next_valid = 1; 942 } 943 944 /* Evaluate the ACK_REQUIRED flag *after* we received 945 * the complete frame, and after bumping the next_rx 946 * sequence. */ 947 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { 948 rds_stats_inc(s_recv_ack_required); 949 state->ack_required = 1; 950 } 951 952 rds_inc_put(&ibinc->ii_inc); 953 } 954 } 955 956 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic, 957 struct ib_wc *wc, 958 struct rds_ib_ack_state *state) 959 { 960 struct rds_connection *conn = ic->conn; 961 struct rds_ib_recv_work *recv; 962 963 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", 964 (unsigned long long)wc->wr_id, wc->status, 965 ib_wc_status_msg(wc->status), wc->byte_len, 966 be32_to_cpu(wc->ex.imm_data)); 967 968 rds_ib_stats_inc(s_ib_rx_cq_event); 969 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; 970 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, 971 DMA_FROM_DEVICE); 972 973 /* Also process recvs in connecting state because it is possible 974 * to get a recv completion _before_ the rdmacm ESTABLISHED 975 * event is processed. 976 */ 977 if (wc->status == IB_WC_SUCCESS) { 978 rds_ib_process_recv(conn, recv, wc->byte_len, state); 979 } else { 980 /* We expect errors as the qp is drained during shutdown */ 981 if (rds_conn_up(conn) || rds_conn_connecting(conn)) 982 rds_ib_conn_error(conn, "recv completion on %pI4 had status %u (%s), disconnecting and reconnecting\n", 983 &conn->c_faddr, 984 wc->status, 985 ib_wc_status_msg(wc->status)); 986 } 987 988 /* rds_ib_process_recv() doesn't always consume the frag, and 989 * we might not have called it at all if the wc didn't indicate 990 * success. We already unmapped the frag's pages, though, and 991 * the following rds_ib_ring_free() call tells the refill path 992 * that it will not find an allocated frag here. Make sure we 993 * keep that promise by freeing a frag that's still on the ring. 994 */ 995 if (recv->r_frag) { 996 rds_ib_frag_free(ic, recv->r_frag); 997 recv->r_frag = NULL; 998 } 999 rds_ib_ring_free(&ic->i_recv_ring, 1); 1000 1001 /* If we ever end up with a really empty receive ring, we're 1002 * in deep trouble, as the sender will definitely see RNR 1003 * timeouts. */ 1004 if (rds_ib_ring_empty(&ic->i_recv_ring)) 1005 rds_ib_stats_inc(s_ib_rx_ring_empty); 1006 1007 if (rds_ib_ring_low(&ic->i_recv_ring)) 1008 rds_ib_recv_refill(conn, 0, GFP_NOWAIT); 1009 } 1010 1011 int rds_ib_recv(struct rds_connection *conn) 1012 { 1013 struct rds_ib_connection *ic = conn->c_transport_data; 1014 int ret = 0; 1015 1016 rdsdebug("conn %p\n", conn); 1017 if (rds_conn_up(conn)) { 1018 rds_ib_attempt_ack(ic); 1019 rds_ib_recv_refill(conn, 0, GFP_KERNEL); 1020 } 1021 1022 return ret; 1023 } 1024 1025 int rds_ib_recv_init(void) 1026 { 1027 struct sysinfo si; 1028 int ret = -ENOMEM; 1029 1030 /* Default to 30% of all available RAM for recv memory */ 1031 si_meminfo(&si); 1032 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; 1033 1034 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming", 1035 sizeof(struct rds_ib_incoming), 1036 0, SLAB_HWCACHE_ALIGN, NULL); 1037 if (!rds_ib_incoming_slab) 1038 goto out; 1039 1040 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", 1041 sizeof(struct rds_page_frag), 1042 0, SLAB_HWCACHE_ALIGN, NULL); 1043 if (!rds_ib_frag_slab) { 1044 kmem_cache_destroy(rds_ib_incoming_slab); 1045 rds_ib_incoming_slab = NULL; 1046 } else 1047 ret = 0; 1048 out: 1049 return ret; 1050 } 1051 1052 void rds_ib_recv_exit(void) 1053 { 1054 kmem_cache_destroy(rds_ib_incoming_slab); 1055 kmem_cache_destroy(rds_ib_frag_slab); 1056 } 1057