1 /* 2 * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <linux/pci.h> 36 #include <linux/dma-mapping.h> 37 #include <rdma/rdma_cm.h> 38 39 #include "rds_single_path.h" 40 #include "rds.h" 41 #include "ib.h" 42 43 static struct kmem_cache *rds_ib_incoming_slab; 44 static struct kmem_cache *rds_ib_frag_slab; 45 static atomic_t rds_ib_allocation = ATOMIC_INIT(0); 46 47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic) 48 { 49 struct rds_ib_recv_work *recv; 50 u32 i; 51 52 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { 53 struct ib_sge *sge; 54 55 recv->r_ibinc = NULL; 56 recv->r_frag = NULL; 57 58 recv->r_wr.next = NULL; 59 recv->r_wr.wr_id = i; 60 recv->r_wr.sg_list = recv->r_sge; 61 recv->r_wr.num_sge = RDS_IB_RECV_SGE; 62 63 sge = &recv->r_sge[0]; 64 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); 65 sge->length = sizeof(struct rds_header); 66 sge->lkey = ic->i_pd->local_dma_lkey; 67 68 sge = &recv->r_sge[1]; 69 sge->addr = 0; 70 sge->length = RDS_FRAG_SIZE; 71 sge->lkey = ic->i_pd->local_dma_lkey; 72 } 73 } 74 75 /* 76 * The entire 'from' list, including the from element itself, is put on 77 * to the tail of the 'to' list. 78 */ 79 static void list_splice_entire_tail(struct list_head *from, 80 struct list_head *to) 81 { 82 struct list_head *from_last = from->prev; 83 84 list_splice_tail(from_last, to); 85 list_add_tail(from_last, to); 86 } 87 88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache) 89 { 90 struct list_head *tmp; 91 92 tmp = xchg(&cache->xfer, NULL); 93 if (tmp) { 94 if (cache->ready) 95 list_splice_entire_tail(tmp, cache->ready); 96 else 97 cache->ready = tmp; 98 } 99 } 100 101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp) 102 { 103 struct rds_ib_cache_head *head; 104 int cpu; 105 106 cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp); 107 if (!cache->percpu) 108 return -ENOMEM; 109 110 for_each_possible_cpu(cpu) { 111 head = per_cpu_ptr(cache->percpu, cpu); 112 head->first = NULL; 113 head->count = 0; 114 } 115 cache->xfer = NULL; 116 cache->ready = NULL; 117 118 return 0; 119 } 120 121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp) 122 { 123 int ret; 124 125 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp); 126 if (!ret) { 127 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp); 128 if (ret) 129 free_percpu(ic->i_cache_incs.percpu); 130 } 131 132 return ret; 133 } 134 135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache, 136 struct list_head *caller_list) 137 { 138 struct rds_ib_cache_head *head; 139 int cpu; 140 141 for_each_possible_cpu(cpu) { 142 head = per_cpu_ptr(cache->percpu, cpu); 143 if (head->first) { 144 list_splice_entire_tail(head->first, caller_list); 145 head->first = NULL; 146 } 147 } 148 149 if (cache->ready) { 150 list_splice_entire_tail(cache->ready, caller_list); 151 cache->ready = NULL; 152 } 153 } 154 155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic) 156 { 157 struct rds_ib_incoming *inc; 158 struct rds_ib_incoming *inc_tmp; 159 struct rds_page_frag *frag; 160 struct rds_page_frag *frag_tmp; 161 LIST_HEAD(list); 162 163 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 164 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list); 165 free_percpu(ic->i_cache_incs.percpu); 166 167 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) { 168 list_del(&inc->ii_cache_entry); 169 WARN_ON(!list_empty(&inc->ii_frags)); 170 kmem_cache_free(rds_ib_incoming_slab, inc); 171 } 172 173 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 174 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list); 175 free_percpu(ic->i_cache_frags.percpu); 176 177 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) { 178 list_del(&frag->f_cache_entry); 179 WARN_ON(!list_empty(&frag->f_item)); 180 kmem_cache_free(rds_ib_frag_slab, frag); 181 } 182 } 183 184 /* fwd decl */ 185 static void rds_ib_recv_cache_put(struct list_head *new_item, 186 struct rds_ib_refill_cache *cache); 187 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache); 188 189 190 /* Recycle frag and attached recv buffer f_sg */ 191 static void rds_ib_frag_free(struct rds_ib_connection *ic, 192 struct rds_page_frag *frag) 193 { 194 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg)); 195 196 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags); 197 atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs); 198 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE); 199 } 200 201 /* Recycle inc after freeing attached frags */ 202 void rds_ib_inc_free(struct rds_incoming *inc) 203 { 204 struct rds_ib_incoming *ibinc; 205 struct rds_page_frag *frag; 206 struct rds_page_frag *pos; 207 struct rds_ib_connection *ic = inc->i_conn->c_transport_data; 208 209 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 210 211 /* Free attached frags */ 212 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { 213 list_del_init(&frag->f_item); 214 rds_ib_frag_free(ic, frag); 215 } 216 BUG_ON(!list_empty(&ibinc->ii_frags)); 217 218 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); 219 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs); 220 } 221 222 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, 223 struct rds_ib_recv_work *recv) 224 { 225 if (recv->r_ibinc) { 226 rds_inc_put(&recv->r_ibinc->ii_inc); 227 recv->r_ibinc = NULL; 228 } 229 if (recv->r_frag) { 230 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); 231 rds_ib_frag_free(ic, recv->r_frag); 232 recv->r_frag = NULL; 233 } 234 } 235 236 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) 237 { 238 u32 i; 239 240 for (i = 0; i < ic->i_recv_ring.w_nr; i++) 241 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); 242 } 243 244 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic, 245 gfp_t slab_mask) 246 { 247 struct rds_ib_incoming *ibinc; 248 struct list_head *cache_item; 249 int avail_allocs; 250 251 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs); 252 if (cache_item) { 253 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry); 254 } else { 255 avail_allocs = atomic_add_unless(&rds_ib_allocation, 256 1, rds_ib_sysctl_max_recv_allocation); 257 if (!avail_allocs) { 258 rds_ib_stats_inc(s_ib_rx_alloc_limit); 259 return NULL; 260 } 261 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask); 262 if (!ibinc) { 263 atomic_dec(&rds_ib_allocation); 264 return NULL; 265 } 266 rds_ib_stats_inc(s_ib_rx_total_incs); 267 } 268 INIT_LIST_HEAD(&ibinc->ii_frags); 269 rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr); 270 271 return ibinc; 272 } 273 274 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic, 275 gfp_t slab_mask, gfp_t page_mask) 276 { 277 struct rds_page_frag *frag; 278 struct list_head *cache_item; 279 int ret; 280 281 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags); 282 if (cache_item) { 283 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry); 284 atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs); 285 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE); 286 } else { 287 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask); 288 if (!frag) 289 return NULL; 290 291 sg_init_table(&frag->f_sg, 1); 292 ret = rds_page_remainder_alloc(&frag->f_sg, 293 RDS_FRAG_SIZE, page_mask); 294 if (ret) { 295 kmem_cache_free(rds_ib_frag_slab, frag); 296 return NULL; 297 } 298 rds_ib_stats_inc(s_ib_rx_total_frags); 299 } 300 301 INIT_LIST_HEAD(&frag->f_item); 302 303 return frag; 304 } 305 306 static int rds_ib_recv_refill_one(struct rds_connection *conn, 307 struct rds_ib_recv_work *recv, gfp_t gfp) 308 { 309 struct rds_ib_connection *ic = conn->c_transport_data; 310 struct ib_sge *sge; 311 int ret = -ENOMEM; 312 gfp_t slab_mask = GFP_NOWAIT; 313 gfp_t page_mask = GFP_NOWAIT; 314 315 if (gfp & __GFP_DIRECT_RECLAIM) { 316 slab_mask = GFP_KERNEL; 317 page_mask = GFP_HIGHUSER; 318 } 319 320 if (!ic->i_cache_incs.ready) 321 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 322 if (!ic->i_cache_frags.ready) 323 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 324 325 /* 326 * ibinc was taken from recv if recv contained the start of a message. 327 * recvs that were continuations will still have this allocated. 328 */ 329 if (!recv->r_ibinc) { 330 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask); 331 if (!recv->r_ibinc) 332 goto out; 333 } 334 335 WARN_ON(recv->r_frag); /* leak! */ 336 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask); 337 if (!recv->r_frag) 338 goto out; 339 340 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 341 1, DMA_FROM_DEVICE); 342 WARN_ON(ret != 1); 343 344 sge = &recv->r_sge[0]; 345 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); 346 sge->length = sizeof(struct rds_header); 347 348 sge = &recv->r_sge[1]; 349 sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg); 350 sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg); 351 352 ret = 0; 353 out: 354 return ret; 355 } 356 357 static int acquire_refill(struct rds_connection *conn) 358 { 359 return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0; 360 } 361 362 static void release_refill(struct rds_connection *conn) 363 { 364 clear_bit(RDS_RECV_REFILL, &conn->c_flags); 365 366 /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a 367 * hot path and finding waiters is very rare. We don't want to walk 368 * the system-wide hashed waitqueue buckets in the fast path only to 369 * almost never find waiters. 370 */ 371 if (waitqueue_active(&conn->c_waitq)) 372 wake_up_all(&conn->c_waitq); 373 } 374 375 /* 376 * This tries to allocate and post unused work requests after making sure that 377 * they have all the allocations they need to queue received fragments into 378 * sockets. 379 */ 380 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp) 381 { 382 struct rds_ib_connection *ic = conn->c_transport_data; 383 struct rds_ib_recv_work *recv; 384 unsigned int posted = 0; 385 int ret = 0; 386 bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM); 387 u32 pos; 388 389 /* the goal here is to just make sure that someone, somewhere 390 * is posting buffers. If we can't get the refill lock, 391 * let them do their thing 392 */ 393 if (!acquire_refill(conn)) 394 return; 395 396 while ((prefill || rds_conn_up(conn)) && 397 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { 398 if (pos >= ic->i_recv_ring.w_nr) { 399 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", 400 pos); 401 break; 402 } 403 404 recv = &ic->i_recvs[pos]; 405 ret = rds_ib_recv_refill_one(conn, recv, gfp); 406 if (ret) { 407 break; 408 } 409 410 rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv, 411 recv->r_ibinc, sg_page(&recv->r_frag->f_sg), 412 (long) ib_sg_dma_address( 413 ic->i_cm_id->device, 414 &recv->r_frag->f_sg)); 415 416 /* XXX when can this fail? */ 417 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL); 418 if (ret) { 419 rds_ib_conn_error(conn, "recv post on " 420 "%pI6c returned %d, disconnecting and " 421 "reconnecting\n", &conn->c_faddr, 422 ret); 423 break; 424 } 425 426 posted++; 427 } 428 429 /* We're doing flow control - update the window. */ 430 if (ic->i_flowctl && posted) 431 rds_ib_advertise_credits(conn, posted); 432 433 if (ret) 434 rds_ib_ring_unalloc(&ic->i_recv_ring, 1); 435 436 release_refill(conn); 437 438 /* if we're called from the softirq handler, we'll be GFP_NOWAIT. 439 * in this case the ring being low is going to lead to more interrupts 440 * and we can safely let the softirq code take care of it unless the 441 * ring is completely empty. 442 * 443 * if we're called from krdsd, we'll be GFP_KERNEL. In this case 444 * we might have raced with the softirq code while we had the refill 445 * lock held. Use rds_ib_ring_low() instead of ring_empty to decide 446 * if we should requeue. 447 */ 448 if (rds_conn_up(conn) && 449 ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) || 450 rds_ib_ring_empty(&ic->i_recv_ring))) { 451 queue_delayed_work(rds_wq, &conn->c_recv_w, 1); 452 } 453 } 454 455 /* 456 * We want to recycle several types of recv allocations, like incs and frags. 457 * To use this, the *_free() function passes in the ptr to a list_head within 458 * the recyclee, as well as the cache to put it on. 459 * 460 * First, we put the memory on a percpu list. When this reaches a certain size, 461 * We move it to an intermediate non-percpu list in a lockless manner, with some 462 * xchg/compxchg wizardry. 463 * 464 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can 465 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and 466 * list_empty() will return true with one element is actually present. 467 */ 468 static void rds_ib_recv_cache_put(struct list_head *new_item, 469 struct rds_ib_refill_cache *cache) 470 { 471 unsigned long flags; 472 struct list_head *old, *chpfirst; 473 474 local_irq_save(flags); 475 476 chpfirst = __this_cpu_read(cache->percpu->first); 477 if (!chpfirst) 478 INIT_LIST_HEAD(new_item); 479 else /* put on front */ 480 list_add_tail(new_item, chpfirst); 481 482 __this_cpu_write(cache->percpu->first, new_item); 483 __this_cpu_inc(cache->percpu->count); 484 485 if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT) 486 goto end; 487 488 /* 489 * Return our per-cpu first list to the cache's xfer by atomically 490 * grabbing the current xfer list, appending it to our per-cpu list, 491 * and then atomically returning that entire list back to the 492 * cache's xfer list as long as it's still empty. 493 */ 494 do { 495 old = xchg(&cache->xfer, NULL); 496 if (old) 497 list_splice_entire_tail(old, chpfirst); 498 old = cmpxchg(&cache->xfer, NULL, chpfirst); 499 } while (old); 500 501 502 __this_cpu_write(cache->percpu->first, NULL); 503 __this_cpu_write(cache->percpu->count, 0); 504 end: 505 local_irq_restore(flags); 506 } 507 508 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache) 509 { 510 struct list_head *head = cache->ready; 511 512 if (head) { 513 if (!list_empty(head)) { 514 cache->ready = head->next; 515 list_del_init(head); 516 } else 517 cache->ready = NULL; 518 } 519 520 return head; 521 } 522 523 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to) 524 { 525 struct rds_ib_incoming *ibinc; 526 struct rds_page_frag *frag; 527 unsigned long to_copy; 528 unsigned long frag_off = 0; 529 int copied = 0; 530 int ret; 531 u32 len; 532 533 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 534 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 535 len = be32_to_cpu(inc->i_hdr.h_len); 536 537 while (iov_iter_count(to) && copied < len) { 538 if (frag_off == RDS_FRAG_SIZE) { 539 frag = list_entry(frag->f_item.next, 540 struct rds_page_frag, f_item); 541 frag_off = 0; 542 } 543 to_copy = min_t(unsigned long, iov_iter_count(to), 544 RDS_FRAG_SIZE - frag_off); 545 to_copy = min_t(unsigned long, to_copy, len - copied); 546 547 /* XXX needs + offset for multiple recvs per page */ 548 rds_stats_add(s_copy_to_user, to_copy); 549 ret = copy_page_to_iter(sg_page(&frag->f_sg), 550 frag->f_sg.offset + frag_off, 551 to_copy, 552 to); 553 if (ret != to_copy) 554 return -EFAULT; 555 556 frag_off += to_copy; 557 copied += to_copy; 558 } 559 560 return copied; 561 } 562 563 /* ic starts out kzalloc()ed */ 564 void rds_ib_recv_init_ack(struct rds_ib_connection *ic) 565 { 566 struct ib_send_wr *wr = &ic->i_ack_wr; 567 struct ib_sge *sge = &ic->i_ack_sge; 568 569 sge->addr = ic->i_ack_dma; 570 sge->length = sizeof(struct rds_header); 571 sge->lkey = ic->i_pd->local_dma_lkey; 572 573 wr->sg_list = sge; 574 wr->num_sge = 1; 575 wr->opcode = IB_WR_SEND; 576 wr->wr_id = RDS_IB_ACK_WR_ID; 577 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; 578 } 579 580 /* 581 * You'd think that with reliable IB connections you wouldn't need to ack 582 * messages that have been received. The problem is that IB hardware generates 583 * an ack message before it has DMAed the message into memory. This creates a 584 * potential message loss if the HCA is disabled for any reason between when it 585 * sends the ack and before the message is DMAed and processed. This is only a 586 * potential issue if another HCA is available for fail-over. 587 * 588 * When the remote host receives our ack they'll free the sent message from 589 * their send queue. To decrease the latency of this we always send an ack 590 * immediately after we've received messages. 591 * 592 * For simplicity, we only have one ack in flight at a time. This puts 593 * pressure on senders to have deep enough send queues to absorb the latency of 594 * a single ack frame being in flight. This might not be good enough. 595 * 596 * This is implemented by have a long-lived send_wr and sge which point to a 597 * statically allocated ack frame. This ack wr does not fall under the ring 598 * accounting that the tx and rx wrs do. The QP attribute specifically makes 599 * room for it beyond the ring size. Send completion notices its special 600 * wr_id and avoids working with the ring in that case. 601 */ 602 #ifndef KERNEL_HAS_ATOMIC64 603 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) 604 { 605 unsigned long flags; 606 607 spin_lock_irqsave(&ic->i_ack_lock, flags); 608 ic->i_ack_next = seq; 609 if (ack_required) 610 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 611 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 612 } 613 614 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 615 { 616 unsigned long flags; 617 u64 seq; 618 619 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 620 621 spin_lock_irqsave(&ic->i_ack_lock, flags); 622 seq = ic->i_ack_next; 623 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 624 625 return seq; 626 } 627 #else 628 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) 629 { 630 atomic64_set(&ic->i_ack_next, seq); 631 if (ack_required) { 632 smp_mb__before_atomic(); 633 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 634 } 635 } 636 637 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 638 { 639 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 640 smp_mb__after_atomic(); 641 642 return atomic64_read(&ic->i_ack_next); 643 } 644 #endif 645 646 647 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) 648 { 649 struct rds_header *hdr = ic->i_ack; 650 u64 seq; 651 int ret; 652 653 seq = rds_ib_get_ack(ic); 654 655 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); 656 rds_message_populate_header(hdr, 0, 0, 0); 657 hdr->h_ack = cpu_to_be64(seq); 658 hdr->h_credit = adv_credits; 659 rds_message_make_checksum(hdr); 660 ic->i_ack_queued = jiffies; 661 662 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL); 663 if (unlikely(ret)) { 664 /* Failed to send. Release the WR, and 665 * force another ACK. 666 */ 667 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 668 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 669 670 rds_ib_stats_inc(s_ib_ack_send_failure); 671 672 rds_ib_conn_error(ic->conn, "sending ack failed\n"); 673 } else 674 rds_ib_stats_inc(s_ib_ack_sent); 675 } 676 677 /* 678 * There are 3 ways of getting acknowledgements to the peer: 679 * 1. We call rds_ib_attempt_ack from the recv completion handler 680 * to send an ACK-only frame. 681 * However, there can be only one such frame in the send queue 682 * at any time, so we may have to postpone it. 683 * 2. When another (data) packet is transmitted while there's 684 * an ACK in the queue, we piggyback the ACK sequence number 685 * on the data packet. 686 * 3. If the ACK WR is done sending, we get called from the 687 * send queue completion handler, and check whether there's 688 * another ACK pending (postponed because the WR was on the 689 * queue). If so, we transmit it. 690 * 691 * We maintain 2 variables: 692 * - i_ack_flags, which keeps track of whether the ACK WR 693 * is currently in the send queue or not (IB_ACK_IN_FLIGHT) 694 * - i_ack_next, which is the last sequence number we received 695 * 696 * Potentially, send queue and receive queue handlers can run concurrently. 697 * It would be nice to not have to use a spinlock to synchronize things, 698 * but the one problem that rules this out is that 64bit updates are 699 * not atomic on all platforms. Things would be a lot simpler if 700 * we had atomic64 or maybe cmpxchg64 everywhere. 701 * 702 * Reconnecting complicates this picture just slightly. When we 703 * reconnect, we may be seeing duplicate packets. The peer 704 * is retransmitting them, because it hasn't seen an ACK for 705 * them. It is important that we ACK these. 706 * 707 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with 708 * this flag set *MUST* be acknowledged immediately. 709 */ 710 711 /* 712 * When we get here, we're called from the recv queue handler. 713 * Check whether we ought to transmit an ACK. 714 */ 715 void rds_ib_attempt_ack(struct rds_ib_connection *ic) 716 { 717 unsigned int adv_credits; 718 719 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 720 return; 721 722 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { 723 rds_ib_stats_inc(s_ib_ack_send_delayed); 724 return; 725 } 726 727 /* Can we get a send credit? */ 728 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { 729 rds_ib_stats_inc(s_ib_tx_throttle); 730 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 731 return; 732 } 733 734 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 735 rds_ib_send_ack(ic, adv_credits); 736 } 737 738 /* 739 * We get here from the send completion handler, when the 740 * adapter tells us the ACK frame was sent. 741 */ 742 void rds_ib_ack_send_complete(struct rds_ib_connection *ic) 743 { 744 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 745 rds_ib_attempt_ack(ic); 746 } 747 748 /* 749 * This is called by the regular xmit code when it wants to piggyback 750 * an ACK on an outgoing frame. 751 */ 752 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) 753 { 754 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 755 rds_ib_stats_inc(s_ib_ack_send_piggybacked); 756 return rds_ib_get_ack(ic); 757 } 758 759 /* 760 * It's kind of lame that we're copying from the posted receive pages into 761 * long-lived bitmaps. We could have posted the bitmaps and rdma written into 762 * them. But receiving new congestion bitmaps should be a *rare* event, so 763 * hopefully we won't need to invest that complexity in making it more 764 * efficient. By copying we can share a simpler core with TCP which has to 765 * copy. 766 */ 767 static void rds_ib_cong_recv(struct rds_connection *conn, 768 struct rds_ib_incoming *ibinc) 769 { 770 struct rds_cong_map *map; 771 unsigned int map_off; 772 unsigned int map_page; 773 struct rds_page_frag *frag; 774 unsigned long frag_off; 775 unsigned long to_copy; 776 unsigned long copied; 777 uint64_t uncongested = 0; 778 void *addr; 779 780 /* catch completely corrupt packets */ 781 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) 782 return; 783 784 map = conn->c_fcong; 785 map_page = 0; 786 map_off = 0; 787 788 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 789 frag_off = 0; 790 791 copied = 0; 792 793 while (copied < RDS_CONG_MAP_BYTES) { 794 uint64_t *src, *dst; 795 unsigned int k; 796 797 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); 798 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ 799 800 addr = kmap_atomic(sg_page(&frag->f_sg)); 801 802 src = addr + frag->f_sg.offset + frag_off; 803 dst = (void *)map->m_page_addrs[map_page] + map_off; 804 for (k = 0; k < to_copy; k += 8) { 805 /* Record ports that became uncongested, ie 806 * bits that changed from 0 to 1. */ 807 uncongested |= ~(*src) & *dst; 808 *dst++ = *src++; 809 } 810 kunmap_atomic(addr); 811 812 copied += to_copy; 813 814 map_off += to_copy; 815 if (map_off == PAGE_SIZE) { 816 map_off = 0; 817 map_page++; 818 } 819 820 frag_off += to_copy; 821 if (frag_off == RDS_FRAG_SIZE) { 822 frag = list_entry(frag->f_item.next, 823 struct rds_page_frag, f_item); 824 frag_off = 0; 825 } 826 } 827 828 /* the congestion map is in little endian order */ 829 uncongested = le64_to_cpu(uncongested); 830 831 rds_cong_map_updated(map, uncongested); 832 } 833 834 static void rds_ib_process_recv(struct rds_connection *conn, 835 struct rds_ib_recv_work *recv, u32 data_len, 836 struct rds_ib_ack_state *state) 837 { 838 struct rds_ib_connection *ic = conn->c_transport_data; 839 struct rds_ib_incoming *ibinc = ic->i_ibinc; 840 struct rds_header *ihdr, *hdr; 841 842 /* XXX shut down the connection if port 0,0 are seen? */ 843 844 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, 845 data_len); 846 847 if (data_len < sizeof(struct rds_header)) { 848 rds_ib_conn_error(conn, "incoming message " 849 "from %pI6c didn't include a " 850 "header, disconnecting and " 851 "reconnecting\n", 852 &conn->c_faddr); 853 return; 854 } 855 data_len -= sizeof(struct rds_header); 856 857 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; 858 859 /* Validate the checksum. */ 860 if (!rds_message_verify_checksum(ihdr)) { 861 rds_ib_conn_error(conn, "incoming message " 862 "from %pI6c has corrupted header - " 863 "forcing a reconnect\n", 864 &conn->c_faddr); 865 rds_stats_inc(s_recv_drop_bad_checksum); 866 return; 867 } 868 869 /* Process the ACK sequence which comes with every packet */ 870 state->ack_recv = be64_to_cpu(ihdr->h_ack); 871 state->ack_recv_valid = 1; 872 873 /* Process the credits update if there was one */ 874 if (ihdr->h_credit) 875 rds_ib_send_add_credits(conn, ihdr->h_credit); 876 877 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) { 878 /* This is an ACK-only packet. The fact that it gets 879 * special treatment here is that historically, ACKs 880 * were rather special beasts. 881 */ 882 rds_ib_stats_inc(s_ib_ack_received); 883 884 /* 885 * Usually the frags make their way on to incs and are then freed as 886 * the inc is freed. We don't go that route, so we have to drop the 887 * page ref ourselves. We can't just leave the page on the recv 888 * because that confuses the dma mapping of pages and each recv's use 889 * of a partial page. 890 * 891 * FIXME: Fold this into the code path below. 892 */ 893 rds_ib_frag_free(ic, recv->r_frag); 894 recv->r_frag = NULL; 895 return; 896 } 897 898 /* 899 * If we don't already have an inc on the connection then this 900 * fragment has a header and starts a message.. copy its header 901 * into the inc and save the inc so we can hang upcoming fragments 902 * off its list. 903 */ 904 if (!ibinc) { 905 ibinc = recv->r_ibinc; 906 recv->r_ibinc = NULL; 907 ic->i_ibinc = ibinc; 908 909 hdr = &ibinc->ii_inc.i_hdr; 910 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] = 911 local_clock(); 912 memcpy(hdr, ihdr, sizeof(*hdr)); 913 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); 914 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] = 915 local_clock(); 916 917 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, 918 ic->i_recv_data_rem, hdr->h_flags); 919 } else { 920 hdr = &ibinc->ii_inc.i_hdr; 921 /* We can't just use memcmp here; fragments of a 922 * single message may carry different ACKs */ 923 if (hdr->h_sequence != ihdr->h_sequence || 924 hdr->h_len != ihdr->h_len || 925 hdr->h_sport != ihdr->h_sport || 926 hdr->h_dport != ihdr->h_dport) { 927 rds_ib_conn_error(conn, 928 "fragment header mismatch; forcing reconnect\n"); 929 return; 930 } 931 } 932 933 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); 934 recv->r_frag = NULL; 935 936 if (ic->i_recv_data_rem > RDS_FRAG_SIZE) 937 ic->i_recv_data_rem -= RDS_FRAG_SIZE; 938 else { 939 ic->i_recv_data_rem = 0; 940 ic->i_ibinc = NULL; 941 942 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) { 943 rds_ib_cong_recv(conn, ibinc); 944 } else { 945 rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr, 946 &ibinc->ii_inc, GFP_ATOMIC); 947 state->ack_next = be64_to_cpu(hdr->h_sequence); 948 state->ack_next_valid = 1; 949 } 950 951 /* Evaluate the ACK_REQUIRED flag *after* we received 952 * the complete frame, and after bumping the next_rx 953 * sequence. */ 954 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { 955 rds_stats_inc(s_recv_ack_required); 956 state->ack_required = 1; 957 } 958 959 rds_inc_put(&ibinc->ii_inc); 960 } 961 } 962 963 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic, 964 struct ib_wc *wc, 965 struct rds_ib_ack_state *state) 966 { 967 struct rds_connection *conn = ic->conn; 968 struct rds_ib_recv_work *recv; 969 970 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", 971 (unsigned long long)wc->wr_id, wc->status, 972 ib_wc_status_msg(wc->status), wc->byte_len, 973 be32_to_cpu(wc->ex.imm_data)); 974 975 rds_ib_stats_inc(s_ib_rx_cq_event); 976 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; 977 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, 978 DMA_FROM_DEVICE); 979 980 /* Also process recvs in connecting state because it is possible 981 * to get a recv completion _before_ the rdmacm ESTABLISHED 982 * event is processed. 983 */ 984 if (wc->status == IB_WC_SUCCESS) { 985 rds_ib_process_recv(conn, recv, wc->byte_len, state); 986 } else { 987 /* We expect errors as the qp is drained during shutdown */ 988 if (rds_conn_up(conn) || rds_conn_connecting(conn)) 989 rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c> had status %u (%s), disconnecting and reconnecting\n", 990 &conn->c_laddr, &conn->c_faddr, 991 wc->status, 992 ib_wc_status_msg(wc->status)); 993 } 994 995 /* rds_ib_process_recv() doesn't always consume the frag, and 996 * we might not have called it at all if the wc didn't indicate 997 * success. We already unmapped the frag's pages, though, and 998 * the following rds_ib_ring_free() call tells the refill path 999 * that it will not find an allocated frag here. Make sure we 1000 * keep that promise by freeing a frag that's still on the ring. 1001 */ 1002 if (recv->r_frag) { 1003 rds_ib_frag_free(ic, recv->r_frag); 1004 recv->r_frag = NULL; 1005 } 1006 rds_ib_ring_free(&ic->i_recv_ring, 1); 1007 1008 /* If we ever end up with a really empty receive ring, we're 1009 * in deep trouble, as the sender will definitely see RNR 1010 * timeouts. */ 1011 if (rds_ib_ring_empty(&ic->i_recv_ring)) 1012 rds_ib_stats_inc(s_ib_rx_ring_empty); 1013 1014 if (rds_ib_ring_low(&ic->i_recv_ring)) { 1015 rds_ib_recv_refill(conn, 0, GFP_NOWAIT); 1016 rds_ib_stats_inc(s_ib_rx_refill_from_cq); 1017 } 1018 } 1019 1020 int rds_ib_recv_path(struct rds_conn_path *cp) 1021 { 1022 struct rds_connection *conn = cp->cp_conn; 1023 struct rds_ib_connection *ic = conn->c_transport_data; 1024 1025 rdsdebug("conn %p\n", conn); 1026 if (rds_conn_up(conn)) { 1027 rds_ib_attempt_ack(ic); 1028 rds_ib_recv_refill(conn, 0, GFP_KERNEL); 1029 rds_ib_stats_inc(s_ib_rx_refill_from_thread); 1030 } 1031 1032 return 0; 1033 } 1034 1035 int rds_ib_recv_init(void) 1036 { 1037 struct sysinfo si; 1038 int ret = -ENOMEM; 1039 1040 /* Default to 30% of all available RAM for recv memory */ 1041 si_meminfo(&si); 1042 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; 1043 1044 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming", 1045 sizeof(struct rds_ib_incoming), 1046 0, SLAB_HWCACHE_ALIGN, NULL); 1047 if (!rds_ib_incoming_slab) 1048 goto out; 1049 1050 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", 1051 sizeof(struct rds_page_frag), 1052 0, SLAB_HWCACHE_ALIGN, NULL); 1053 if (!rds_ib_frag_slab) { 1054 kmem_cache_destroy(rds_ib_incoming_slab); 1055 rds_ib_incoming_slab = NULL; 1056 } else 1057 ret = 0; 1058 out: 1059 return ret; 1060 } 1061 1062 void rds_ib_recv_exit(void) 1063 { 1064 kmem_cache_destroy(rds_ib_incoming_slab); 1065 kmem_cache_destroy(rds_ib_frag_slab); 1066 } 1067