xref: /openbmc/linux/net/rds/ib_recv.c (revision 9a8f3203)
1 /*
2  * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42 
43 static struct kmem_cache *rds_ib_incoming_slab;
44 static struct kmem_cache *rds_ib_frag_slab;
45 static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
46 
47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
48 {
49 	struct rds_ib_recv_work *recv;
50 	u32 i;
51 
52 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
53 		struct ib_sge *sge;
54 
55 		recv->r_ibinc = NULL;
56 		recv->r_frag = NULL;
57 
58 		recv->r_wr.next = NULL;
59 		recv->r_wr.wr_id = i;
60 		recv->r_wr.sg_list = recv->r_sge;
61 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
62 
63 		sge = &recv->r_sge[0];
64 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
65 		sge->length = sizeof(struct rds_header);
66 		sge->lkey = ic->i_pd->local_dma_lkey;
67 
68 		sge = &recv->r_sge[1];
69 		sge->addr = 0;
70 		sge->length = RDS_FRAG_SIZE;
71 		sge->lkey = ic->i_pd->local_dma_lkey;
72 	}
73 }
74 
75 /*
76  * The entire 'from' list, including the from element itself, is put on
77  * to the tail of the 'to' list.
78  */
79 static void list_splice_entire_tail(struct list_head *from,
80 				    struct list_head *to)
81 {
82 	struct list_head *from_last = from->prev;
83 
84 	list_splice_tail(from_last, to);
85 	list_add_tail(from_last, to);
86 }
87 
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
89 {
90 	struct list_head *tmp;
91 
92 	tmp = xchg(&cache->xfer, NULL);
93 	if (tmp) {
94 		if (cache->ready)
95 			list_splice_entire_tail(tmp, cache->ready);
96 		else
97 			cache->ready = tmp;
98 	}
99 }
100 
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
102 {
103 	struct rds_ib_cache_head *head;
104 	int cpu;
105 
106 	cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
107 	if (!cache->percpu)
108 	       return -ENOMEM;
109 
110 	for_each_possible_cpu(cpu) {
111 		head = per_cpu_ptr(cache->percpu, cpu);
112 		head->first = NULL;
113 		head->count = 0;
114 	}
115 	cache->xfer = NULL;
116 	cache->ready = NULL;
117 
118 	return 0;
119 }
120 
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
122 {
123 	int ret;
124 
125 	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
126 	if (!ret) {
127 		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
128 		if (ret)
129 			free_percpu(ic->i_cache_incs.percpu);
130 	}
131 
132 	return ret;
133 }
134 
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
136 					  struct list_head *caller_list)
137 {
138 	struct rds_ib_cache_head *head;
139 	int cpu;
140 
141 	for_each_possible_cpu(cpu) {
142 		head = per_cpu_ptr(cache->percpu, cpu);
143 		if (head->first) {
144 			list_splice_entire_tail(head->first, caller_list);
145 			head->first = NULL;
146 		}
147 	}
148 
149 	if (cache->ready) {
150 		list_splice_entire_tail(cache->ready, caller_list);
151 		cache->ready = NULL;
152 	}
153 }
154 
155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
156 {
157 	struct rds_ib_incoming *inc;
158 	struct rds_ib_incoming *inc_tmp;
159 	struct rds_page_frag *frag;
160 	struct rds_page_frag *frag_tmp;
161 	LIST_HEAD(list);
162 
163 	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
164 	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
165 	free_percpu(ic->i_cache_incs.percpu);
166 
167 	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
168 		list_del(&inc->ii_cache_entry);
169 		WARN_ON(!list_empty(&inc->ii_frags));
170 		kmem_cache_free(rds_ib_incoming_slab, inc);
171 	}
172 
173 	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
174 	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
175 	free_percpu(ic->i_cache_frags.percpu);
176 
177 	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
178 		list_del(&frag->f_cache_entry);
179 		WARN_ON(!list_empty(&frag->f_item));
180 		kmem_cache_free(rds_ib_frag_slab, frag);
181 	}
182 }
183 
184 /* fwd decl */
185 static void rds_ib_recv_cache_put(struct list_head *new_item,
186 				  struct rds_ib_refill_cache *cache);
187 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
188 
189 
190 /* Recycle frag and attached recv buffer f_sg */
191 static void rds_ib_frag_free(struct rds_ib_connection *ic,
192 			     struct rds_page_frag *frag)
193 {
194 	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
195 
196 	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
197 	atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
198 	rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
199 }
200 
201 /* Recycle inc after freeing attached frags */
202 void rds_ib_inc_free(struct rds_incoming *inc)
203 {
204 	struct rds_ib_incoming *ibinc;
205 	struct rds_page_frag *frag;
206 	struct rds_page_frag *pos;
207 	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
208 
209 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
210 
211 	/* Free attached frags */
212 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
213 		list_del_init(&frag->f_item);
214 		rds_ib_frag_free(ic, frag);
215 	}
216 	BUG_ON(!list_empty(&ibinc->ii_frags));
217 
218 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
219 	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
220 }
221 
222 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
223 				  struct rds_ib_recv_work *recv)
224 {
225 	if (recv->r_ibinc) {
226 		rds_inc_put(&recv->r_ibinc->ii_inc);
227 		recv->r_ibinc = NULL;
228 	}
229 	if (recv->r_frag) {
230 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
231 		rds_ib_frag_free(ic, recv->r_frag);
232 		recv->r_frag = NULL;
233 	}
234 }
235 
236 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
237 {
238 	u32 i;
239 
240 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
241 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
242 }
243 
244 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
245 						     gfp_t slab_mask)
246 {
247 	struct rds_ib_incoming *ibinc;
248 	struct list_head *cache_item;
249 	int avail_allocs;
250 
251 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
252 	if (cache_item) {
253 		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
254 	} else {
255 		avail_allocs = atomic_add_unless(&rds_ib_allocation,
256 						 1, rds_ib_sysctl_max_recv_allocation);
257 		if (!avail_allocs) {
258 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
259 			return NULL;
260 		}
261 		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
262 		if (!ibinc) {
263 			atomic_dec(&rds_ib_allocation);
264 			return NULL;
265 		}
266 		rds_ib_stats_inc(s_ib_rx_total_incs);
267 	}
268 	INIT_LIST_HEAD(&ibinc->ii_frags);
269 	rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
270 
271 	return ibinc;
272 }
273 
274 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
275 						    gfp_t slab_mask, gfp_t page_mask)
276 {
277 	struct rds_page_frag *frag;
278 	struct list_head *cache_item;
279 	int ret;
280 
281 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
282 	if (cache_item) {
283 		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
284 		atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
285 		rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
286 	} else {
287 		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
288 		if (!frag)
289 			return NULL;
290 
291 		sg_init_table(&frag->f_sg, 1);
292 		ret = rds_page_remainder_alloc(&frag->f_sg,
293 					       RDS_FRAG_SIZE, page_mask);
294 		if (ret) {
295 			kmem_cache_free(rds_ib_frag_slab, frag);
296 			return NULL;
297 		}
298 		rds_ib_stats_inc(s_ib_rx_total_frags);
299 	}
300 
301 	INIT_LIST_HEAD(&frag->f_item);
302 
303 	return frag;
304 }
305 
306 static int rds_ib_recv_refill_one(struct rds_connection *conn,
307 				  struct rds_ib_recv_work *recv, gfp_t gfp)
308 {
309 	struct rds_ib_connection *ic = conn->c_transport_data;
310 	struct ib_sge *sge;
311 	int ret = -ENOMEM;
312 	gfp_t slab_mask = GFP_NOWAIT;
313 	gfp_t page_mask = GFP_NOWAIT;
314 
315 	if (gfp & __GFP_DIRECT_RECLAIM) {
316 		slab_mask = GFP_KERNEL;
317 		page_mask = GFP_HIGHUSER;
318 	}
319 
320 	if (!ic->i_cache_incs.ready)
321 		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
322 	if (!ic->i_cache_frags.ready)
323 		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
324 
325 	/*
326 	 * ibinc was taken from recv if recv contained the start of a message.
327 	 * recvs that were continuations will still have this allocated.
328 	 */
329 	if (!recv->r_ibinc) {
330 		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
331 		if (!recv->r_ibinc)
332 			goto out;
333 	}
334 
335 	WARN_ON(recv->r_frag); /* leak! */
336 	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
337 	if (!recv->r_frag)
338 		goto out;
339 
340 	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
341 			    1, DMA_FROM_DEVICE);
342 	WARN_ON(ret != 1);
343 
344 	sge = &recv->r_sge[0];
345 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
346 	sge->length = sizeof(struct rds_header);
347 
348 	sge = &recv->r_sge[1];
349 	sge->addr = sg_dma_address(&recv->r_frag->f_sg);
350 	sge->length = sg_dma_len(&recv->r_frag->f_sg);
351 
352 	ret = 0;
353 out:
354 	return ret;
355 }
356 
357 static int acquire_refill(struct rds_connection *conn)
358 {
359 	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
360 }
361 
362 static void release_refill(struct rds_connection *conn)
363 {
364 	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
365 
366 	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
367 	 * hot path and finding waiters is very rare.  We don't want to walk
368 	 * the system-wide hashed waitqueue buckets in the fast path only to
369 	 * almost never find waiters.
370 	 */
371 	if (waitqueue_active(&conn->c_waitq))
372 		wake_up_all(&conn->c_waitq);
373 }
374 
375 /*
376  * This tries to allocate and post unused work requests after making sure that
377  * they have all the allocations they need to queue received fragments into
378  * sockets.
379  */
380 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
381 {
382 	struct rds_ib_connection *ic = conn->c_transport_data;
383 	struct rds_ib_recv_work *recv;
384 	unsigned int posted = 0;
385 	int ret = 0;
386 	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
387 	u32 pos;
388 
389 	/* the goal here is to just make sure that someone, somewhere
390 	 * is posting buffers.  If we can't get the refill lock,
391 	 * let them do their thing
392 	 */
393 	if (!acquire_refill(conn))
394 		return;
395 
396 	while ((prefill || rds_conn_up(conn)) &&
397 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
398 		if (pos >= ic->i_recv_ring.w_nr) {
399 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
400 					pos);
401 			break;
402 		}
403 
404 		recv = &ic->i_recvs[pos];
405 		ret = rds_ib_recv_refill_one(conn, recv, gfp);
406 		if (ret) {
407 			break;
408 		}
409 
410 		rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
411 			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
412 			 (long)sg_dma_address(&recv->r_frag->f_sg));
413 
414 		/* XXX when can this fail? */
415 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
416 		if (ret) {
417 			rds_ib_conn_error(conn, "recv post on "
418 			       "%pI6c returned %d, disconnecting and "
419 			       "reconnecting\n", &conn->c_faddr,
420 			       ret);
421 			break;
422 		}
423 
424 		posted++;
425 	}
426 
427 	/* We're doing flow control - update the window. */
428 	if (ic->i_flowctl && posted)
429 		rds_ib_advertise_credits(conn, posted);
430 
431 	if (ret)
432 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
433 
434 	release_refill(conn);
435 
436 	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
437 	 * in this case the ring being low is going to lead to more interrupts
438 	 * and we can safely let the softirq code take care of it unless the
439 	 * ring is completely empty.
440 	 *
441 	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
442 	 * we might have raced with the softirq code while we had the refill
443 	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
444 	 * if we should requeue.
445 	 */
446 	if (rds_conn_up(conn) &&
447 	    ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
448 	    rds_ib_ring_empty(&ic->i_recv_ring))) {
449 		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
450 	}
451 }
452 
453 /*
454  * We want to recycle several types of recv allocations, like incs and frags.
455  * To use this, the *_free() function passes in the ptr to a list_head within
456  * the recyclee, as well as the cache to put it on.
457  *
458  * First, we put the memory on a percpu list. When this reaches a certain size,
459  * We move it to an intermediate non-percpu list in a lockless manner, with some
460  * xchg/compxchg wizardry.
461  *
462  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
463  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
464  * list_empty() will return true with one element is actually present.
465  */
466 static void rds_ib_recv_cache_put(struct list_head *new_item,
467 				 struct rds_ib_refill_cache *cache)
468 {
469 	unsigned long flags;
470 	struct list_head *old, *chpfirst;
471 
472 	local_irq_save(flags);
473 
474 	chpfirst = __this_cpu_read(cache->percpu->first);
475 	if (!chpfirst)
476 		INIT_LIST_HEAD(new_item);
477 	else /* put on front */
478 		list_add_tail(new_item, chpfirst);
479 
480 	__this_cpu_write(cache->percpu->first, new_item);
481 	__this_cpu_inc(cache->percpu->count);
482 
483 	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
484 		goto end;
485 
486 	/*
487 	 * Return our per-cpu first list to the cache's xfer by atomically
488 	 * grabbing the current xfer list, appending it to our per-cpu list,
489 	 * and then atomically returning that entire list back to the
490 	 * cache's xfer list as long as it's still empty.
491 	 */
492 	do {
493 		old = xchg(&cache->xfer, NULL);
494 		if (old)
495 			list_splice_entire_tail(old, chpfirst);
496 		old = cmpxchg(&cache->xfer, NULL, chpfirst);
497 	} while (old);
498 
499 
500 	__this_cpu_write(cache->percpu->first, NULL);
501 	__this_cpu_write(cache->percpu->count, 0);
502 end:
503 	local_irq_restore(flags);
504 }
505 
506 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
507 {
508 	struct list_head *head = cache->ready;
509 
510 	if (head) {
511 		if (!list_empty(head)) {
512 			cache->ready = head->next;
513 			list_del_init(head);
514 		} else
515 			cache->ready = NULL;
516 	}
517 
518 	return head;
519 }
520 
521 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
522 {
523 	struct rds_ib_incoming *ibinc;
524 	struct rds_page_frag *frag;
525 	unsigned long to_copy;
526 	unsigned long frag_off = 0;
527 	int copied = 0;
528 	int ret;
529 	u32 len;
530 
531 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
532 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
533 	len = be32_to_cpu(inc->i_hdr.h_len);
534 
535 	while (iov_iter_count(to) && copied < len) {
536 		if (frag_off == RDS_FRAG_SIZE) {
537 			frag = list_entry(frag->f_item.next,
538 					  struct rds_page_frag, f_item);
539 			frag_off = 0;
540 		}
541 		to_copy = min_t(unsigned long, iov_iter_count(to),
542 				RDS_FRAG_SIZE - frag_off);
543 		to_copy = min_t(unsigned long, to_copy, len - copied);
544 
545 		/* XXX needs + offset for multiple recvs per page */
546 		rds_stats_add(s_copy_to_user, to_copy);
547 		ret = copy_page_to_iter(sg_page(&frag->f_sg),
548 					frag->f_sg.offset + frag_off,
549 					to_copy,
550 					to);
551 		if (ret != to_copy)
552 			return -EFAULT;
553 
554 		frag_off += to_copy;
555 		copied += to_copy;
556 	}
557 
558 	return copied;
559 }
560 
561 /* ic starts out kzalloc()ed */
562 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
563 {
564 	struct ib_send_wr *wr = &ic->i_ack_wr;
565 	struct ib_sge *sge = &ic->i_ack_sge;
566 
567 	sge->addr = ic->i_ack_dma;
568 	sge->length = sizeof(struct rds_header);
569 	sge->lkey = ic->i_pd->local_dma_lkey;
570 
571 	wr->sg_list = sge;
572 	wr->num_sge = 1;
573 	wr->opcode = IB_WR_SEND;
574 	wr->wr_id = RDS_IB_ACK_WR_ID;
575 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
576 }
577 
578 /*
579  * You'd think that with reliable IB connections you wouldn't need to ack
580  * messages that have been received.  The problem is that IB hardware generates
581  * an ack message before it has DMAed the message into memory.  This creates a
582  * potential message loss if the HCA is disabled for any reason between when it
583  * sends the ack and before the message is DMAed and processed.  This is only a
584  * potential issue if another HCA is available for fail-over.
585  *
586  * When the remote host receives our ack they'll free the sent message from
587  * their send queue.  To decrease the latency of this we always send an ack
588  * immediately after we've received messages.
589  *
590  * For simplicity, we only have one ack in flight at a time.  This puts
591  * pressure on senders to have deep enough send queues to absorb the latency of
592  * a single ack frame being in flight.  This might not be good enough.
593  *
594  * This is implemented by have a long-lived send_wr and sge which point to a
595  * statically allocated ack frame.  This ack wr does not fall under the ring
596  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
597  * room for it beyond the ring size.  Send completion notices its special
598  * wr_id and avoids working with the ring in that case.
599  */
600 #ifndef KERNEL_HAS_ATOMIC64
601 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
602 {
603 	unsigned long flags;
604 
605 	spin_lock_irqsave(&ic->i_ack_lock, flags);
606 	ic->i_ack_next = seq;
607 	if (ack_required)
608 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
609 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
610 }
611 
612 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
613 {
614 	unsigned long flags;
615 	u64 seq;
616 
617 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
618 
619 	spin_lock_irqsave(&ic->i_ack_lock, flags);
620 	seq = ic->i_ack_next;
621 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
622 
623 	return seq;
624 }
625 #else
626 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
627 {
628 	atomic64_set(&ic->i_ack_next, seq);
629 	if (ack_required) {
630 		smp_mb__before_atomic();
631 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
632 	}
633 }
634 
635 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
636 {
637 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
638 	smp_mb__after_atomic();
639 
640 	return atomic64_read(&ic->i_ack_next);
641 }
642 #endif
643 
644 
645 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
646 {
647 	struct rds_header *hdr = ic->i_ack;
648 	u64 seq;
649 	int ret;
650 
651 	seq = rds_ib_get_ack(ic);
652 
653 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
654 	rds_message_populate_header(hdr, 0, 0, 0);
655 	hdr->h_ack = cpu_to_be64(seq);
656 	hdr->h_credit = adv_credits;
657 	rds_message_make_checksum(hdr);
658 	ic->i_ack_queued = jiffies;
659 
660 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
661 	if (unlikely(ret)) {
662 		/* Failed to send. Release the WR, and
663 		 * force another ACK.
664 		 */
665 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
666 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
667 
668 		rds_ib_stats_inc(s_ib_ack_send_failure);
669 
670 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
671 	} else
672 		rds_ib_stats_inc(s_ib_ack_sent);
673 }
674 
675 /*
676  * There are 3 ways of getting acknowledgements to the peer:
677  *  1.	We call rds_ib_attempt_ack from the recv completion handler
678  *	to send an ACK-only frame.
679  *	However, there can be only one such frame in the send queue
680  *	at any time, so we may have to postpone it.
681  *  2.	When another (data) packet is transmitted while there's
682  *	an ACK in the queue, we piggyback the ACK sequence number
683  *	on the data packet.
684  *  3.	If the ACK WR is done sending, we get called from the
685  *	send queue completion handler, and check whether there's
686  *	another ACK pending (postponed because the WR was on the
687  *	queue). If so, we transmit it.
688  *
689  * We maintain 2 variables:
690  *  -	i_ack_flags, which keeps track of whether the ACK WR
691  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
692  *  -	i_ack_next, which is the last sequence number we received
693  *
694  * Potentially, send queue and receive queue handlers can run concurrently.
695  * It would be nice to not have to use a spinlock to synchronize things,
696  * but the one problem that rules this out is that 64bit updates are
697  * not atomic on all platforms. Things would be a lot simpler if
698  * we had atomic64 or maybe cmpxchg64 everywhere.
699  *
700  * Reconnecting complicates this picture just slightly. When we
701  * reconnect, we may be seeing duplicate packets. The peer
702  * is retransmitting them, because it hasn't seen an ACK for
703  * them. It is important that we ACK these.
704  *
705  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
706  * this flag set *MUST* be acknowledged immediately.
707  */
708 
709 /*
710  * When we get here, we're called from the recv queue handler.
711  * Check whether we ought to transmit an ACK.
712  */
713 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
714 {
715 	unsigned int adv_credits;
716 
717 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
718 		return;
719 
720 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
721 		rds_ib_stats_inc(s_ib_ack_send_delayed);
722 		return;
723 	}
724 
725 	/* Can we get a send credit? */
726 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
727 		rds_ib_stats_inc(s_ib_tx_throttle);
728 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
729 		return;
730 	}
731 
732 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
733 	rds_ib_send_ack(ic, adv_credits);
734 }
735 
736 /*
737  * We get here from the send completion handler, when the
738  * adapter tells us the ACK frame was sent.
739  */
740 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
741 {
742 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
743 	rds_ib_attempt_ack(ic);
744 }
745 
746 /*
747  * This is called by the regular xmit code when it wants to piggyback
748  * an ACK on an outgoing frame.
749  */
750 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
751 {
752 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
753 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
754 	return rds_ib_get_ack(ic);
755 }
756 
757 /*
758  * It's kind of lame that we're copying from the posted receive pages into
759  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
760  * them.  But receiving new congestion bitmaps should be a *rare* event, so
761  * hopefully we won't need to invest that complexity in making it more
762  * efficient.  By copying we can share a simpler core with TCP which has to
763  * copy.
764  */
765 static void rds_ib_cong_recv(struct rds_connection *conn,
766 			      struct rds_ib_incoming *ibinc)
767 {
768 	struct rds_cong_map *map;
769 	unsigned int map_off;
770 	unsigned int map_page;
771 	struct rds_page_frag *frag;
772 	unsigned long frag_off;
773 	unsigned long to_copy;
774 	unsigned long copied;
775 	uint64_t uncongested = 0;
776 	void *addr;
777 
778 	/* catch completely corrupt packets */
779 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
780 		return;
781 
782 	map = conn->c_fcong;
783 	map_page = 0;
784 	map_off = 0;
785 
786 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
787 	frag_off = 0;
788 
789 	copied = 0;
790 
791 	while (copied < RDS_CONG_MAP_BYTES) {
792 		uint64_t *src, *dst;
793 		unsigned int k;
794 
795 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
796 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
797 
798 		addr = kmap_atomic(sg_page(&frag->f_sg));
799 
800 		src = addr + frag->f_sg.offset + frag_off;
801 		dst = (void *)map->m_page_addrs[map_page] + map_off;
802 		for (k = 0; k < to_copy; k += 8) {
803 			/* Record ports that became uncongested, ie
804 			 * bits that changed from 0 to 1. */
805 			uncongested |= ~(*src) & *dst;
806 			*dst++ = *src++;
807 		}
808 		kunmap_atomic(addr);
809 
810 		copied += to_copy;
811 
812 		map_off += to_copy;
813 		if (map_off == PAGE_SIZE) {
814 			map_off = 0;
815 			map_page++;
816 		}
817 
818 		frag_off += to_copy;
819 		if (frag_off == RDS_FRAG_SIZE) {
820 			frag = list_entry(frag->f_item.next,
821 					  struct rds_page_frag, f_item);
822 			frag_off = 0;
823 		}
824 	}
825 
826 	/* the congestion map is in little endian order */
827 	uncongested = le64_to_cpu(uncongested);
828 
829 	rds_cong_map_updated(map, uncongested);
830 }
831 
832 static void rds_ib_process_recv(struct rds_connection *conn,
833 				struct rds_ib_recv_work *recv, u32 data_len,
834 				struct rds_ib_ack_state *state)
835 {
836 	struct rds_ib_connection *ic = conn->c_transport_data;
837 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
838 	struct rds_header *ihdr, *hdr;
839 
840 	/* XXX shut down the connection if port 0,0 are seen? */
841 
842 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
843 		 data_len);
844 
845 	if (data_len < sizeof(struct rds_header)) {
846 		rds_ib_conn_error(conn, "incoming message "
847 		       "from %pI6c didn't include a "
848 		       "header, disconnecting and "
849 		       "reconnecting\n",
850 		       &conn->c_faddr);
851 		return;
852 	}
853 	data_len -= sizeof(struct rds_header);
854 
855 	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
856 
857 	/* Validate the checksum. */
858 	if (!rds_message_verify_checksum(ihdr)) {
859 		rds_ib_conn_error(conn, "incoming message "
860 		       "from %pI6c has corrupted header - "
861 		       "forcing a reconnect\n",
862 		       &conn->c_faddr);
863 		rds_stats_inc(s_recv_drop_bad_checksum);
864 		return;
865 	}
866 
867 	/* Process the ACK sequence which comes with every packet */
868 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
869 	state->ack_recv_valid = 1;
870 
871 	/* Process the credits update if there was one */
872 	if (ihdr->h_credit)
873 		rds_ib_send_add_credits(conn, ihdr->h_credit);
874 
875 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
876 		/* This is an ACK-only packet. The fact that it gets
877 		 * special treatment here is that historically, ACKs
878 		 * were rather special beasts.
879 		 */
880 		rds_ib_stats_inc(s_ib_ack_received);
881 
882 		/*
883 		 * Usually the frags make their way on to incs and are then freed as
884 		 * the inc is freed.  We don't go that route, so we have to drop the
885 		 * page ref ourselves.  We can't just leave the page on the recv
886 		 * because that confuses the dma mapping of pages and each recv's use
887 		 * of a partial page.
888 		 *
889 		 * FIXME: Fold this into the code path below.
890 		 */
891 		rds_ib_frag_free(ic, recv->r_frag);
892 		recv->r_frag = NULL;
893 		return;
894 	}
895 
896 	/*
897 	 * If we don't already have an inc on the connection then this
898 	 * fragment has a header and starts a message.. copy its header
899 	 * into the inc and save the inc so we can hang upcoming fragments
900 	 * off its list.
901 	 */
902 	if (!ibinc) {
903 		ibinc = recv->r_ibinc;
904 		recv->r_ibinc = NULL;
905 		ic->i_ibinc = ibinc;
906 
907 		hdr = &ibinc->ii_inc.i_hdr;
908 		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
909 				local_clock();
910 		memcpy(hdr, ihdr, sizeof(*hdr));
911 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
912 		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
913 				local_clock();
914 
915 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
916 			 ic->i_recv_data_rem, hdr->h_flags);
917 	} else {
918 		hdr = &ibinc->ii_inc.i_hdr;
919 		/* We can't just use memcmp here; fragments of a
920 		 * single message may carry different ACKs */
921 		if (hdr->h_sequence != ihdr->h_sequence ||
922 		    hdr->h_len != ihdr->h_len ||
923 		    hdr->h_sport != ihdr->h_sport ||
924 		    hdr->h_dport != ihdr->h_dport) {
925 			rds_ib_conn_error(conn,
926 				"fragment header mismatch; forcing reconnect\n");
927 			return;
928 		}
929 	}
930 
931 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
932 	recv->r_frag = NULL;
933 
934 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
935 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
936 	else {
937 		ic->i_recv_data_rem = 0;
938 		ic->i_ibinc = NULL;
939 
940 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
941 			rds_ib_cong_recv(conn, ibinc);
942 		} else {
943 			rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
944 					  &ibinc->ii_inc, GFP_ATOMIC);
945 			state->ack_next = be64_to_cpu(hdr->h_sequence);
946 			state->ack_next_valid = 1;
947 		}
948 
949 		/* Evaluate the ACK_REQUIRED flag *after* we received
950 		 * the complete frame, and after bumping the next_rx
951 		 * sequence. */
952 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
953 			rds_stats_inc(s_recv_ack_required);
954 			state->ack_required = 1;
955 		}
956 
957 		rds_inc_put(&ibinc->ii_inc);
958 	}
959 }
960 
961 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
962 			     struct ib_wc *wc,
963 			     struct rds_ib_ack_state *state)
964 {
965 	struct rds_connection *conn = ic->conn;
966 	struct rds_ib_recv_work *recv;
967 
968 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
969 		 (unsigned long long)wc->wr_id, wc->status,
970 		 ib_wc_status_msg(wc->status), wc->byte_len,
971 		 be32_to_cpu(wc->ex.imm_data));
972 
973 	rds_ib_stats_inc(s_ib_rx_cq_event);
974 	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
975 	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
976 			DMA_FROM_DEVICE);
977 
978 	/* Also process recvs in connecting state because it is possible
979 	 * to get a recv completion _before_ the rdmacm ESTABLISHED
980 	 * event is processed.
981 	 */
982 	if (wc->status == IB_WC_SUCCESS) {
983 		rds_ib_process_recv(conn, recv, wc->byte_len, state);
984 	} else {
985 		/* We expect errors as the qp is drained during shutdown */
986 		if (rds_conn_up(conn) || rds_conn_connecting(conn))
987 			rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), disconnecting and reconnecting\n",
988 					  &conn->c_laddr, &conn->c_faddr,
989 					  conn->c_tos, wc->status,
990 					  ib_wc_status_msg(wc->status));
991 	}
992 
993 	/* rds_ib_process_recv() doesn't always consume the frag, and
994 	 * we might not have called it at all if the wc didn't indicate
995 	 * success. We already unmapped the frag's pages, though, and
996 	 * the following rds_ib_ring_free() call tells the refill path
997 	 * that it will not find an allocated frag here. Make sure we
998 	 * keep that promise by freeing a frag that's still on the ring.
999 	 */
1000 	if (recv->r_frag) {
1001 		rds_ib_frag_free(ic, recv->r_frag);
1002 		recv->r_frag = NULL;
1003 	}
1004 	rds_ib_ring_free(&ic->i_recv_ring, 1);
1005 
1006 	/* If we ever end up with a really empty receive ring, we're
1007 	 * in deep trouble, as the sender will definitely see RNR
1008 	 * timeouts. */
1009 	if (rds_ib_ring_empty(&ic->i_recv_ring))
1010 		rds_ib_stats_inc(s_ib_rx_ring_empty);
1011 
1012 	if (rds_ib_ring_low(&ic->i_recv_ring)) {
1013 		rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
1014 		rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1015 	}
1016 }
1017 
1018 int rds_ib_recv_path(struct rds_conn_path *cp)
1019 {
1020 	struct rds_connection *conn = cp->cp_conn;
1021 	struct rds_ib_connection *ic = conn->c_transport_data;
1022 
1023 	rdsdebug("conn %p\n", conn);
1024 	if (rds_conn_up(conn)) {
1025 		rds_ib_attempt_ack(ic);
1026 		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1027 		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 int rds_ib_recv_init(void)
1034 {
1035 	struct sysinfo si;
1036 	int ret = -ENOMEM;
1037 
1038 	/* Default to 30% of all available RAM for recv memory */
1039 	si_meminfo(&si);
1040 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1041 
1042 	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1043 					sizeof(struct rds_ib_incoming),
1044 					0, SLAB_HWCACHE_ALIGN, NULL);
1045 	if (!rds_ib_incoming_slab)
1046 		goto out;
1047 
1048 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1049 					sizeof(struct rds_page_frag),
1050 					0, SLAB_HWCACHE_ALIGN, NULL);
1051 	if (!rds_ib_frag_slab) {
1052 		kmem_cache_destroy(rds_ib_incoming_slab);
1053 		rds_ib_incoming_slab = NULL;
1054 	} else
1055 		ret = 0;
1056 out:
1057 	return ret;
1058 }
1059 
1060 void rds_ib_recv_exit(void)
1061 {
1062 	kmem_cache_destroy(rds_ib_incoming_slab);
1063 	kmem_cache_destroy(rds_ib_frag_slab);
1064 }
1065