xref: /openbmc/linux/net/rds/ib_recv.c (revision 8e9356c6)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds.h"
40 #include "ib.h"
41 
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
45 
46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
47 {
48 	struct rds_ib_recv_work *recv;
49 	u32 i;
50 
51 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
52 		struct ib_sge *sge;
53 
54 		recv->r_ibinc = NULL;
55 		recv->r_frag = NULL;
56 
57 		recv->r_wr.next = NULL;
58 		recv->r_wr.wr_id = i;
59 		recv->r_wr.sg_list = recv->r_sge;
60 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
61 
62 		sge = &recv->r_sge[0];
63 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
64 		sge->length = sizeof(struct rds_header);
65 		sge->lkey = ic->i_mr->lkey;
66 
67 		sge = &recv->r_sge[1];
68 		sge->addr = 0;
69 		sge->length = RDS_FRAG_SIZE;
70 		sge->lkey = ic->i_mr->lkey;
71 	}
72 }
73 
74 /*
75  * The entire 'from' list, including the from element itself, is put on
76  * to the tail of the 'to' list.
77  */
78 static void list_splice_entire_tail(struct list_head *from,
79 				    struct list_head *to)
80 {
81 	struct list_head *from_last = from->prev;
82 
83 	list_splice_tail(from_last, to);
84 	list_add_tail(from_last, to);
85 }
86 
87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
88 {
89 	struct list_head *tmp;
90 
91 	tmp = xchg(&cache->xfer, NULL);
92 	if (tmp) {
93 		if (cache->ready)
94 			list_splice_entire_tail(tmp, cache->ready);
95 		else
96 			cache->ready = tmp;
97 	}
98 }
99 
100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
101 {
102 	struct rds_ib_cache_head *head;
103 	int cpu;
104 
105 	cache->percpu = alloc_percpu(struct rds_ib_cache_head);
106 	if (!cache->percpu)
107 	       return -ENOMEM;
108 
109 	for_each_possible_cpu(cpu) {
110 		head = per_cpu_ptr(cache->percpu, cpu);
111 		head->first = NULL;
112 		head->count = 0;
113 	}
114 	cache->xfer = NULL;
115 	cache->ready = NULL;
116 
117 	return 0;
118 }
119 
120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
121 {
122 	int ret;
123 
124 	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
125 	if (!ret) {
126 		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
127 		if (ret)
128 			free_percpu(ic->i_cache_incs.percpu);
129 	}
130 
131 	return ret;
132 }
133 
134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
135 					  struct list_head *caller_list)
136 {
137 	struct rds_ib_cache_head *head;
138 	int cpu;
139 
140 	for_each_possible_cpu(cpu) {
141 		head = per_cpu_ptr(cache->percpu, cpu);
142 		if (head->first) {
143 			list_splice_entire_tail(head->first, caller_list);
144 			head->first = NULL;
145 		}
146 	}
147 
148 	if (cache->ready) {
149 		list_splice_entire_tail(cache->ready, caller_list);
150 		cache->ready = NULL;
151 	}
152 }
153 
154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
155 {
156 	struct rds_ib_incoming *inc;
157 	struct rds_ib_incoming *inc_tmp;
158 	struct rds_page_frag *frag;
159 	struct rds_page_frag *frag_tmp;
160 	LIST_HEAD(list);
161 
162 	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
163 	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
164 	free_percpu(ic->i_cache_incs.percpu);
165 
166 	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
167 		list_del(&inc->ii_cache_entry);
168 		WARN_ON(!list_empty(&inc->ii_frags));
169 		kmem_cache_free(rds_ib_incoming_slab, inc);
170 	}
171 
172 	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
173 	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
174 	free_percpu(ic->i_cache_frags.percpu);
175 
176 	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
177 		list_del(&frag->f_cache_entry);
178 		WARN_ON(!list_empty(&frag->f_item));
179 		kmem_cache_free(rds_ib_frag_slab, frag);
180 	}
181 }
182 
183 /* fwd decl */
184 static void rds_ib_recv_cache_put(struct list_head *new_item,
185 				  struct rds_ib_refill_cache *cache);
186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
187 
188 
189 /* Recycle frag and attached recv buffer f_sg */
190 static void rds_ib_frag_free(struct rds_ib_connection *ic,
191 			     struct rds_page_frag *frag)
192 {
193 	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
194 
195 	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
196 }
197 
198 /* Recycle inc after freeing attached frags */
199 void rds_ib_inc_free(struct rds_incoming *inc)
200 {
201 	struct rds_ib_incoming *ibinc;
202 	struct rds_page_frag *frag;
203 	struct rds_page_frag *pos;
204 	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
205 
206 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
207 
208 	/* Free attached frags */
209 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
210 		list_del_init(&frag->f_item);
211 		rds_ib_frag_free(ic, frag);
212 	}
213 	BUG_ON(!list_empty(&ibinc->ii_frags));
214 
215 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
216 	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
217 }
218 
219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
220 				  struct rds_ib_recv_work *recv)
221 {
222 	if (recv->r_ibinc) {
223 		rds_inc_put(&recv->r_ibinc->ii_inc);
224 		recv->r_ibinc = NULL;
225 	}
226 	if (recv->r_frag) {
227 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
228 		rds_ib_frag_free(ic, recv->r_frag);
229 		recv->r_frag = NULL;
230 	}
231 }
232 
233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
234 {
235 	u32 i;
236 
237 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
238 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
239 }
240 
241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
242 						     gfp_t slab_mask)
243 {
244 	struct rds_ib_incoming *ibinc;
245 	struct list_head *cache_item;
246 	int avail_allocs;
247 
248 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
249 	if (cache_item) {
250 		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
251 	} else {
252 		avail_allocs = atomic_add_unless(&rds_ib_allocation,
253 						 1, rds_ib_sysctl_max_recv_allocation);
254 		if (!avail_allocs) {
255 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
256 			return NULL;
257 		}
258 		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
259 		if (!ibinc) {
260 			atomic_dec(&rds_ib_allocation);
261 			return NULL;
262 		}
263 	}
264 	INIT_LIST_HEAD(&ibinc->ii_frags);
265 	rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
266 
267 	return ibinc;
268 }
269 
270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
271 						    gfp_t slab_mask, gfp_t page_mask)
272 {
273 	struct rds_page_frag *frag;
274 	struct list_head *cache_item;
275 	int ret;
276 
277 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
278 	if (cache_item) {
279 		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
280 	} else {
281 		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
282 		if (!frag)
283 			return NULL;
284 
285 		sg_init_table(&frag->f_sg, 1);
286 		ret = rds_page_remainder_alloc(&frag->f_sg,
287 					       RDS_FRAG_SIZE, page_mask);
288 		if (ret) {
289 			kmem_cache_free(rds_ib_frag_slab, frag);
290 			return NULL;
291 		}
292 	}
293 
294 	INIT_LIST_HEAD(&frag->f_item);
295 
296 	return frag;
297 }
298 
299 static int rds_ib_recv_refill_one(struct rds_connection *conn,
300 				  struct rds_ib_recv_work *recv, int prefill)
301 {
302 	struct rds_ib_connection *ic = conn->c_transport_data;
303 	struct ib_sge *sge;
304 	int ret = -ENOMEM;
305 	gfp_t slab_mask = GFP_NOWAIT;
306 	gfp_t page_mask = GFP_NOWAIT;
307 
308 	if (prefill) {
309 		slab_mask = GFP_KERNEL;
310 		page_mask = GFP_HIGHUSER;
311 	}
312 
313 	if (!ic->i_cache_incs.ready)
314 		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
315 	if (!ic->i_cache_frags.ready)
316 		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
317 
318 	/*
319 	 * ibinc was taken from recv if recv contained the start of a message.
320 	 * recvs that were continuations will still have this allocated.
321 	 */
322 	if (!recv->r_ibinc) {
323 		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
324 		if (!recv->r_ibinc)
325 			goto out;
326 	}
327 
328 	WARN_ON(recv->r_frag); /* leak! */
329 	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
330 	if (!recv->r_frag)
331 		goto out;
332 
333 	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
334 			    1, DMA_FROM_DEVICE);
335 	WARN_ON(ret != 1);
336 
337 	sge = &recv->r_sge[0];
338 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
339 	sge->length = sizeof(struct rds_header);
340 
341 	sge = &recv->r_sge[1];
342 	sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
343 	sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
344 
345 	ret = 0;
346 out:
347 	return ret;
348 }
349 
350 /*
351  * This tries to allocate and post unused work requests after making sure that
352  * they have all the allocations they need to queue received fragments into
353  * sockets.
354  *
355  * -1 is returned if posting fails due to temporary resource exhaustion.
356  */
357 void rds_ib_recv_refill(struct rds_connection *conn, int prefill)
358 {
359 	struct rds_ib_connection *ic = conn->c_transport_data;
360 	struct rds_ib_recv_work *recv;
361 	struct ib_recv_wr *failed_wr;
362 	unsigned int posted = 0;
363 	int ret = 0;
364 	u32 pos;
365 
366 	while ((prefill || rds_conn_up(conn)) &&
367 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
368 		if (pos >= ic->i_recv_ring.w_nr) {
369 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
370 					pos);
371 			break;
372 		}
373 
374 		recv = &ic->i_recvs[pos];
375 		ret = rds_ib_recv_refill_one(conn, recv, prefill);
376 		if (ret) {
377 			break;
378 		}
379 
380 		/* XXX when can this fail? */
381 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
382 		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
383 			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
384 			 (long) ib_sg_dma_address(
385 				ic->i_cm_id->device,
386 				&recv->r_frag->f_sg),
387 			ret);
388 		if (ret) {
389 			rds_ib_conn_error(conn, "recv post on "
390 			       "%pI4 returned %d, disconnecting and "
391 			       "reconnecting\n", &conn->c_faddr,
392 			       ret);
393 			break;
394 		}
395 
396 		posted++;
397 	}
398 
399 	/* We're doing flow control - update the window. */
400 	if (ic->i_flowctl && posted)
401 		rds_ib_advertise_credits(conn, posted);
402 
403 	if (ret)
404 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
405 }
406 
407 /*
408  * We want to recycle several types of recv allocations, like incs and frags.
409  * To use this, the *_free() function passes in the ptr to a list_head within
410  * the recyclee, as well as the cache to put it on.
411  *
412  * First, we put the memory on a percpu list. When this reaches a certain size,
413  * We move it to an intermediate non-percpu list in a lockless manner, with some
414  * xchg/compxchg wizardry.
415  *
416  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
417  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
418  * list_empty() will return true with one element is actually present.
419  */
420 static void rds_ib_recv_cache_put(struct list_head *new_item,
421 				 struct rds_ib_refill_cache *cache)
422 {
423 	unsigned long flags;
424 	struct list_head *old, *chpfirst;
425 
426 	local_irq_save(flags);
427 
428 	chpfirst = __this_cpu_read(cache->percpu->first);
429 	if (!chpfirst)
430 		INIT_LIST_HEAD(new_item);
431 	else /* put on front */
432 		list_add_tail(new_item, chpfirst);
433 
434 	__this_cpu_write(cache->percpu->first, new_item);
435 	__this_cpu_inc(cache->percpu->count);
436 
437 	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
438 		goto end;
439 
440 	/*
441 	 * Return our per-cpu first list to the cache's xfer by atomically
442 	 * grabbing the current xfer list, appending it to our per-cpu list,
443 	 * and then atomically returning that entire list back to the
444 	 * cache's xfer list as long as it's still empty.
445 	 */
446 	do {
447 		old = xchg(&cache->xfer, NULL);
448 		if (old)
449 			list_splice_entire_tail(old, chpfirst);
450 		old = cmpxchg(&cache->xfer, NULL, chpfirst);
451 	} while (old);
452 
453 
454 	__this_cpu_write(cache->percpu->first, NULL);
455 	__this_cpu_write(cache->percpu->count, 0);
456 end:
457 	local_irq_restore(flags);
458 }
459 
460 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
461 {
462 	struct list_head *head = cache->ready;
463 
464 	if (head) {
465 		if (!list_empty(head)) {
466 			cache->ready = head->next;
467 			list_del_init(head);
468 		} else
469 			cache->ready = NULL;
470 	}
471 
472 	return head;
473 }
474 
475 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
476 			    size_t size)
477 {
478 	struct rds_ib_incoming *ibinc;
479 	struct rds_page_frag *frag;
480 	struct iovec *iov = first_iov;
481 	unsigned long to_copy;
482 	unsigned long frag_off = 0;
483 	unsigned long iov_off = 0;
484 	int copied = 0;
485 	int ret;
486 	u32 len;
487 
488 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
489 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
490 	len = be32_to_cpu(inc->i_hdr.h_len);
491 
492 	while (copied < size && copied < len) {
493 		if (frag_off == RDS_FRAG_SIZE) {
494 			frag = list_entry(frag->f_item.next,
495 					  struct rds_page_frag, f_item);
496 			frag_off = 0;
497 		}
498 		while (iov_off == iov->iov_len) {
499 			iov_off = 0;
500 			iov++;
501 		}
502 
503 		to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
504 		to_copy = min_t(size_t, to_copy, size - copied);
505 		to_copy = min_t(unsigned long, to_copy, len - copied);
506 
507 		rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
508 			 "[%p, %u] + %lu\n",
509 			 to_copy, iov->iov_base, iov->iov_len, iov_off,
510 			 sg_page(&frag->f_sg), frag->f_sg.offset, frag_off);
511 
512 		/* XXX needs + offset for multiple recvs per page */
513 		ret = rds_page_copy_to_user(sg_page(&frag->f_sg),
514 					    frag->f_sg.offset + frag_off,
515 					    iov->iov_base + iov_off,
516 					    to_copy);
517 		if (ret) {
518 			copied = ret;
519 			break;
520 		}
521 
522 		iov_off += to_copy;
523 		frag_off += to_copy;
524 		copied += to_copy;
525 	}
526 
527 	return copied;
528 }
529 
530 /* ic starts out kzalloc()ed */
531 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
532 {
533 	struct ib_send_wr *wr = &ic->i_ack_wr;
534 	struct ib_sge *sge = &ic->i_ack_sge;
535 
536 	sge->addr = ic->i_ack_dma;
537 	sge->length = sizeof(struct rds_header);
538 	sge->lkey = ic->i_mr->lkey;
539 
540 	wr->sg_list = sge;
541 	wr->num_sge = 1;
542 	wr->opcode = IB_WR_SEND;
543 	wr->wr_id = RDS_IB_ACK_WR_ID;
544 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
545 }
546 
547 /*
548  * You'd think that with reliable IB connections you wouldn't need to ack
549  * messages that have been received.  The problem is that IB hardware generates
550  * an ack message before it has DMAed the message into memory.  This creates a
551  * potential message loss if the HCA is disabled for any reason between when it
552  * sends the ack and before the message is DMAed and processed.  This is only a
553  * potential issue if another HCA is available for fail-over.
554  *
555  * When the remote host receives our ack they'll free the sent message from
556  * their send queue.  To decrease the latency of this we always send an ack
557  * immediately after we've received messages.
558  *
559  * For simplicity, we only have one ack in flight at a time.  This puts
560  * pressure on senders to have deep enough send queues to absorb the latency of
561  * a single ack frame being in flight.  This might not be good enough.
562  *
563  * This is implemented by have a long-lived send_wr and sge which point to a
564  * statically allocated ack frame.  This ack wr does not fall under the ring
565  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
566  * room for it beyond the ring size.  Send completion notices its special
567  * wr_id and avoids working with the ring in that case.
568  */
569 #ifndef KERNEL_HAS_ATOMIC64
570 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
571 				int ack_required)
572 {
573 	unsigned long flags;
574 
575 	spin_lock_irqsave(&ic->i_ack_lock, flags);
576 	ic->i_ack_next = seq;
577 	if (ack_required)
578 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
579 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
580 }
581 
582 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
583 {
584 	unsigned long flags;
585 	u64 seq;
586 
587 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
588 
589 	spin_lock_irqsave(&ic->i_ack_lock, flags);
590 	seq = ic->i_ack_next;
591 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
592 
593 	return seq;
594 }
595 #else
596 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
597 				int ack_required)
598 {
599 	atomic64_set(&ic->i_ack_next, seq);
600 	if (ack_required) {
601 		smp_mb__before_clear_bit();
602 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
603 	}
604 }
605 
606 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
607 {
608 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
609 	smp_mb__after_clear_bit();
610 
611 	return atomic64_read(&ic->i_ack_next);
612 }
613 #endif
614 
615 
616 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
617 {
618 	struct rds_header *hdr = ic->i_ack;
619 	struct ib_send_wr *failed_wr;
620 	u64 seq;
621 	int ret;
622 
623 	seq = rds_ib_get_ack(ic);
624 
625 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
626 	rds_message_populate_header(hdr, 0, 0, 0);
627 	hdr->h_ack = cpu_to_be64(seq);
628 	hdr->h_credit = adv_credits;
629 	rds_message_make_checksum(hdr);
630 	ic->i_ack_queued = jiffies;
631 
632 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
633 	if (unlikely(ret)) {
634 		/* Failed to send. Release the WR, and
635 		 * force another ACK.
636 		 */
637 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
638 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
639 
640 		rds_ib_stats_inc(s_ib_ack_send_failure);
641 
642 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
643 	} else
644 		rds_ib_stats_inc(s_ib_ack_sent);
645 }
646 
647 /*
648  * There are 3 ways of getting acknowledgements to the peer:
649  *  1.	We call rds_ib_attempt_ack from the recv completion handler
650  *	to send an ACK-only frame.
651  *	However, there can be only one such frame in the send queue
652  *	at any time, so we may have to postpone it.
653  *  2.	When another (data) packet is transmitted while there's
654  *	an ACK in the queue, we piggyback the ACK sequence number
655  *	on the data packet.
656  *  3.	If the ACK WR is done sending, we get called from the
657  *	send queue completion handler, and check whether there's
658  *	another ACK pending (postponed because the WR was on the
659  *	queue). If so, we transmit it.
660  *
661  * We maintain 2 variables:
662  *  -	i_ack_flags, which keeps track of whether the ACK WR
663  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
664  *  -	i_ack_next, which is the last sequence number we received
665  *
666  * Potentially, send queue and receive queue handlers can run concurrently.
667  * It would be nice to not have to use a spinlock to synchronize things,
668  * but the one problem that rules this out is that 64bit updates are
669  * not atomic on all platforms. Things would be a lot simpler if
670  * we had atomic64 or maybe cmpxchg64 everywhere.
671  *
672  * Reconnecting complicates this picture just slightly. When we
673  * reconnect, we may be seeing duplicate packets. The peer
674  * is retransmitting them, because it hasn't seen an ACK for
675  * them. It is important that we ACK these.
676  *
677  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
678  * this flag set *MUST* be acknowledged immediately.
679  */
680 
681 /*
682  * When we get here, we're called from the recv queue handler.
683  * Check whether we ought to transmit an ACK.
684  */
685 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
686 {
687 	unsigned int adv_credits;
688 
689 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
690 		return;
691 
692 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
693 		rds_ib_stats_inc(s_ib_ack_send_delayed);
694 		return;
695 	}
696 
697 	/* Can we get a send credit? */
698 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
699 		rds_ib_stats_inc(s_ib_tx_throttle);
700 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
701 		return;
702 	}
703 
704 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
705 	rds_ib_send_ack(ic, adv_credits);
706 }
707 
708 /*
709  * We get here from the send completion handler, when the
710  * adapter tells us the ACK frame was sent.
711  */
712 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
713 {
714 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
715 	rds_ib_attempt_ack(ic);
716 }
717 
718 /*
719  * This is called by the regular xmit code when it wants to piggyback
720  * an ACK on an outgoing frame.
721  */
722 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
723 {
724 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
725 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
726 	return rds_ib_get_ack(ic);
727 }
728 
729 /*
730  * It's kind of lame that we're copying from the posted receive pages into
731  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
732  * them.  But receiving new congestion bitmaps should be a *rare* event, so
733  * hopefully we won't need to invest that complexity in making it more
734  * efficient.  By copying we can share a simpler core with TCP which has to
735  * copy.
736  */
737 static void rds_ib_cong_recv(struct rds_connection *conn,
738 			      struct rds_ib_incoming *ibinc)
739 {
740 	struct rds_cong_map *map;
741 	unsigned int map_off;
742 	unsigned int map_page;
743 	struct rds_page_frag *frag;
744 	unsigned long frag_off;
745 	unsigned long to_copy;
746 	unsigned long copied;
747 	uint64_t uncongested = 0;
748 	void *addr;
749 
750 	/* catch completely corrupt packets */
751 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
752 		return;
753 
754 	map = conn->c_fcong;
755 	map_page = 0;
756 	map_off = 0;
757 
758 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
759 	frag_off = 0;
760 
761 	copied = 0;
762 
763 	while (copied < RDS_CONG_MAP_BYTES) {
764 		uint64_t *src, *dst;
765 		unsigned int k;
766 
767 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
768 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
769 
770 		addr = kmap_atomic(sg_page(&frag->f_sg));
771 
772 		src = addr + frag_off;
773 		dst = (void *)map->m_page_addrs[map_page] + map_off;
774 		for (k = 0; k < to_copy; k += 8) {
775 			/* Record ports that became uncongested, ie
776 			 * bits that changed from 0 to 1. */
777 			uncongested |= ~(*src) & *dst;
778 			*dst++ = *src++;
779 		}
780 		kunmap_atomic(addr);
781 
782 		copied += to_copy;
783 
784 		map_off += to_copy;
785 		if (map_off == PAGE_SIZE) {
786 			map_off = 0;
787 			map_page++;
788 		}
789 
790 		frag_off += to_copy;
791 		if (frag_off == RDS_FRAG_SIZE) {
792 			frag = list_entry(frag->f_item.next,
793 					  struct rds_page_frag, f_item);
794 			frag_off = 0;
795 		}
796 	}
797 
798 	/* the congestion map is in little endian order */
799 	uncongested = le64_to_cpu(uncongested);
800 
801 	rds_cong_map_updated(map, uncongested);
802 }
803 
804 /*
805  * Rings are posted with all the allocations they'll need to queue the
806  * incoming message to the receiving socket so this can't fail.
807  * All fragments start with a header, so we can make sure we're not receiving
808  * garbage, and we can tell a small 8 byte fragment from an ACK frame.
809  */
810 struct rds_ib_ack_state {
811 	u64		ack_next;
812 	u64		ack_recv;
813 	unsigned int	ack_required:1;
814 	unsigned int	ack_next_valid:1;
815 	unsigned int	ack_recv_valid:1;
816 };
817 
818 static void rds_ib_process_recv(struct rds_connection *conn,
819 				struct rds_ib_recv_work *recv, u32 data_len,
820 				struct rds_ib_ack_state *state)
821 {
822 	struct rds_ib_connection *ic = conn->c_transport_data;
823 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
824 	struct rds_header *ihdr, *hdr;
825 
826 	/* XXX shut down the connection if port 0,0 are seen? */
827 
828 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
829 		 data_len);
830 
831 	if (data_len < sizeof(struct rds_header)) {
832 		rds_ib_conn_error(conn, "incoming message "
833 		       "from %pI4 didn't include a "
834 		       "header, disconnecting and "
835 		       "reconnecting\n",
836 		       &conn->c_faddr);
837 		return;
838 	}
839 	data_len -= sizeof(struct rds_header);
840 
841 	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
842 
843 	/* Validate the checksum. */
844 	if (!rds_message_verify_checksum(ihdr)) {
845 		rds_ib_conn_error(conn, "incoming message "
846 		       "from %pI4 has corrupted header - "
847 		       "forcing a reconnect\n",
848 		       &conn->c_faddr);
849 		rds_stats_inc(s_recv_drop_bad_checksum);
850 		return;
851 	}
852 
853 	/* Process the ACK sequence which comes with every packet */
854 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
855 	state->ack_recv_valid = 1;
856 
857 	/* Process the credits update if there was one */
858 	if (ihdr->h_credit)
859 		rds_ib_send_add_credits(conn, ihdr->h_credit);
860 
861 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
862 		/* This is an ACK-only packet. The fact that it gets
863 		 * special treatment here is that historically, ACKs
864 		 * were rather special beasts.
865 		 */
866 		rds_ib_stats_inc(s_ib_ack_received);
867 
868 		/*
869 		 * Usually the frags make their way on to incs and are then freed as
870 		 * the inc is freed.  We don't go that route, so we have to drop the
871 		 * page ref ourselves.  We can't just leave the page on the recv
872 		 * because that confuses the dma mapping of pages and each recv's use
873 		 * of a partial page.
874 		 *
875 		 * FIXME: Fold this into the code path below.
876 		 */
877 		rds_ib_frag_free(ic, recv->r_frag);
878 		recv->r_frag = NULL;
879 		return;
880 	}
881 
882 	/*
883 	 * If we don't already have an inc on the connection then this
884 	 * fragment has a header and starts a message.. copy its header
885 	 * into the inc and save the inc so we can hang upcoming fragments
886 	 * off its list.
887 	 */
888 	if (!ibinc) {
889 		ibinc = recv->r_ibinc;
890 		recv->r_ibinc = NULL;
891 		ic->i_ibinc = ibinc;
892 
893 		hdr = &ibinc->ii_inc.i_hdr;
894 		memcpy(hdr, ihdr, sizeof(*hdr));
895 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
896 
897 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
898 			 ic->i_recv_data_rem, hdr->h_flags);
899 	} else {
900 		hdr = &ibinc->ii_inc.i_hdr;
901 		/* We can't just use memcmp here; fragments of a
902 		 * single message may carry different ACKs */
903 		if (hdr->h_sequence != ihdr->h_sequence ||
904 		    hdr->h_len != ihdr->h_len ||
905 		    hdr->h_sport != ihdr->h_sport ||
906 		    hdr->h_dport != ihdr->h_dport) {
907 			rds_ib_conn_error(conn,
908 				"fragment header mismatch; forcing reconnect\n");
909 			return;
910 		}
911 	}
912 
913 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
914 	recv->r_frag = NULL;
915 
916 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
917 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
918 	else {
919 		ic->i_recv_data_rem = 0;
920 		ic->i_ibinc = NULL;
921 
922 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
923 			rds_ib_cong_recv(conn, ibinc);
924 		else {
925 			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
926 					  &ibinc->ii_inc, GFP_ATOMIC);
927 			state->ack_next = be64_to_cpu(hdr->h_sequence);
928 			state->ack_next_valid = 1;
929 		}
930 
931 		/* Evaluate the ACK_REQUIRED flag *after* we received
932 		 * the complete frame, and after bumping the next_rx
933 		 * sequence. */
934 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
935 			rds_stats_inc(s_recv_ack_required);
936 			state->ack_required = 1;
937 		}
938 
939 		rds_inc_put(&ibinc->ii_inc);
940 	}
941 }
942 
943 /*
944  * Plucking the oldest entry from the ring can be done concurrently with
945  * the thread refilling the ring.  Each ring operation is protected by
946  * spinlocks and the transient state of refilling doesn't change the
947  * recording of which entry is oldest.
948  *
949  * This relies on IB only calling one cq comp_handler for each cq so that
950  * there will only be one caller of rds_recv_incoming() per RDS connection.
951  */
952 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
953 {
954 	struct rds_connection *conn = context;
955 	struct rds_ib_connection *ic = conn->c_transport_data;
956 
957 	rdsdebug("conn %p cq %p\n", conn, cq);
958 
959 	rds_ib_stats_inc(s_ib_rx_cq_call);
960 
961 	tasklet_schedule(&ic->i_recv_tasklet);
962 }
963 
964 static inline void rds_poll_cq(struct rds_ib_connection *ic,
965 			       struct rds_ib_ack_state *state)
966 {
967 	struct rds_connection *conn = ic->conn;
968 	struct ib_wc wc;
969 	struct rds_ib_recv_work *recv;
970 
971 	while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
972 		rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
973 			 (unsigned long long)wc.wr_id, wc.status,
974 			 rds_ib_wc_status_str(wc.status), wc.byte_len,
975 			 be32_to_cpu(wc.ex.imm_data));
976 		rds_ib_stats_inc(s_ib_rx_cq_event);
977 
978 		recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
979 
980 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
981 
982 		/*
983 		 * Also process recvs in connecting state because it is possible
984 		 * to get a recv completion _before_ the rdmacm ESTABLISHED
985 		 * event is processed.
986 		 */
987 		if (wc.status == IB_WC_SUCCESS) {
988 			rds_ib_process_recv(conn, recv, wc.byte_len, state);
989 		} else {
990 			/* We expect errors as the qp is drained during shutdown */
991 			if (rds_conn_up(conn) || rds_conn_connecting(conn))
992 				rds_ib_conn_error(conn, "recv completion on %pI4 had "
993 						  "status %u (%s), disconnecting and "
994 						  "reconnecting\n", &conn->c_faddr,
995 						  wc.status,
996 						  rds_ib_wc_status_str(wc.status));
997 		}
998 
999 		/*
1000 		 * It's very important that we only free this ring entry if we've truly
1001 		 * freed the resources allocated to the entry.  The refilling path can
1002 		 * leak if we don't.
1003 		 */
1004 		rds_ib_ring_free(&ic->i_recv_ring, 1);
1005 	}
1006 }
1007 
1008 void rds_ib_recv_tasklet_fn(unsigned long data)
1009 {
1010 	struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
1011 	struct rds_connection *conn = ic->conn;
1012 	struct rds_ib_ack_state state = { 0, };
1013 
1014 	rds_poll_cq(ic, &state);
1015 	ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
1016 	rds_poll_cq(ic, &state);
1017 
1018 	if (state.ack_next_valid)
1019 		rds_ib_set_ack(ic, state.ack_next, state.ack_required);
1020 	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
1021 		rds_send_drop_acked(conn, state.ack_recv, NULL);
1022 		ic->i_ack_recv = state.ack_recv;
1023 	}
1024 	if (rds_conn_up(conn))
1025 		rds_ib_attempt_ack(ic);
1026 
1027 	/* If we ever end up with a really empty receive ring, we're
1028 	 * in deep trouble, as the sender will definitely see RNR
1029 	 * timeouts. */
1030 	if (rds_ib_ring_empty(&ic->i_recv_ring))
1031 		rds_ib_stats_inc(s_ib_rx_ring_empty);
1032 
1033 	if (rds_ib_ring_low(&ic->i_recv_ring))
1034 		rds_ib_recv_refill(conn, 0);
1035 }
1036 
1037 int rds_ib_recv(struct rds_connection *conn)
1038 {
1039 	struct rds_ib_connection *ic = conn->c_transport_data;
1040 	int ret = 0;
1041 
1042 	rdsdebug("conn %p\n", conn);
1043 	if (rds_conn_up(conn))
1044 		rds_ib_attempt_ack(ic);
1045 
1046 	return ret;
1047 }
1048 
1049 int rds_ib_recv_init(void)
1050 {
1051 	struct sysinfo si;
1052 	int ret = -ENOMEM;
1053 
1054 	/* Default to 30% of all available RAM for recv memory */
1055 	si_meminfo(&si);
1056 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1057 
1058 	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1059 					sizeof(struct rds_ib_incoming),
1060 					0, SLAB_HWCACHE_ALIGN, NULL);
1061 	if (!rds_ib_incoming_slab)
1062 		goto out;
1063 
1064 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1065 					sizeof(struct rds_page_frag),
1066 					0, SLAB_HWCACHE_ALIGN, NULL);
1067 	if (!rds_ib_frag_slab)
1068 		kmem_cache_destroy(rds_ib_incoming_slab);
1069 	else
1070 		ret = 0;
1071 out:
1072 	return ret;
1073 }
1074 
1075 void rds_ib_recv_exit(void)
1076 {
1077 	kmem_cache_destroy(rds_ib_incoming_slab);
1078 	kmem_cache_destroy(rds_ib_frag_slab);
1079 }
1080