1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <linux/pci.h> 36 #include <linux/dma-mapping.h> 37 #include <rdma/rdma_cm.h> 38 39 #include "rds.h" 40 #include "ib.h" 41 42 static struct kmem_cache *rds_ib_incoming_slab; 43 static struct kmem_cache *rds_ib_frag_slab; 44 static atomic_t rds_ib_allocation = ATOMIC_INIT(0); 45 46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic) 47 { 48 struct rds_ib_recv_work *recv; 49 u32 i; 50 51 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { 52 struct ib_sge *sge; 53 54 recv->r_ibinc = NULL; 55 recv->r_frag = NULL; 56 57 recv->r_wr.next = NULL; 58 recv->r_wr.wr_id = i; 59 recv->r_wr.sg_list = recv->r_sge; 60 recv->r_wr.num_sge = RDS_IB_RECV_SGE; 61 62 sge = &recv->r_sge[0]; 63 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); 64 sge->length = sizeof(struct rds_header); 65 sge->lkey = ic->i_mr->lkey; 66 67 sge = &recv->r_sge[1]; 68 sge->addr = 0; 69 sge->length = RDS_FRAG_SIZE; 70 sge->lkey = ic->i_mr->lkey; 71 } 72 } 73 74 /* 75 * The entire 'from' list, including the from element itself, is put on 76 * to the tail of the 'to' list. 77 */ 78 static void list_splice_entire_tail(struct list_head *from, 79 struct list_head *to) 80 { 81 struct list_head *from_last = from->prev; 82 83 list_splice_tail(from_last, to); 84 list_add_tail(from_last, to); 85 } 86 87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache) 88 { 89 struct list_head *tmp; 90 91 tmp = xchg(&cache->xfer, NULL); 92 if (tmp) { 93 if (cache->ready) 94 list_splice_entire_tail(tmp, cache->ready); 95 else 96 cache->ready = tmp; 97 } 98 } 99 100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache) 101 { 102 struct rds_ib_cache_head *head; 103 int cpu; 104 105 cache->percpu = alloc_percpu(struct rds_ib_cache_head); 106 if (!cache->percpu) 107 return -ENOMEM; 108 109 for_each_possible_cpu(cpu) { 110 head = per_cpu_ptr(cache->percpu, cpu); 111 head->first = NULL; 112 head->count = 0; 113 } 114 cache->xfer = NULL; 115 cache->ready = NULL; 116 117 return 0; 118 } 119 120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic) 121 { 122 int ret; 123 124 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs); 125 if (!ret) { 126 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags); 127 if (ret) 128 free_percpu(ic->i_cache_incs.percpu); 129 } 130 131 return ret; 132 } 133 134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache, 135 struct list_head *caller_list) 136 { 137 struct rds_ib_cache_head *head; 138 int cpu; 139 140 for_each_possible_cpu(cpu) { 141 head = per_cpu_ptr(cache->percpu, cpu); 142 if (head->first) { 143 list_splice_entire_tail(head->first, caller_list); 144 head->first = NULL; 145 } 146 } 147 148 if (cache->ready) { 149 list_splice_entire_tail(cache->ready, caller_list); 150 cache->ready = NULL; 151 } 152 } 153 154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic) 155 { 156 struct rds_ib_incoming *inc; 157 struct rds_ib_incoming *inc_tmp; 158 struct rds_page_frag *frag; 159 struct rds_page_frag *frag_tmp; 160 LIST_HEAD(list); 161 162 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 163 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list); 164 free_percpu(ic->i_cache_incs.percpu); 165 166 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) { 167 list_del(&inc->ii_cache_entry); 168 WARN_ON(!list_empty(&inc->ii_frags)); 169 kmem_cache_free(rds_ib_incoming_slab, inc); 170 } 171 172 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 173 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list); 174 free_percpu(ic->i_cache_frags.percpu); 175 176 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) { 177 list_del(&frag->f_cache_entry); 178 WARN_ON(!list_empty(&frag->f_item)); 179 kmem_cache_free(rds_ib_frag_slab, frag); 180 } 181 } 182 183 /* fwd decl */ 184 static void rds_ib_recv_cache_put(struct list_head *new_item, 185 struct rds_ib_refill_cache *cache); 186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache); 187 188 189 /* Recycle frag and attached recv buffer f_sg */ 190 static void rds_ib_frag_free(struct rds_ib_connection *ic, 191 struct rds_page_frag *frag) 192 { 193 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg)); 194 195 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags); 196 } 197 198 /* Recycle inc after freeing attached frags */ 199 void rds_ib_inc_free(struct rds_incoming *inc) 200 { 201 struct rds_ib_incoming *ibinc; 202 struct rds_page_frag *frag; 203 struct rds_page_frag *pos; 204 struct rds_ib_connection *ic = inc->i_conn->c_transport_data; 205 206 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 207 208 /* Free attached frags */ 209 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { 210 list_del_init(&frag->f_item); 211 rds_ib_frag_free(ic, frag); 212 } 213 BUG_ON(!list_empty(&ibinc->ii_frags)); 214 215 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); 216 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs); 217 } 218 219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, 220 struct rds_ib_recv_work *recv) 221 { 222 if (recv->r_ibinc) { 223 rds_inc_put(&recv->r_ibinc->ii_inc); 224 recv->r_ibinc = NULL; 225 } 226 if (recv->r_frag) { 227 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); 228 rds_ib_frag_free(ic, recv->r_frag); 229 recv->r_frag = NULL; 230 } 231 } 232 233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) 234 { 235 u32 i; 236 237 for (i = 0; i < ic->i_recv_ring.w_nr; i++) 238 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); 239 } 240 241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic, 242 gfp_t slab_mask) 243 { 244 struct rds_ib_incoming *ibinc; 245 struct list_head *cache_item; 246 int avail_allocs; 247 248 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs); 249 if (cache_item) { 250 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry); 251 } else { 252 avail_allocs = atomic_add_unless(&rds_ib_allocation, 253 1, rds_ib_sysctl_max_recv_allocation); 254 if (!avail_allocs) { 255 rds_ib_stats_inc(s_ib_rx_alloc_limit); 256 return NULL; 257 } 258 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask); 259 if (!ibinc) { 260 atomic_dec(&rds_ib_allocation); 261 return NULL; 262 } 263 } 264 INIT_LIST_HEAD(&ibinc->ii_frags); 265 rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr); 266 267 return ibinc; 268 } 269 270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic, 271 gfp_t slab_mask, gfp_t page_mask) 272 { 273 struct rds_page_frag *frag; 274 struct list_head *cache_item; 275 int ret; 276 277 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags); 278 if (cache_item) { 279 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry); 280 } else { 281 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask); 282 if (!frag) 283 return NULL; 284 285 sg_init_table(&frag->f_sg, 1); 286 ret = rds_page_remainder_alloc(&frag->f_sg, 287 RDS_FRAG_SIZE, page_mask); 288 if (ret) { 289 kmem_cache_free(rds_ib_frag_slab, frag); 290 return NULL; 291 } 292 } 293 294 INIT_LIST_HEAD(&frag->f_item); 295 296 return frag; 297 } 298 299 static int rds_ib_recv_refill_one(struct rds_connection *conn, 300 struct rds_ib_recv_work *recv, int prefill) 301 { 302 struct rds_ib_connection *ic = conn->c_transport_data; 303 struct ib_sge *sge; 304 int ret = -ENOMEM; 305 gfp_t slab_mask = GFP_NOWAIT; 306 gfp_t page_mask = GFP_NOWAIT; 307 308 if (prefill) { 309 slab_mask = GFP_KERNEL; 310 page_mask = GFP_HIGHUSER; 311 } 312 313 if (!ic->i_cache_incs.ready) 314 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 315 if (!ic->i_cache_frags.ready) 316 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 317 318 /* 319 * ibinc was taken from recv if recv contained the start of a message. 320 * recvs that were continuations will still have this allocated. 321 */ 322 if (!recv->r_ibinc) { 323 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask); 324 if (!recv->r_ibinc) 325 goto out; 326 } 327 328 WARN_ON(recv->r_frag); /* leak! */ 329 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask); 330 if (!recv->r_frag) 331 goto out; 332 333 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 334 1, DMA_FROM_DEVICE); 335 WARN_ON(ret != 1); 336 337 sge = &recv->r_sge[0]; 338 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); 339 sge->length = sizeof(struct rds_header); 340 341 sge = &recv->r_sge[1]; 342 sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg); 343 sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg); 344 345 ret = 0; 346 out: 347 return ret; 348 } 349 350 /* 351 * This tries to allocate and post unused work requests after making sure that 352 * they have all the allocations they need to queue received fragments into 353 * sockets. 354 * 355 * -1 is returned if posting fails due to temporary resource exhaustion. 356 */ 357 void rds_ib_recv_refill(struct rds_connection *conn, int prefill) 358 { 359 struct rds_ib_connection *ic = conn->c_transport_data; 360 struct rds_ib_recv_work *recv; 361 struct ib_recv_wr *failed_wr; 362 unsigned int posted = 0; 363 int ret = 0; 364 u32 pos; 365 366 while ((prefill || rds_conn_up(conn)) && 367 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { 368 if (pos >= ic->i_recv_ring.w_nr) { 369 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", 370 pos); 371 break; 372 } 373 374 recv = &ic->i_recvs[pos]; 375 ret = rds_ib_recv_refill_one(conn, recv, prefill); 376 if (ret) { 377 break; 378 } 379 380 /* XXX when can this fail? */ 381 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); 382 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv, 383 recv->r_ibinc, sg_page(&recv->r_frag->f_sg), 384 (long) ib_sg_dma_address( 385 ic->i_cm_id->device, 386 &recv->r_frag->f_sg), 387 ret); 388 if (ret) { 389 rds_ib_conn_error(conn, "recv post on " 390 "%pI4 returned %d, disconnecting and " 391 "reconnecting\n", &conn->c_faddr, 392 ret); 393 break; 394 } 395 396 posted++; 397 } 398 399 /* We're doing flow control - update the window. */ 400 if (ic->i_flowctl && posted) 401 rds_ib_advertise_credits(conn, posted); 402 403 if (ret) 404 rds_ib_ring_unalloc(&ic->i_recv_ring, 1); 405 } 406 407 /* 408 * We want to recycle several types of recv allocations, like incs and frags. 409 * To use this, the *_free() function passes in the ptr to a list_head within 410 * the recyclee, as well as the cache to put it on. 411 * 412 * First, we put the memory on a percpu list. When this reaches a certain size, 413 * We move it to an intermediate non-percpu list in a lockless manner, with some 414 * xchg/compxchg wizardry. 415 * 416 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can 417 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and 418 * list_empty() will return true with one element is actually present. 419 */ 420 static void rds_ib_recv_cache_put(struct list_head *new_item, 421 struct rds_ib_refill_cache *cache) 422 { 423 unsigned long flags; 424 struct list_head *old, *chpfirst; 425 426 local_irq_save(flags); 427 428 chpfirst = __this_cpu_read(cache->percpu->first); 429 if (!chpfirst) 430 INIT_LIST_HEAD(new_item); 431 else /* put on front */ 432 list_add_tail(new_item, chpfirst); 433 434 __this_cpu_write(cache->percpu->first, new_item); 435 __this_cpu_inc(cache->percpu->count); 436 437 if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT) 438 goto end; 439 440 /* 441 * Return our per-cpu first list to the cache's xfer by atomically 442 * grabbing the current xfer list, appending it to our per-cpu list, 443 * and then atomically returning that entire list back to the 444 * cache's xfer list as long as it's still empty. 445 */ 446 do { 447 old = xchg(&cache->xfer, NULL); 448 if (old) 449 list_splice_entire_tail(old, chpfirst); 450 old = cmpxchg(&cache->xfer, NULL, chpfirst); 451 } while (old); 452 453 454 __this_cpu_write(cache->percpu->first, NULL); 455 __this_cpu_write(cache->percpu->count, 0); 456 end: 457 local_irq_restore(flags); 458 } 459 460 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache) 461 { 462 struct list_head *head = cache->ready; 463 464 if (head) { 465 if (!list_empty(head)) { 466 cache->ready = head->next; 467 list_del_init(head); 468 } else 469 cache->ready = NULL; 470 } 471 472 return head; 473 } 474 475 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to) 476 { 477 struct rds_ib_incoming *ibinc; 478 struct rds_page_frag *frag; 479 unsigned long to_copy; 480 unsigned long frag_off = 0; 481 int copied = 0; 482 int ret; 483 u32 len; 484 485 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 486 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 487 len = be32_to_cpu(inc->i_hdr.h_len); 488 489 while (iov_iter_count(to) && copied < len) { 490 if (frag_off == RDS_FRAG_SIZE) { 491 frag = list_entry(frag->f_item.next, 492 struct rds_page_frag, f_item); 493 frag_off = 0; 494 } 495 to_copy = min_t(unsigned long, iov_iter_count(to), 496 RDS_FRAG_SIZE - frag_off); 497 to_copy = min_t(unsigned long, to_copy, len - copied); 498 499 /* XXX needs + offset for multiple recvs per page */ 500 rds_stats_add(s_copy_to_user, to_copy); 501 ret = copy_page_to_iter(sg_page(&frag->f_sg), 502 frag->f_sg.offset + frag_off, 503 to_copy, 504 to); 505 if (ret != to_copy) 506 return -EFAULT; 507 508 frag_off += to_copy; 509 copied += to_copy; 510 } 511 512 return copied; 513 } 514 515 /* ic starts out kzalloc()ed */ 516 void rds_ib_recv_init_ack(struct rds_ib_connection *ic) 517 { 518 struct ib_send_wr *wr = &ic->i_ack_wr; 519 struct ib_sge *sge = &ic->i_ack_sge; 520 521 sge->addr = ic->i_ack_dma; 522 sge->length = sizeof(struct rds_header); 523 sge->lkey = ic->i_mr->lkey; 524 525 wr->sg_list = sge; 526 wr->num_sge = 1; 527 wr->opcode = IB_WR_SEND; 528 wr->wr_id = RDS_IB_ACK_WR_ID; 529 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; 530 } 531 532 /* 533 * You'd think that with reliable IB connections you wouldn't need to ack 534 * messages that have been received. The problem is that IB hardware generates 535 * an ack message before it has DMAed the message into memory. This creates a 536 * potential message loss if the HCA is disabled for any reason between when it 537 * sends the ack and before the message is DMAed and processed. This is only a 538 * potential issue if another HCA is available for fail-over. 539 * 540 * When the remote host receives our ack they'll free the sent message from 541 * their send queue. To decrease the latency of this we always send an ack 542 * immediately after we've received messages. 543 * 544 * For simplicity, we only have one ack in flight at a time. This puts 545 * pressure on senders to have deep enough send queues to absorb the latency of 546 * a single ack frame being in flight. This might not be good enough. 547 * 548 * This is implemented by have a long-lived send_wr and sge which point to a 549 * statically allocated ack frame. This ack wr does not fall under the ring 550 * accounting that the tx and rx wrs do. The QP attribute specifically makes 551 * room for it beyond the ring size. Send completion notices its special 552 * wr_id and avoids working with the ring in that case. 553 */ 554 #ifndef KERNEL_HAS_ATOMIC64 555 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, 556 int ack_required) 557 { 558 unsigned long flags; 559 560 spin_lock_irqsave(&ic->i_ack_lock, flags); 561 ic->i_ack_next = seq; 562 if (ack_required) 563 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 564 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 565 } 566 567 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 568 { 569 unsigned long flags; 570 u64 seq; 571 572 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 573 574 spin_lock_irqsave(&ic->i_ack_lock, flags); 575 seq = ic->i_ack_next; 576 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 577 578 return seq; 579 } 580 #else 581 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, 582 int ack_required) 583 { 584 atomic64_set(&ic->i_ack_next, seq); 585 if (ack_required) { 586 smp_mb__before_atomic(); 587 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 588 } 589 } 590 591 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 592 { 593 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 594 smp_mb__after_atomic(); 595 596 return atomic64_read(&ic->i_ack_next); 597 } 598 #endif 599 600 601 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) 602 { 603 struct rds_header *hdr = ic->i_ack; 604 struct ib_send_wr *failed_wr; 605 u64 seq; 606 int ret; 607 608 seq = rds_ib_get_ack(ic); 609 610 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); 611 rds_message_populate_header(hdr, 0, 0, 0); 612 hdr->h_ack = cpu_to_be64(seq); 613 hdr->h_credit = adv_credits; 614 rds_message_make_checksum(hdr); 615 ic->i_ack_queued = jiffies; 616 617 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); 618 if (unlikely(ret)) { 619 /* Failed to send. Release the WR, and 620 * force another ACK. 621 */ 622 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 623 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 624 625 rds_ib_stats_inc(s_ib_ack_send_failure); 626 627 rds_ib_conn_error(ic->conn, "sending ack failed\n"); 628 } else 629 rds_ib_stats_inc(s_ib_ack_sent); 630 } 631 632 /* 633 * There are 3 ways of getting acknowledgements to the peer: 634 * 1. We call rds_ib_attempt_ack from the recv completion handler 635 * to send an ACK-only frame. 636 * However, there can be only one such frame in the send queue 637 * at any time, so we may have to postpone it. 638 * 2. When another (data) packet is transmitted while there's 639 * an ACK in the queue, we piggyback the ACK sequence number 640 * on the data packet. 641 * 3. If the ACK WR is done sending, we get called from the 642 * send queue completion handler, and check whether there's 643 * another ACK pending (postponed because the WR was on the 644 * queue). If so, we transmit it. 645 * 646 * We maintain 2 variables: 647 * - i_ack_flags, which keeps track of whether the ACK WR 648 * is currently in the send queue or not (IB_ACK_IN_FLIGHT) 649 * - i_ack_next, which is the last sequence number we received 650 * 651 * Potentially, send queue and receive queue handlers can run concurrently. 652 * It would be nice to not have to use a spinlock to synchronize things, 653 * but the one problem that rules this out is that 64bit updates are 654 * not atomic on all platforms. Things would be a lot simpler if 655 * we had atomic64 or maybe cmpxchg64 everywhere. 656 * 657 * Reconnecting complicates this picture just slightly. When we 658 * reconnect, we may be seeing duplicate packets. The peer 659 * is retransmitting them, because it hasn't seen an ACK for 660 * them. It is important that we ACK these. 661 * 662 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with 663 * this flag set *MUST* be acknowledged immediately. 664 */ 665 666 /* 667 * When we get here, we're called from the recv queue handler. 668 * Check whether we ought to transmit an ACK. 669 */ 670 void rds_ib_attempt_ack(struct rds_ib_connection *ic) 671 { 672 unsigned int adv_credits; 673 674 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 675 return; 676 677 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { 678 rds_ib_stats_inc(s_ib_ack_send_delayed); 679 return; 680 } 681 682 /* Can we get a send credit? */ 683 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { 684 rds_ib_stats_inc(s_ib_tx_throttle); 685 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 686 return; 687 } 688 689 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 690 rds_ib_send_ack(ic, adv_credits); 691 } 692 693 /* 694 * We get here from the send completion handler, when the 695 * adapter tells us the ACK frame was sent. 696 */ 697 void rds_ib_ack_send_complete(struct rds_ib_connection *ic) 698 { 699 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 700 rds_ib_attempt_ack(ic); 701 } 702 703 /* 704 * This is called by the regular xmit code when it wants to piggyback 705 * an ACK on an outgoing frame. 706 */ 707 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) 708 { 709 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 710 rds_ib_stats_inc(s_ib_ack_send_piggybacked); 711 return rds_ib_get_ack(ic); 712 } 713 714 /* 715 * It's kind of lame that we're copying from the posted receive pages into 716 * long-lived bitmaps. We could have posted the bitmaps and rdma written into 717 * them. But receiving new congestion bitmaps should be a *rare* event, so 718 * hopefully we won't need to invest that complexity in making it more 719 * efficient. By copying we can share a simpler core with TCP which has to 720 * copy. 721 */ 722 static void rds_ib_cong_recv(struct rds_connection *conn, 723 struct rds_ib_incoming *ibinc) 724 { 725 struct rds_cong_map *map; 726 unsigned int map_off; 727 unsigned int map_page; 728 struct rds_page_frag *frag; 729 unsigned long frag_off; 730 unsigned long to_copy; 731 unsigned long copied; 732 uint64_t uncongested = 0; 733 void *addr; 734 735 /* catch completely corrupt packets */ 736 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) 737 return; 738 739 map = conn->c_fcong; 740 map_page = 0; 741 map_off = 0; 742 743 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 744 frag_off = 0; 745 746 copied = 0; 747 748 while (copied < RDS_CONG_MAP_BYTES) { 749 uint64_t *src, *dst; 750 unsigned int k; 751 752 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); 753 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ 754 755 addr = kmap_atomic(sg_page(&frag->f_sg)); 756 757 src = addr + frag_off; 758 dst = (void *)map->m_page_addrs[map_page] + map_off; 759 for (k = 0; k < to_copy; k += 8) { 760 /* Record ports that became uncongested, ie 761 * bits that changed from 0 to 1. */ 762 uncongested |= ~(*src) & *dst; 763 *dst++ = *src++; 764 } 765 kunmap_atomic(addr); 766 767 copied += to_copy; 768 769 map_off += to_copy; 770 if (map_off == PAGE_SIZE) { 771 map_off = 0; 772 map_page++; 773 } 774 775 frag_off += to_copy; 776 if (frag_off == RDS_FRAG_SIZE) { 777 frag = list_entry(frag->f_item.next, 778 struct rds_page_frag, f_item); 779 frag_off = 0; 780 } 781 } 782 783 /* the congestion map is in little endian order */ 784 uncongested = le64_to_cpu(uncongested); 785 786 rds_cong_map_updated(map, uncongested); 787 } 788 789 /* 790 * Rings are posted with all the allocations they'll need to queue the 791 * incoming message to the receiving socket so this can't fail. 792 * All fragments start with a header, so we can make sure we're not receiving 793 * garbage, and we can tell a small 8 byte fragment from an ACK frame. 794 */ 795 struct rds_ib_ack_state { 796 u64 ack_next; 797 u64 ack_recv; 798 unsigned int ack_required:1; 799 unsigned int ack_next_valid:1; 800 unsigned int ack_recv_valid:1; 801 }; 802 803 static void rds_ib_process_recv(struct rds_connection *conn, 804 struct rds_ib_recv_work *recv, u32 data_len, 805 struct rds_ib_ack_state *state) 806 { 807 struct rds_ib_connection *ic = conn->c_transport_data; 808 struct rds_ib_incoming *ibinc = ic->i_ibinc; 809 struct rds_header *ihdr, *hdr; 810 811 /* XXX shut down the connection if port 0,0 are seen? */ 812 813 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, 814 data_len); 815 816 if (data_len < sizeof(struct rds_header)) { 817 rds_ib_conn_error(conn, "incoming message " 818 "from %pI4 didn't include a " 819 "header, disconnecting and " 820 "reconnecting\n", 821 &conn->c_faddr); 822 return; 823 } 824 data_len -= sizeof(struct rds_header); 825 826 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; 827 828 /* Validate the checksum. */ 829 if (!rds_message_verify_checksum(ihdr)) { 830 rds_ib_conn_error(conn, "incoming message " 831 "from %pI4 has corrupted header - " 832 "forcing a reconnect\n", 833 &conn->c_faddr); 834 rds_stats_inc(s_recv_drop_bad_checksum); 835 return; 836 } 837 838 /* Process the ACK sequence which comes with every packet */ 839 state->ack_recv = be64_to_cpu(ihdr->h_ack); 840 state->ack_recv_valid = 1; 841 842 /* Process the credits update if there was one */ 843 if (ihdr->h_credit) 844 rds_ib_send_add_credits(conn, ihdr->h_credit); 845 846 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) { 847 /* This is an ACK-only packet. The fact that it gets 848 * special treatment here is that historically, ACKs 849 * were rather special beasts. 850 */ 851 rds_ib_stats_inc(s_ib_ack_received); 852 853 /* 854 * Usually the frags make their way on to incs and are then freed as 855 * the inc is freed. We don't go that route, so we have to drop the 856 * page ref ourselves. We can't just leave the page on the recv 857 * because that confuses the dma mapping of pages and each recv's use 858 * of a partial page. 859 * 860 * FIXME: Fold this into the code path below. 861 */ 862 rds_ib_frag_free(ic, recv->r_frag); 863 recv->r_frag = NULL; 864 return; 865 } 866 867 /* 868 * If we don't already have an inc on the connection then this 869 * fragment has a header and starts a message.. copy its header 870 * into the inc and save the inc so we can hang upcoming fragments 871 * off its list. 872 */ 873 if (!ibinc) { 874 ibinc = recv->r_ibinc; 875 recv->r_ibinc = NULL; 876 ic->i_ibinc = ibinc; 877 878 hdr = &ibinc->ii_inc.i_hdr; 879 memcpy(hdr, ihdr, sizeof(*hdr)); 880 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); 881 882 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, 883 ic->i_recv_data_rem, hdr->h_flags); 884 } else { 885 hdr = &ibinc->ii_inc.i_hdr; 886 /* We can't just use memcmp here; fragments of a 887 * single message may carry different ACKs */ 888 if (hdr->h_sequence != ihdr->h_sequence || 889 hdr->h_len != ihdr->h_len || 890 hdr->h_sport != ihdr->h_sport || 891 hdr->h_dport != ihdr->h_dport) { 892 rds_ib_conn_error(conn, 893 "fragment header mismatch; forcing reconnect\n"); 894 return; 895 } 896 } 897 898 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); 899 recv->r_frag = NULL; 900 901 if (ic->i_recv_data_rem > RDS_FRAG_SIZE) 902 ic->i_recv_data_rem -= RDS_FRAG_SIZE; 903 else { 904 ic->i_recv_data_rem = 0; 905 ic->i_ibinc = NULL; 906 907 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) 908 rds_ib_cong_recv(conn, ibinc); 909 else { 910 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, 911 &ibinc->ii_inc, GFP_ATOMIC); 912 state->ack_next = be64_to_cpu(hdr->h_sequence); 913 state->ack_next_valid = 1; 914 } 915 916 /* Evaluate the ACK_REQUIRED flag *after* we received 917 * the complete frame, and after bumping the next_rx 918 * sequence. */ 919 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { 920 rds_stats_inc(s_recv_ack_required); 921 state->ack_required = 1; 922 } 923 924 rds_inc_put(&ibinc->ii_inc); 925 } 926 } 927 928 /* 929 * Plucking the oldest entry from the ring can be done concurrently with 930 * the thread refilling the ring. Each ring operation is protected by 931 * spinlocks and the transient state of refilling doesn't change the 932 * recording of which entry is oldest. 933 * 934 * This relies on IB only calling one cq comp_handler for each cq so that 935 * there will only be one caller of rds_recv_incoming() per RDS connection. 936 */ 937 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context) 938 { 939 struct rds_connection *conn = context; 940 struct rds_ib_connection *ic = conn->c_transport_data; 941 942 rdsdebug("conn %p cq %p\n", conn, cq); 943 944 rds_ib_stats_inc(s_ib_rx_cq_call); 945 946 tasklet_schedule(&ic->i_recv_tasklet); 947 } 948 949 static inline void rds_poll_cq(struct rds_ib_connection *ic, 950 struct rds_ib_ack_state *state) 951 { 952 struct rds_connection *conn = ic->conn; 953 struct ib_wc wc; 954 struct rds_ib_recv_work *recv; 955 956 while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) { 957 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", 958 (unsigned long long)wc.wr_id, wc.status, 959 rds_ib_wc_status_str(wc.status), wc.byte_len, 960 be32_to_cpu(wc.ex.imm_data)); 961 rds_ib_stats_inc(s_ib_rx_cq_event); 962 963 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; 964 965 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); 966 967 /* 968 * Also process recvs in connecting state because it is possible 969 * to get a recv completion _before_ the rdmacm ESTABLISHED 970 * event is processed. 971 */ 972 if (wc.status == IB_WC_SUCCESS) { 973 rds_ib_process_recv(conn, recv, wc.byte_len, state); 974 } else { 975 /* We expect errors as the qp is drained during shutdown */ 976 if (rds_conn_up(conn) || rds_conn_connecting(conn)) 977 rds_ib_conn_error(conn, "recv completion on %pI4 had " 978 "status %u (%s), disconnecting and " 979 "reconnecting\n", &conn->c_faddr, 980 wc.status, 981 rds_ib_wc_status_str(wc.status)); 982 } 983 984 /* 985 * It's very important that we only free this ring entry if we've truly 986 * freed the resources allocated to the entry. The refilling path can 987 * leak if we don't. 988 */ 989 rds_ib_ring_free(&ic->i_recv_ring, 1); 990 } 991 } 992 993 void rds_ib_recv_tasklet_fn(unsigned long data) 994 { 995 struct rds_ib_connection *ic = (struct rds_ib_connection *) data; 996 struct rds_connection *conn = ic->conn; 997 struct rds_ib_ack_state state = { 0, }; 998 999 rds_poll_cq(ic, &state); 1000 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); 1001 rds_poll_cq(ic, &state); 1002 1003 if (state.ack_next_valid) 1004 rds_ib_set_ack(ic, state.ack_next, state.ack_required); 1005 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { 1006 rds_send_drop_acked(conn, state.ack_recv, NULL); 1007 ic->i_ack_recv = state.ack_recv; 1008 } 1009 if (rds_conn_up(conn)) 1010 rds_ib_attempt_ack(ic); 1011 1012 /* If we ever end up with a really empty receive ring, we're 1013 * in deep trouble, as the sender will definitely see RNR 1014 * timeouts. */ 1015 if (rds_ib_ring_empty(&ic->i_recv_ring)) 1016 rds_ib_stats_inc(s_ib_rx_ring_empty); 1017 1018 if (rds_ib_ring_low(&ic->i_recv_ring)) 1019 rds_ib_recv_refill(conn, 0); 1020 } 1021 1022 int rds_ib_recv(struct rds_connection *conn) 1023 { 1024 struct rds_ib_connection *ic = conn->c_transport_data; 1025 int ret = 0; 1026 1027 rdsdebug("conn %p\n", conn); 1028 if (rds_conn_up(conn)) 1029 rds_ib_attempt_ack(ic); 1030 1031 return ret; 1032 } 1033 1034 int rds_ib_recv_init(void) 1035 { 1036 struct sysinfo si; 1037 int ret = -ENOMEM; 1038 1039 /* Default to 30% of all available RAM for recv memory */ 1040 si_meminfo(&si); 1041 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; 1042 1043 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming", 1044 sizeof(struct rds_ib_incoming), 1045 0, SLAB_HWCACHE_ALIGN, NULL); 1046 if (!rds_ib_incoming_slab) 1047 goto out; 1048 1049 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", 1050 sizeof(struct rds_page_frag), 1051 0, SLAB_HWCACHE_ALIGN, NULL); 1052 if (!rds_ib_frag_slab) 1053 kmem_cache_destroy(rds_ib_incoming_slab); 1054 else 1055 ret = 0; 1056 out: 1057 return ret; 1058 } 1059 1060 void rds_ib_recv_exit(void) 1061 { 1062 kmem_cache_destroy(rds_ib_incoming_slab); 1063 kmem_cache_destroy(rds_ib_frag_slab); 1064 } 1065