1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <linux/pci.h> 36 #include <linux/dma-mapping.h> 37 #include <rdma/rdma_cm.h> 38 39 #include "rds.h" 40 #include "ib.h" 41 42 static struct kmem_cache *rds_ib_incoming_slab; 43 static struct kmem_cache *rds_ib_frag_slab; 44 static atomic_t rds_ib_allocation = ATOMIC_INIT(0); 45 46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic) 47 { 48 struct rds_ib_recv_work *recv; 49 u32 i; 50 51 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { 52 struct ib_sge *sge; 53 54 recv->r_ibinc = NULL; 55 recv->r_frag = NULL; 56 57 recv->r_wr.next = NULL; 58 recv->r_wr.wr_id = i; 59 recv->r_wr.sg_list = recv->r_sge; 60 recv->r_wr.num_sge = RDS_IB_RECV_SGE; 61 62 sge = &recv->r_sge[0]; 63 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); 64 sge->length = sizeof(struct rds_header); 65 sge->lkey = ic->i_mr->lkey; 66 67 sge = &recv->r_sge[1]; 68 sge->addr = 0; 69 sge->length = RDS_FRAG_SIZE; 70 sge->lkey = ic->i_mr->lkey; 71 } 72 } 73 74 /* 75 * The entire 'from' list, including the from element itself, is put on 76 * to the tail of the 'to' list. 77 */ 78 static void list_splice_entire_tail(struct list_head *from, 79 struct list_head *to) 80 { 81 struct list_head *from_last = from->prev; 82 83 list_splice_tail(from_last, to); 84 list_add_tail(from_last, to); 85 } 86 87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache) 88 { 89 struct list_head *tmp; 90 91 tmp = xchg(&cache->xfer, NULL); 92 if (tmp) { 93 if (cache->ready) 94 list_splice_entire_tail(tmp, cache->ready); 95 else 96 cache->ready = tmp; 97 } 98 } 99 100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache) 101 { 102 struct rds_ib_cache_head *head; 103 int cpu; 104 105 cache->percpu = alloc_percpu(struct rds_ib_cache_head); 106 if (!cache->percpu) 107 return -ENOMEM; 108 109 for_each_possible_cpu(cpu) { 110 head = per_cpu_ptr(cache->percpu, cpu); 111 head->first = NULL; 112 head->count = 0; 113 } 114 cache->xfer = NULL; 115 cache->ready = NULL; 116 117 return 0; 118 } 119 120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic) 121 { 122 int ret; 123 124 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs); 125 if (!ret) { 126 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags); 127 if (ret) 128 free_percpu(ic->i_cache_incs.percpu); 129 } 130 131 return ret; 132 } 133 134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache, 135 struct list_head *caller_list) 136 { 137 struct rds_ib_cache_head *head; 138 int cpu; 139 140 for_each_possible_cpu(cpu) { 141 head = per_cpu_ptr(cache->percpu, cpu); 142 if (head->first) { 143 list_splice_entire_tail(head->first, caller_list); 144 head->first = NULL; 145 } 146 } 147 148 if (cache->ready) { 149 list_splice_entire_tail(cache->ready, caller_list); 150 cache->ready = NULL; 151 } 152 } 153 154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic) 155 { 156 struct rds_ib_incoming *inc; 157 struct rds_ib_incoming *inc_tmp; 158 struct rds_page_frag *frag; 159 struct rds_page_frag *frag_tmp; 160 LIST_HEAD(list); 161 162 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 163 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list); 164 free_percpu(ic->i_cache_incs.percpu); 165 166 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) { 167 list_del(&inc->ii_cache_entry); 168 WARN_ON(!list_empty(&inc->ii_frags)); 169 kmem_cache_free(rds_ib_incoming_slab, inc); 170 } 171 172 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 173 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list); 174 free_percpu(ic->i_cache_frags.percpu); 175 176 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) { 177 list_del(&frag->f_cache_entry); 178 WARN_ON(!list_empty(&frag->f_item)); 179 kmem_cache_free(rds_ib_frag_slab, frag); 180 } 181 } 182 183 /* fwd decl */ 184 static void rds_ib_recv_cache_put(struct list_head *new_item, 185 struct rds_ib_refill_cache *cache); 186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache); 187 188 189 /* Recycle frag and attached recv buffer f_sg */ 190 static void rds_ib_frag_free(struct rds_ib_connection *ic, 191 struct rds_page_frag *frag) 192 { 193 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg)); 194 195 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags); 196 } 197 198 /* Recycle inc after freeing attached frags */ 199 void rds_ib_inc_free(struct rds_incoming *inc) 200 { 201 struct rds_ib_incoming *ibinc; 202 struct rds_page_frag *frag; 203 struct rds_page_frag *pos; 204 struct rds_ib_connection *ic = inc->i_conn->c_transport_data; 205 206 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 207 208 /* Free attached frags */ 209 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { 210 list_del_init(&frag->f_item); 211 rds_ib_frag_free(ic, frag); 212 } 213 BUG_ON(!list_empty(&ibinc->ii_frags)); 214 215 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); 216 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs); 217 } 218 219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, 220 struct rds_ib_recv_work *recv) 221 { 222 if (recv->r_ibinc) { 223 rds_inc_put(&recv->r_ibinc->ii_inc); 224 recv->r_ibinc = NULL; 225 } 226 if (recv->r_frag) { 227 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); 228 rds_ib_frag_free(ic, recv->r_frag); 229 recv->r_frag = NULL; 230 } 231 } 232 233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) 234 { 235 u32 i; 236 237 for (i = 0; i < ic->i_recv_ring.w_nr; i++) 238 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); 239 } 240 241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic, 242 gfp_t slab_mask) 243 { 244 struct rds_ib_incoming *ibinc; 245 struct list_head *cache_item; 246 int avail_allocs; 247 248 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs); 249 if (cache_item) { 250 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry); 251 } else { 252 avail_allocs = atomic_add_unless(&rds_ib_allocation, 253 1, rds_ib_sysctl_max_recv_allocation); 254 if (!avail_allocs) { 255 rds_ib_stats_inc(s_ib_rx_alloc_limit); 256 return NULL; 257 } 258 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask); 259 if (!ibinc) { 260 atomic_dec(&rds_ib_allocation); 261 return NULL; 262 } 263 } 264 INIT_LIST_HEAD(&ibinc->ii_frags); 265 rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr); 266 267 return ibinc; 268 } 269 270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic, 271 gfp_t slab_mask, gfp_t page_mask) 272 { 273 struct rds_page_frag *frag; 274 struct list_head *cache_item; 275 int ret; 276 277 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags); 278 if (cache_item) { 279 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry); 280 } else { 281 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask); 282 if (!frag) 283 return NULL; 284 285 sg_init_table(&frag->f_sg, 1); 286 ret = rds_page_remainder_alloc(&frag->f_sg, 287 RDS_FRAG_SIZE, page_mask); 288 if (ret) { 289 kmem_cache_free(rds_ib_frag_slab, frag); 290 return NULL; 291 } 292 } 293 294 INIT_LIST_HEAD(&frag->f_item); 295 296 return frag; 297 } 298 299 static int rds_ib_recv_refill_one(struct rds_connection *conn, 300 struct rds_ib_recv_work *recv, int prefill) 301 { 302 struct rds_ib_connection *ic = conn->c_transport_data; 303 struct ib_sge *sge; 304 int ret = -ENOMEM; 305 gfp_t slab_mask = GFP_NOWAIT; 306 gfp_t page_mask = GFP_NOWAIT; 307 308 if (prefill) { 309 slab_mask = GFP_KERNEL; 310 page_mask = GFP_HIGHUSER; 311 } 312 313 if (!ic->i_cache_incs.ready) 314 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 315 if (!ic->i_cache_frags.ready) 316 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 317 318 /* 319 * ibinc was taken from recv if recv contained the start of a message. 320 * recvs that were continuations will still have this allocated. 321 */ 322 if (!recv->r_ibinc) { 323 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask); 324 if (!recv->r_ibinc) 325 goto out; 326 } 327 328 WARN_ON(recv->r_frag); /* leak! */ 329 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask); 330 if (!recv->r_frag) 331 goto out; 332 333 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 334 1, DMA_FROM_DEVICE); 335 WARN_ON(ret != 1); 336 337 sge = &recv->r_sge[0]; 338 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); 339 sge->length = sizeof(struct rds_header); 340 341 sge = &recv->r_sge[1]; 342 sge->addr = sg_dma_address(&recv->r_frag->f_sg); 343 sge->length = sg_dma_len(&recv->r_frag->f_sg); 344 345 ret = 0; 346 out: 347 return ret; 348 } 349 350 /* 351 * This tries to allocate and post unused work requests after making sure that 352 * they have all the allocations they need to queue received fragments into 353 * sockets. 354 * 355 * -1 is returned if posting fails due to temporary resource exhaustion. 356 */ 357 void rds_ib_recv_refill(struct rds_connection *conn, int prefill) 358 { 359 struct rds_ib_connection *ic = conn->c_transport_data; 360 struct rds_ib_recv_work *recv; 361 struct ib_recv_wr *failed_wr; 362 unsigned int posted = 0; 363 int ret = 0; 364 u32 pos; 365 366 while ((prefill || rds_conn_up(conn)) && 367 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { 368 if (pos >= ic->i_recv_ring.w_nr) { 369 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", 370 pos); 371 break; 372 } 373 374 recv = &ic->i_recvs[pos]; 375 ret = rds_ib_recv_refill_one(conn, recv, prefill); 376 if (ret) { 377 break; 378 } 379 380 /* XXX when can this fail? */ 381 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); 382 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv, 383 recv->r_ibinc, sg_page(&recv->r_frag->f_sg), 384 (long) sg_dma_address(&recv->r_frag->f_sg), ret); 385 if (ret) { 386 rds_ib_conn_error(conn, "recv post on " 387 "%pI4 returned %d, disconnecting and " 388 "reconnecting\n", &conn->c_faddr, 389 ret); 390 break; 391 } 392 393 posted++; 394 } 395 396 /* We're doing flow control - update the window. */ 397 if (ic->i_flowctl && posted) 398 rds_ib_advertise_credits(conn, posted); 399 400 if (ret) 401 rds_ib_ring_unalloc(&ic->i_recv_ring, 1); 402 } 403 404 /* 405 * We want to recycle several types of recv allocations, like incs and frags. 406 * To use this, the *_free() function passes in the ptr to a list_head within 407 * the recyclee, as well as the cache to put it on. 408 * 409 * First, we put the memory on a percpu list. When this reaches a certain size, 410 * We move it to an intermediate non-percpu list in a lockless manner, with some 411 * xchg/compxchg wizardry. 412 * 413 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can 414 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and 415 * list_empty() will return true with one element is actually present. 416 */ 417 static void rds_ib_recv_cache_put(struct list_head *new_item, 418 struct rds_ib_refill_cache *cache) 419 { 420 unsigned long flags; 421 struct rds_ib_cache_head *chp; 422 struct list_head *old; 423 424 local_irq_save(flags); 425 426 chp = per_cpu_ptr(cache->percpu, smp_processor_id()); 427 if (!chp->first) 428 INIT_LIST_HEAD(new_item); 429 else /* put on front */ 430 list_add_tail(new_item, chp->first); 431 chp->first = new_item; 432 chp->count++; 433 434 if (chp->count < RDS_IB_RECYCLE_BATCH_COUNT) 435 goto end; 436 437 /* 438 * Return our per-cpu first list to the cache's xfer by atomically 439 * grabbing the current xfer list, appending it to our per-cpu list, 440 * and then atomically returning that entire list back to the 441 * cache's xfer list as long as it's still empty. 442 */ 443 do { 444 old = xchg(&cache->xfer, NULL); 445 if (old) 446 list_splice_entire_tail(old, chp->first); 447 old = cmpxchg(&cache->xfer, NULL, chp->first); 448 } while (old); 449 450 chp->first = NULL; 451 chp->count = 0; 452 end: 453 local_irq_restore(flags); 454 } 455 456 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache) 457 { 458 struct list_head *head = cache->ready; 459 460 if (head) { 461 if (!list_empty(head)) { 462 cache->ready = head->next; 463 list_del_init(head); 464 } else 465 cache->ready = NULL; 466 } 467 468 return head; 469 } 470 471 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov, 472 size_t size) 473 { 474 struct rds_ib_incoming *ibinc; 475 struct rds_page_frag *frag; 476 struct iovec *iov = first_iov; 477 unsigned long to_copy; 478 unsigned long frag_off = 0; 479 unsigned long iov_off = 0; 480 int copied = 0; 481 int ret; 482 u32 len; 483 484 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 485 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 486 len = be32_to_cpu(inc->i_hdr.h_len); 487 488 while (copied < size && copied < len) { 489 if (frag_off == RDS_FRAG_SIZE) { 490 frag = list_entry(frag->f_item.next, 491 struct rds_page_frag, f_item); 492 frag_off = 0; 493 } 494 while (iov_off == iov->iov_len) { 495 iov_off = 0; 496 iov++; 497 } 498 499 to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off); 500 to_copy = min_t(size_t, to_copy, size - copied); 501 to_copy = min_t(unsigned long, to_copy, len - copied); 502 503 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag " 504 "[%p, %u] + %lu\n", 505 to_copy, iov->iov_base, iov->iov_len, iov_off, 506 sg_page(&frag->f_sg), frag->f_sg.offset, frag_off); 507 508 /* XXX needs + offset for multiple recvs per page */ 509 ret = rds_page_copy_to_user(sg_page(&frag->f_sg), 510 frag->f_sg.offset + frag_off, 511 iov->iov_base + iov_off, 512 to_copy); 513 if (ret) { 514 copied = ret; 515 break; 516 } 517 518 iov_off += to_copy; 519 frag_off += to_copy; 520 copied += to_copy; 521 } 522 523 return copied; 524 } 525 526 /* ic starts out kzalloc()ed */ 527 void rds_ib_recv_init_ack(struct rds_ib_connection *ic) 528 { 529 struct ib_send_wr *wr = &ic->i_ack_wr; 530 struct ib_sge *sge = &ic->i_ack_sge; 531 532 sge->addr = ic->i_ack_dma; 533 sge->length = sizeof(struct rds_header); 534 sge->lkey = ic->i_mr->lkey; 535 536 wr->sg_list = sge; 537 wr->num_sge = 1; 538 wr->opcode = IB_WR_SEND; 539 wr->wr_id = RDS_IB_ACK_WR_ID; 540 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; 541 } 542 543 /* 544 * You'd think that with reliable IB connections you wouldn't need to ack 545 * messages that have been received. The problem is that IB hardware generates 546 * an ack message before it has DMAed the message into memory. This creates a 547 * potential message loss if the HCA is disabled for any reason between when it 548 * sends the ack and before the message is DMAed and processed. This is only a 549 * potential issue if another HCA is available for fail-over. 550 * 551 * When the remote host receives our ack they'll free the sent message from 552 * their send queue. To decrease the latency of this we always send an ack 553 * immediately after we've received messages. 554 * 555 * For simplicity, we only have one ack in flight at a time. This puts 556 * pressure on senders to have deep enough send queues to absorb the latency of 557 * a single ack frame being in flight. This might not be good enough. 558 * 559 * This is implemented by have a long-lived send_wr and sge which point to a 560 * statically allocated ack frame. This ack wr does not fall under the ring 561 * accounting that the tx and rx wrs do. The QP attribute specifically makes 562 * room for it beyond the ring size. Send completion notices its special 563 * wr_id and avoids working with the ring in that case. 564 */ 565 #ifndef KERNEL_HAS_ATOMIC64 566 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, 567 int ack_required) 568 { 569 unsigned long flags; 570 571 spin_lock_irqsave(&ic->i_ack_lock, flags); 572 ic->i_ack_next = seq; 573 if (ack_required) 574 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 575 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 576 } 577 578 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 579 { 580 unsigned long flags; 581 u64 seq; 582 583 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 584 585 spin_lock_irqsave(&ic->i_ack_lock, flags); 586 seq = ic->i_ack_next; 587 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 588 589 return seq; 590 } 591 #else 592 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, 593 int ack_required) 594 { 595 atomic64_set(&ic->i_ack_next, seq); 596 if (ack_required) { 597 smp_mb__before_clear_bit(); 598 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 599 } 600 } 601 602 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 603 { 604 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 605 smp_mb__after_clear_bit(); 606 607 return atomic64_read(&ic->i_ack_next); 608 } 609 #endif 610 611 612 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) 613 { 614 struct rds_header *hdr = ic->i_ack; 615 struct ib_send_wr *failed_wr; 616 u64 seq; 617 int ret; 618 619 seq = rds_ib_get_ack(ic); 620 621 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); 622 rds_message_populate_header(hdr, 0, 0, 0); 623 hdr->h_ack = cpu_to_be64(seq); 624 hdr->h_credit = adv_credits; 625 rds_message_make_checksum(hdr); 626 ic->i_ack_queued = jiffies; 627 628 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); 629 if (unlikely(ret)) { 630 /* Failed to send. Release the WR, and 631 * force another ACK. 632 */ 633 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 634 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 635 636 rds_ib_stats_inc(s_ib_ack_send_failure); 637 638 rds_ib_conn_error(ic->conn, "sending ack failed\n"); 639 } else 640 rds_ib_stats_inc(s_ib_ack_sent); 641 } 642 643 /* 644 * There are 3 ways of getting acknowledgements to the peer: 645 * 1. We call rds_ib_attempt_ack from the recv completion handler 646 * to send an ACK-only frame. 647 * However, there can be only one such frame in the send queue 648 * at any time, so we may have to postpone it. 649 * 2. When another (data) packet is transmitted while there's 650 * an ACK in the queue, we piggyback the ACK sequence number 651 * on the data packet. 652 * 3. If the ACK WR is done sending, we get called from the 653 * send queue completion handler, and check whether there's 654 * another ACK pending (postponed because the WR was on the 655 * queue). If so, we transmit it. 656 * 657 * We maintain 2 variables: 658 * - i_ack_flags, which keeps track of whether the ACK WR 659 * is currently in the send queue or not (IB_ACK_IN_FLIGHT) 660 * - i_ack_next, which is the last sequence number we received 661 * 662 * Potentially, send queue and receive queue handlers can run concurrently. 663 * It would be nice to not have to use a spinlock to synchronize things, 664 * but the one problem that rules this out is that 64bit updates are 665 * not atomic on all platforms. Things would be a lot simpler if 666 * we had atomic64 or maybe cmpxchg64 everywhere. 667 * 668 * Reconnecting complicates this picture just slightly. When we 669 * reconnect, we may be seeing duplicate packets. The peer 670 * is retransmitting them, because it hasn't seen an ACK for 671 * them. It is important that we ACK these. 672 * 673 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with 674 * this flag set *MUST* be acknowledged immediately. 675 */ 676 677 /* 678 * When we get here, we're called from the recv queue handler. 679 * Check whether we ought to transmit an ACK. 680 */ 681 void rds_ib_attempt_ack(struct rds_ib_connection *ic) 682 { 683 unsigned int adv_credits; 684 685 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 686 return; 687 688 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { 689 rds_ib_stats_inc(s_ib_ack_send_delayed); 690 return; 691 } 692 693 /* Can we get a send credit? */ 694 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { 695 rds_ib_stats_inc(s_ib_tx_throttle); 696 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 697 return; 698 } 699 700 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 701 rds_ib_send_ack(ic, adv_credits); 702 } 703 704 /* 705 * We get here from the send completion handler, when the 706 * adapter tells us the ACK frame was sent. 707 */ 708 void rds_ib_ack_send_complete(struct rds_ib_connection *ic) 709 { 710 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 711 rds_ib_attempt_ack(ic); 712 } 713 714 /* 715 * This is called by the regular xmit code when it wants to piggyback 716 * an ACK on an outgoing frame. 717 */ 718 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) 719 { 720 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 721 rds_ib_stats_inc(s_ib_ack_send_piggybacked); 722 return rds_ib_get_ack(ic); 723 } 724 725 /* 726 * It's kind of lame that we're copying from the posted receive pages into 727 * long-lived bitmaps. We could have posted the bitmaps and rdma written into 728 * them. But receiving new congestion bitmaps should be a *rare* event, so 729 * hopefully we won't need to invest that complexity in making it more 730 * efficient. By copying we can share a simpler core with TCP which has to 731 * copy. 732 */ 733 static void rds_ib_cong_recv(struct rds_connection *conn, 734 struct rds_ib_incoming *ibinc) 735 { 736 struct rds_cong_map *map; 737 unsigned int map_off; 738 unsigned int map_page; 739 struct rds_page_frag *frag; 740 unsigned long frag_off; 741 unsigned long to_copy; 742 unsigned long copied; 743 uint64_t uncongested = 0; 744 void *addr; 745 746 /* catch completely corrupt packets */ 747 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) 748 return; 749 750 map = conn->c_fcong; 751 map_page = 0; 752 map_off = 0; 753 754 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 755 frag_off = 0; 756 757 copied = 0; 758 759 while (copied < RDS_CONG_MAP_BYTES) { 760 uint64_t *src, *dst; 761 unsigned int k; 762 763 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); 764 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ 765 766 addr = kmap_atomic(sg_page(&frag->f_sg)); 767 768 src = addr + frag_off; 769 dst = (void *)map->m_page_addrs[map_page] + map_off; 770 for (k = 0; k < to_copy; k += 8) { 771 /* Record ports that became uncongested, ie 772 * bits that changed from 0 to 1. */ 773 uncongested |= ~(*src) & *dst; 774 *dst++ = *src++; 775 } 776 kunmap_atomic(addr); 777 778 copied += to_copy; 779 780 map_off += to_copy; 781 if (map_off == PAGE_SIZE) { 782 map_off = 0; 783 map_page++; 784 } 785 786 frag_off += to_copy; 787 if (frag_off == RDS_FRAG_SIZE) { 788 frag = list_entry(frag->f_item.next, 789 struct rds_page_frag, f_item); 790 frag_off = 0; 791 } 792 } 793 794 /* the congestion map is in little endian order */ 795 uncongested = le64_to_cpu(uncongested); 796 797 rds_cong_map_updated(map, uncongested); 798 } 799 800 /* 801 * Rings are posted with all the allocations they'll need to queue the 802 * incoming message to the receiving socket so this can't fail. 803 * All fragments start with a header, so we can make sure we're not receiving 804 * garbage, and we can tell a small 8 byte fragment from an ACK frame. 805 */ 806 struct rds_ib_ack_state { 807 u64 ack_next; 808 u64 ack_recv; 809 unsigned int ack_required:1; 810 unsigned int ack_next_valid:1; 811 unsigned int ack_recv_valid:1; 812 }; 813 814 static void rds_ib_process_recv(struct rds_connection *conn, 815 struct rds_ib_recv_work *recv, u32 data_len, 816 struct rds_ib_ack_state *state) 817 { 818 struct rds_ib_connection *ic = conn->c_transport_data; 819 struct rds_ib_incoming *ibinc = ic->i_ibinc; 820 struct rds_header *ihdr, *hdr; 821 822 /* XXX shut down the connection if port 0,0 are seen? */ 823 824 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, 825 data_len); 826 827 if (data_len < sizeof(struct rds_header)) { 828 rds_ib_conn_error(conn, "incoming message " 829 "from %pI4 didn't include a " 830 "header, disconnecting and " 831 "reconnecting\n", 832 &conn->c_faddr); 833 return; 834 } 835 data_len -= sizeof(struct rds_header); 836 837 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; 838 839 /* Validate the checksum. */ 840 if (!rds_message_verify_checksum(ihdr)) { 841 rds_ib_conn_error(conn, "incoming message " 842 "from %pI4 has corrupted header - " 843 "forcing a reconnect\n", 844 &conn->c_faddr); 845 rds_stats_inc(s_recv_drop_bad_checksum); 846 return; 847 } 848 849 /* Process the ACK sequence which comes with every packet */ 850 state->ack_recv = be64_to_cpu(ihdr->h_ack); 851 state->ack_recv_valid = 1; 852 853 /* Process the credits update if there was one */ 854 if (ihdr->h_credit) 855 rds_ib_send_add_credits(conn, ihdr->h_credit); 856 857 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) { 858 /* This is an ACK-only packet. The fact that it gets 859 * special treatment here is that historically, ACKs 860 * were rather special beasts. 861 */ 862 rds_ib_stats_inc(s_ib_ack_received); 863 864 /* 865 * Usually the frags make their way on to incs and are then freed as 866 * the inc is freed. We don't go that route, so we have to drop the 867 * page ref ourselves. We can't just leave the page on the recv 868 * because that confuses the dma mapping of pages and each recv's use 869 * of a partial page. 870 * 871 * FIXME: Fold this into the code path below. 872 */ 873 rds_ib_frag_free(ic, recv->r_frag); 874 recv->r_frag = NULL; 875 return; 876 } 877 878 /* 879 * If we don't already have an inc on the connection then this 880 * fragment has a header and starts a message.. copy its header 881 * into the inc and save the inc so we can hang upcoming fragments 882 * off its list. 883 */ 884 if (!ibinc) { 885 ibinc = recv->r_ibinc; 886 recv->r_ibinc = NULL; 887 ic->i_ibinc = ibinc; 888 889 hdr = &ibinc->ii_inc.i_hdr; 890 memcpy(hdr, ihdr, sizeof(*hdr)); 891 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); 892 893 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, 894 ic->i_recv_data_rem, hdr->h_flags); 895 } else { 896 hdr = &ibinc->ii_inc.i_hdr; 897 /* We can't just use memcmp here; fragments of a 898 * single message may carry different ACKs */ 899 if (hdr->h_sequence != ihdr->h_sequence || 900 hdr->h_len != ihdr->h_len || 901 hdr->h_sport != ihdr->h_sport || 902 hdr->h_dport != ihdr->h_dport) { 903 rds_ib_conn_error(conn, 904 "fragment header mismatch; forcing reconnect\n"); 905 return; 906 } 907 } 908 909 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); 910 recv->r_frag = NULL; 911 912 if (ic->i_recv_data_rem > RDS_FRAG_SIZE) 913 ic->i_recv_data_rem -= RDS_FRAG_SIZE; 914 else { 915 ic->i_recv_data_rem = 0; 916 ic->i_ibinc = NULL; 917 918 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) 919 rds_ib_cong_recv(conn, ibinc); 920 else { 921 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, 922 &ibinc->ii_inc, GFP_ATOMIC); 923 state->ack_next = be64_to_cpu(hdr->h_sequence); 924 state->ack_next_valid = 1; 925 } 926 927 /* Evaluate the ACK_REQUIRED flag *after* we received 928 * the complete frame, and after bumping the next_rx 929 * sequence. */ 930 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { 931 rds_stats_inc(s_recv_ack_required); 932 state->ack_required = 1; 933 } 934 935 rds_inc_put(&ibinc->ii_inc); 936 } 937 } 938 939 /* 940 * Plucking the oldest entry from the ring can be done concurrently with 941 * the thread refilling the ring. Each ring operation is protected by 942 * spinlocks and the transient state of refilling doesn't change the 943 * recording of which entry is oldest. 944 * 945 * This relies on IB only calling one cq comp_handler for each cq so that 946 * there will only be one caller of rds_recv_incoming() per RDS connection. 947 */ 948 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context) 949 { 950 struct rds_connection *conn = context; 951 struct rds_ib_connection *ic = conn->c_transport_data; 952 953 rdsdebug("conn %p cq %p\n", conn, cq); 954 955 rds_ib_stats_inc(s_ib_rx_cq_call); 956 957 tasklet_schedule(&ic->i_recv_tasklet); 958 } 959 960 static inline void rds_poll_cq(struct rds_ib_connection *ic, 961 struct rds_ib_ack_state *state) 962 { 963 struct rds_connection *conn = ic->conn; 964 struct ib_wc wc; 965 struct rds_ib_recv_work *recv; 966 967 while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) { 968 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", 969 (unsigned long long)wc.wr_id, wc.status, 970 rds_ib_wc_status_str(wc.status), wc.byte_len, 971 be32_to_cpu(wc.ex.imm_data)); 972 rds_ib_stats_inc(s_ib_rx_cq_event); 973 974 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; 975 976 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); 977 978 /* 979 * Also process recvs in connecting state because it is possible 980 * to get a recv completion _before_ the rdmacm ESTABLISHED 981 * event is processed. 982 */ 983 if (wc.status == IB_WC_SUCCESS) { 984 rds_ib_process_recv(conn, recv, wc.byte_len, state); 985 } else { 986 /* We expect errors as the qp is drained during shutdown */ 987 if (rds_conn_up(conn) || rds_conn_connecting(conn)) 988 rds_ib_conn_error(conn, "recv completion on %pI4 had " 989 "status %u (%s), disconnecting and " 990 "reconnecting\n", &conn->c_faddr, 991 wc.status, 992 rds_ib_wc_status_str(wc.status)); 993 } 994 995 /* 996 * It's very important that we only free this ring entry if we've truly 997 * freed the resources allocated to the entry. The refilling path can 998 * leak if we don't. 999 */ 1000 rds_ib_ring_free(&ic->i_recv_ring, 1); 1001 } 1002 } 1003 1004 void rds_ib_recv_tasklet_fn(unsigned long data) 1005 { 1006 struct rds_ib_connection *ic = (struct rds_ib_connection *) data; 1007 struct rds_connection *conn = ic->conn; 1008 struct rds_ib_ack_state state = { 0, }; 1009 1010 rds_poll_cq(ic, &state); 1011 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); 1012 rds_poll_cq(ic, &state); 1013 1014 if (state.ack_next_valid) 1015 rds_ib_set_ack(ic, state.ack_next, state.ack_required); 1016 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { 1017 rds_send_drop_acked(conn, state.ack_recv, NULL); 1018 ic->i_ack_recv = state.ack_recv; 1019 } 1020 if (rds_conn_up(conn)) 1021 rds_ib_attempt_ack(ic); 1022 1023 /* If we ever end up with a really empty receive ring, we're 1024 * in deep trouble, as the sender will definitely see RNR 1025 * timeouts. */ 1026 if (rds_ib_ring_empty(&ic->i_recv_ring)) 1027 rds_ib_stats_inc(s_ib_rx_ring_empty); 1028 1029 if (rds_ib_ring_low(&ic->i_recv_ring)) 1030 rds_ib_recv_refill(conn, 0); 1031 } 1032 1033 int rds_ib_recv(struct rds_connection *conn) 1034 { 1035 struct rds_ib_connection *ic = conn->c_transport_data; 1036 int ret = 0; 1037 1038 rdsdebug("conn %p\n", conn); 1039 if (rds_conn_up(conn)) 1040 rds_ib_attempt_ack(ic); 1041 1042 return ret; 1043 } 1044 1045 int rds_ib_recv_init(void) 1046 { 1047 struct sysinfo si; 1048 int ret = -ENOMEM; 1049 1050 /* Default to 30% of all available RAM for recv memory */ 1051 si_meminfo(&si); 1052 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; 1053 1054 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming", 1055 sizeof(struct rds_ib_incoming), 1056 0, SLAB_HWCACHE_ALIGN, NULL); 1057 if (!rds_ib_incoming_slab) 1058 goto out; 1059 1060 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", 1061 sizeof(struct rds_page_frag), 1062 0, SLAB_HWCACHE_ALIGN, NULL); 1063 if (!rds_ib_frag_slab) 1064 kmem_cache_destroy(rds_ib_incoming_slab); 1065 else 1066 ret = 0; 1067 out: 1068 return ret; 1069 } 1070 1071 void rds_ib_recv_exit(void) 1072 { 1073 kmem_cache_destroy(rds_ib_incoming_slab); 1074 kmem_cache_destroy(rds_ib_frag_slab); 1075 } 1076