xref: /openbmc/linux/net/rds/ib_recv.c (revision 4f205687)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds.h"
40 #include "ib.h"
41 
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
45 
46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
47 {
48 	struct rds_ib_recv_work *recv;
49 	u32 i;
50 
51 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
52 		struct ib_sge *sge;
53 
54 		recv->r_ibinc = NULL;
55 		recv->r_frag = NULL;
56 
57 		recv->r_wr.next = NULL;
58 		recv->r_wr.wr_id = i;
59 		recv->r_wr.sg_list = recv->r_sge;
60 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
61 
62 		sge = &recv->r_sge[0];
63 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
64 		sge->length = sizeof(struct rds_header);
65 		sge->lkey = ic->i_pd->local_dma_lkey;
66 
67 		sge = &recv->r_sge[1];
68 		sge->addr = 0;
69 		sge->length = RDS_FRAG_SIZE;
70 		sge->lkey = ic->i_pd->local_dma_lkey;
71 	}
72 }
73 
74 /*
75  * The entire 'from' list, including the from element itself, is put on
76  * to the tail of the 'to' list.
77  */
78 static void list_splice_entire_tail(struct list_head *from,
79 				    struct list_head *to)
80 {
81 	struct list_head *from_last = from->prev;
82 
83 	list_splice_tail(from_last, to);
84 	list_add_tail(from_last, to);
85 }
86 
87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
88 {
89 	struct list_head *tmp;
90 
91 	tmp = xchg(&cache->xfer, NULL);
92 	if (tmp) {
93 		if (cache->ready)
94 			list_splice_entire_tail(tmp, cache->ready);
95 		else
96 			cache->ready = tmp;
97 	}
98 }
99 
100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
101 {
102 	struct rds_ib_cache_head *head;
103 	int cpu;
104 
105 	cache->percpu = alloc_percpu(struct rds_ib_cache_head);
106 	if (!cache->percpu)
107 	       return -ENOMEM;
108 
109 	for_each_possible_cpu(cpu) {
110 		head = per_cpu_ptr(cache->percpu, cpu);
111 		head->first = NULL;
112 		head->count = 0;
113 	}
114 	cache->xfer = NULL;
115 	cache->ready = NULL;
116 
117 	return 0;
118 }
119 
120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
121 {
122 	int ret;
123 
124 	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
125 	if (!ret) {
126 		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
127 		if (ret)
128 			free_percpu(ic->i_cache_incs.percpu);
129 	}
130 
131 	return ret;
132 }
133 
134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
135 					  struct list_head *caller_list)
136 {
137 	struct rds_ib_cache_head *head;
138 	int cpu;
139 
140 	for_each_possible_cpu(cpu) {
141 		head = per_cpu_ptr(cache->percpu, cpu);
142 		if (head->first) {
143 			list_splice_entire_tail(head->first, caller_list);
144 			head->first = NULL;
145 		}
146 	}
147 
148 	if (cache->ready) {
149 		list_splice_entire_tail(cache->ready, caller_list);
150 		cache->ready = NULL;
151 	}
152 }
153 
154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
155 {
156 	struct rds_ib_incoming *inc;
157 	struct rds_ib_incoming *inc_tmp;
158 	struct rds_page_frag *frag;
159 	struct rds_page_frag *frag_tmp;
160 	LIST_HEAD(list);
161 
162 	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
163 	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
164 	free_percpu(ic->i_cache_incs.percpu);
165 
166 	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
167 		list_del(&inc->ii_cache_entry);
168 		WARN_ON(!list_empty(&inc->ii_frags));
169 		kmem_cache_free(rds_ib_incoming_slab, inc);
170 	}
171 
172 	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
173 	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
174 	free_percpu(ic->i_cache_frags.percpu);
175 
176 	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
177 		list_del(&frag->f_cache_entry);
178 		WARN_ON(!list_empty(&frag->f_item));
179 		kmem_cache_free(rds_ib_frag_slab, frag);
180 	}
181 }
182 
183 /* fwd decl */
184 static void rds_ib_recv_cache_put(struct list_head *new_item,
185 				  struct rds_ib_refill_cache *cache);
186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
187 
188 
189 /* Recycle frag and attached recv buffer f_sg */
190 static void rds_ib_frag_free(struct rds_ib_connection *ic,
191 			     struct rds_page_frag *frag)
192 {
193 	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
194 
195 	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
196 }
197 
198 /* Recycle inc after freeing attached frags */
199 void rds_ib_inc_free(struct rds_incoming *inc)
200 {
201 	struct rds_ib_incoming *ibinc;
202 	struct rds_page_frag *frag;
203 	struct rds_page_frag *pos;
204 	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
205 
206 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
207 
208 	/* Free attached frags */
209 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
210 		list_del_init(&frag->f_item);
211 		rds_ib_frag_free(ic, frag);
212 	}
213 	BUG_ON(!list_empty(&ibinc->ii_frags));
214 
215 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
216 	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
217 }
218 
219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
220 				  struct rds_ib_recv_work *recv)
221 {
222 	if (recv->r_ibinc) {
223 		rds_inc_put(&recv->r_ibinc->ii_inc);
224 		recv->r_ibinc = NULL;
225 	}
226 	if (recv->r_frag) {
227 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
228 		rds_ib_frag_free(ic, recv->r_frag);
229 		recv->r_frag = NULL;
230 	}
231 }
232 
233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
234 {
235 	u32 i;
236 
237 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
238 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
239 }
240 
241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
242 						     gfp_t slab_mask)
243 {
244 	struct rds_ib_incoming *ibinc;
245 	struct list_head *cache_item;
246 	int avail_allocs;
247 
248 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
249 	if (cache_item) {
250 		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
251 	} else {
252 		avail_allocs = atomic_add_unless(&rds_ib_allocation,
253 						 1, rds_ib_sysctl_max_recv_allocation);
254 		if (!avail_allocs) {
255 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
256 			return NULL;
257 		}
258 		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
259 		if (!ibinc) {
260 			atomic_dec(&rds_ib_allocation);
261 			return NULL;
262 		}
263 	}
264 	INIT_LIST_HEAD(&ibinc->ii_frags);
265 	rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
266 
267 	return ibinc;
268 }
269 
270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
271 						    gfp_t slab_mask, gfp_t page_mask)
272 {
273 	struct rds_page_frag *frag;
274 	struct list_head *cache_item;
275 	int ret;
276 
277 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
278 	if (cache_item) {
279 		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
280 	} else {
281 		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
282 		if (!frag)
283 			return NULL;
284 
285 		sg_init_table(&frag->f_sg, 1);
286 		ret = rds_page_remainder_alloc(&frag->f_sg,
287 					       RDS_FRAG_SIZE, page_mask);
288 		if (ret) {
289 			kmem_cache_free(rds_ib_frag_slab, frag);
290 			return NULL;
291 		}
292 	}
293 
294 	INIT_LIST_HEAD(&frag->f_item);
295 
296 	return frag;
297 }
298 
299 static int rds_ib_recv_refill_one(struct rds_connection *conn,
300 				  struct rds_ib_recv_work *recv, gfp_t gfp)
301 {
302 	struct rds_ib_connection *ic = conn->c_transport_data;
303 	struct ib_sge *sge;
304 	int ret = -ENOMEM;
305 	gfp_t slab_mask = GFP_NOWAIT;
306 	gfp_t page_mask = GFP_NOWAIT;
307 
308 	if (gfp & __GFP_DIRECT_RECLAIM) {
309 		slab_mask = GFP_KERNEL;
310 		page_mask = GFP_HIGHUSER;
311 	}
312 
313 	if (!ic->i_cache_incs.ready)
314 		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
315 	if (!ic->i_cache_frags.ready)
316 		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
317 
318 	/*
319 	 * ibinc was taken from recv if recv contained the start of a message.
320 	 * recvs that were continuations will still have this allocated.
321 	 */
322 	if (!recv->r_ibinc) {
323 		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
324 		if (!recv->r_ibinc)
325 			goto out;
326 	}
327 
328 	WARN_ON(recv->r_frag); /* leak! */
329 	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
330 	if (!recv->r_frag)
331 		goto out;
332 
333 	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
334 			    1, DMA_FROM_DEVICE);
335 	WARN_ON(ret != 1);
336 
337 	sge = &recv->r_sge[0];
338 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
339 	sge->length = sizeof(struct rds_header);
340 
341 	sge = &recv->r_sge[1];
342 	sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
343 	sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
344 
345 	ret = 0;
346 out:
347 	return ret;
348 }
349 
350 static int acquire_refill(struct rds_connection *conn)
351 {
352 	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
353 }
354 
355 static void release_refill(struct rds_connection *conn)
356 {
357 	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
358 
359 	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
360 	 * hot path and finding waiters is very rare.  We don't want to walk
361 	 * the system-wide hashed waitqueue buckets in the fast path only to
362 	 * almost never find waiters.
363 	 */
364 	if (waitqueue_active(&conn->c_waitq))
365 		wake_up_all(&conn->c_waitq);
366 }
367 
368 /*
369  * This tries to allocate and post unused work requests after making sure that
370  * they have all the allocations they need to queue received fragments into
371  * sockets.
372  *
373  * -1 is returned if posting fails due to temporary resource exhaustion.
374  */
375 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
376 {
377 	struct rds_ib_connection *ic = conn->c_transport_data;
378 	struct rds_ib_recv_work *recv;
379 	struct ib_recv_wr *failed_wr;
380 	unsigned int posted = 0;
381 	int ret = 0;
382 	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
383 	u32 pos;
384 
385 	/* the goal here is to just make sure that someone, somewhere
386 	 * is posting buffers.  If we can't get the refill lock,
387 	 * let them do their thing
388 	 */
389 	if (!acquire_refill(conn))
390 		return;
391 
392 	while ((prefill || rds_conn_up(conn)) &&
393 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
394 		if (pos >= ic->i_recv_ring.w_nr) {
395 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
396 					pos);
397 			break;
398 		}
399 
400 		recv = &ic->i_recvs[pos];
401 		ret = rds_ib_recv_refill_one(conn, recv, gfp);
402 		if (ret) {
403 			break;
404 		}
405 
406 		/* XXX when can this fail? */
407 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
408 		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
409 			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
410 			 (long) ib_sg_dma_address(
411 				ic->i_cm_id->device,
412 				&recv->r_frag->f_sg),
413 			ret);
414 		if (ret) {
415 			rds_ib_conn_error(conn, "recv post on "
416 			       "%pI4 returned %d, disconnecting and "
417 			       "reconnecting\n", &conn->c_faddr,
418 			       ret);
419 			break;
420 		}
421 
422 		posted++;
423 	}
424 
425 	/* We're doing flow control - update the window. */
426 	if (ic->i_flowctl && posted)
427 		rds_ib_advertise_credits(conn, posted);
428 
429 	if (ret)
430 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
431 
432 	release_refill(conn);
433 
434 	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
435 	 * in this case the ring being low is going to lead to more interrupts
436 	 * and we can safely let the softirq code take care of it unless the
437 	 * ring is completely empty.
438 	 *
439 	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
440 	 * we might have raced with the softirq code while we had the refill
441 	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
442 	 * if we should requeue.
443 	 */
444 	if (rds_conn_up(conn) &&
445 	    ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
446 	    rds_ib_ring_empty(&ic->i_recv_ring))) {
447 		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
448 	}
449 }
450 
451 /*
452  * We want to recycle several types of recv allocations, like incs and frags.
453  * To use this, the *_free() function passes in the ptr to a list_head within
454  * the recyclee, as well as the cache to put it on.
455  *
456  * First, we put the memory on a percpu list. When this reaches a certain size,
457  * We move it to an intermediate non-percpu list in a lockless manner, with some
458  * xchg/compxchg wizardry.
459  *
460  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
461  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
462  * list_empty() will return true with one element is actually present.
463  */
464 static void rds_ib_recv_cache_put(struct list_head *new_item,
465 				 struct rds_ib_refill_cache *cache)
466 {
467 	unsigned long flags;
468 	struct list_head *old, *chpfirst;
469 
470 	local_irq_save(flags);
471 
472 	chpfirst = __this_cpu_read(cache->percpu->first);
473 	if (!chpfirst)
474 		INIT_LIST_HEAD(new_item);
475 	else /* put on front */
476 		list_add_tail(new_item, chpfirst);
477 
478 	__this_cpu_write(cache->percpu->first, new_item);
479 	__this_cpu_inc(cache->percpu->count);
480 
481 	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
482 		goto end;
483 
484 	/*
485 	 * Return our per-cpu first list to the cache's xfer by atomically
486 	 * grabbing the current xfer list, appending it to our per-cpu list,
487 	 * and then atomically returning that entire list back to the
488 	 * cache's xfer list as long as it's still empty.
489 	 */
490 	do {
491 		old = xchg(&cache->xfer, NULL);
492 		if (old)
493 			list_splice_entire_tail(old, chpfirst);
494 		old = cmpxchg(&cache->xfer, NULL, chpfirst);
495 	} while (old);
496 
497 
498 	__this_cpu_write(cache->percpu->first, NULL);
499 	__this_cpu_write(cache->percpu->count, 0);
500 end:
501 	local_irq_restore(flags);
502 }
503 
504 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
505 {
506 	struct list_head *head = cache->ready;
507 
508 	if (head) {
509 		if (!list_empty(head)) {
510 			cache->ready = head->next;
511 			list_del_init(head);
512 		} else
513 			cache->ready = NULL;
514 	}
515 
516 	return head;
517 }
518 
519 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
520 {
521 	struct rds_ib_incoming *ibinc;
522 	struct rds_page_frag *frag;
523 	unsigned long to_copy;
524 	unsigned long frag_off = 0;
525 	int copied = 0;
526 	int ret;
527 	u32 len;
528 
529 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
530 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
531 	len = be32_to_cpu(inc->i_hdr.h_len);
532 
533 	while (iov_iter_count(to) && copied < len) {
534 		if (frag_off == RDS_FRAG_SIZE) {
535 			frag = list_entry(frag->f_item.next,
536 					  struct rds_page_frag, f_item);
537 			frag_off = 0;
538 		}
539 		to_copy = min_t(unsigned long, iov_iter_count(to),
540 				RDS_FRAG_SIZE - frag_off);
541 		to_copy = min_t(unsigned long, to_copy, len - copied);
542 
543 		/* XXX needs + offset for multiple recvs per page */
544 		rds_stats_add(s_copy_to_user, to_copy);
545 		ret = copy_page_to_iter(sg_page(&frag->f_sg),
546 					frag->f_sg.offset + frag_off,
547 					to_copy,
548 					to);
549 		if (ret != to_copy)
550 			return -EFAULT;
551 
552 		frag_off += to_copy;
553 		copied += to_copy;
554 	}
555 
556 	return copied;
557 }
558 
559 /* ic starts out kzalloc()ed */
560 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
561 {
562 	struct ib_send_wr *wr = &ic->i_ack_wr;
563 	struct ib_sge *sge = &ic->i_ack_sge;
564 
565 	sge->addr = ic->i_ack_dma;
566 	sge->length = sizeof(struct rds_header);
567 	sge->lkey = ic->i_pd->local_dma_lkey;
568 
569 	wr->sg_list = sge;
570 	wr->num_sge = 1;
571 	wr->opcode = IB_WR_SEND;
572 	wr->wr_id = RDS_IB_ACK_WR_ID;
573 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
574 }
575 
576 /*
577  * You'd think that with reliable IB connections you wouldn't need to ack
578  * messages that have been received.  The problem is that IB hardware generates
579  * an ack message before it has DMAed the message into memory.  This creates a
580  * potential message loss if the HCA is disabled for any reason between when it
581  * sends the ack and before the message is DMAed and processed.  This is only a
582  * potential issue if another HCA is available for fail-over.
583  *
584  * When the remote host receives our ack they'll free the sent message from
585  * their send queue.  To decrease the latency of this we always send an ack
586  * immediately after we've received messages.
587  *
588  * For simplicity, we only have one ack in flight at a time.  This puts
589  * pressure on senders to have deep enough send queues to absorb the latency of
590  * a single ack frame being in flight.  This might not be good enough.
591  *
592  * This is implemented by have a long-lived send_wr and sge which point to a
593  * statically allocated ack frame.  This ack wr does not fall under the ring
594  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
595  * room for it beyond the ring size.  Send completion notices its special
596  * wr_id and avoids working with the ring in that case.
597  */
598 #ifndef KERNEL_HAS_ATOMIC64
599 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
600 {
601 	unsigned long flags;
602 
603 	spin_lock_irqsave(&ic->i_ack_lock, flags);
604 	ic->i_ack_next = seq;
605 	if (ack_required)
606 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
607 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
608 }
609 
610 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
611 {
612 	unsigned long flags;
613 	u64 seq;
614 
615 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
616 
617 	spin_lock_irqsave(&ic->i_ack_lock, flags);
618 	seq = ic->i_ack_next;
619 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
620 
621 	return seq;
622 }
623 #else
624 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
625 {
626 	atomic64_set(&ic->i_ack_next, seq);
627 	if (ack_required) {
628 		smp_mb__before_atomic();
629 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
630 	}
631 }
632 
633 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
634 {
635 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
636 	smp_mb__after_atomic();
637 
638 	return atomic64_read(&ic->i_ack_next);
639 }
640 #endif
641 
642 
643 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
644 {
645 	struct rds_header *hdr = ic->i_ack;
646 	struct ib_send_wr *failed_wr;
647 	u64 seq;
648 	int ret;
649 
650 	seq = rds_ib_get_ack(ic);
651 
652 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
653 	rds_message_populate_header(hdr, 0, 0, 0);
654 	hdr->h_ack = cpu_to_be64(seq);
655 	hdr->h_credit = adv_credits;
656 	rds_message_make_checksum(hdr);
657 	ic->i_ack_queued = jiffies;
658 
659 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
660 	if (unlikely(ret)) {
661 		/* Failed to send. Release the WR, and
662 		 * force another ACK.
663 		 */
664 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
665 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
666 
667 		rds_ib_stats_inc(s_ib_ack_send_failure);
668 
669 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
670 	} else
671 		rds_ib_stats_inc(s_ib_ack_sent);
672 }
673 
674 /*
675  * There are 3 ways of getting acknowledgements to the peer:
676  *  1.	We call rds_ib_attempt_ack from the recv completion handler
677  *	to send an ACK-only frame.
678  *	However, there can be only one such frame in the send queue
679  *	at any time, so we may have to postpone it.
680  *  2.	When another (data) packet is transmitted while there's
681  *	an ACK in the queue, we piggyback the ACK sequence number
682  *	on the data packet.
683  *  3.	If the ACK WR is done sending, we get called from the
684  *	send queue completion handler, and check whether there's
685  *	another ACK pending (postponed because the WR was on the
686  *	queue). If so, we transmit it.
687  *
688  * We maintain 2 variables:
689  *  -	i_ack_flags, which keeps track of whether the ACK WR
690  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
691  *  -	i_ack_next, which is the last sequence number we received
692  *
693  * Potentially, send queue and receive queue handlers can run concurrently.
694  * It would be nice to not have to use a spinlock to synchronize things,
695  * but the one problem that rules this out is that 64bit updates are
696  * not atomic on all platforms. Things would be a lot simpler if
697  * we had atomic64 or maybe cmpxchg64 everywhere.
698  *
699  * Reconnecting complicates this picture just slightly. When we
700  * reconnect, we may be seeing duplicate packets. The peer
701  * is retransmitting them, because it hasn't seen an ACK for
702  * them. It is important that we ACK these.
703  *
704  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
705  * this flag set *MUST* be acknowledged immediately.
706  */
707 
708 /*
709  * When we get here, we're called from the recv queue handler.
710  * Check whether we ought to transmit an ACK.
711  */
712 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
713 {
714 	unsigned int adv_credits;
715 
716 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
717 		return;
718 
719 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
720 		rds_ib_stats_inc(s_ib_ack_send_delayed);
721 		return;
722 	}
723 
724 	/* Can we get a send credit? */
725 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
726 		rds_ib_stats_inc(s_ib_tx_throttle);
727 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
728 		return;
729 	}
730 
731 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
732 	rds_ib_send_ack(ic, adv_credits);
733 }
734 
735 /*
736  * We get here from the send completion handler, when the
737  * adapter tells us the ACK frame was sent.
738  */
739 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
740 {
741 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
742 	rds_ib_attempt_ack(ic);
743 }
744 
745 /*
746  * This is called by the regular xmit code when it wants to piggyback
747  * an ACK on an outgoing frame.
748  */
749 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
750 {
751 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
752 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
753 	return rds_ib_get_ack(ic);
754 }
755 
756 /*
757  * It's kind of lame that we're copying from the posted receive pages into
758  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
759  * them.  But receiving new congestion bitmaps should be a *rare* event, so
760  * hopefully we won't need to invest that complexity in making it more
761  * efficient.  By copying we can share a simpler core with TCP which has to
762  * copy.
763  */
764 static void rds_ib_cong_recv(struct rds_connection *conn,
765 			      struct rds_ib_incoming *ibinc)
766 {
767 	struct rds_cong_map *map;
768 	unsigned int map_off;
769 	unsigned int map_page;
770 	struct rds_page_frag *frag;
771 	unsigned long frag_off;
772 	unsigned long to_copy;
773 	unsigned long copied;
774 	uint64_t uncongested = 0;
775 	void *addr;
776 
777 	/* catch completely corrupt packets */
778 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
779 		return;
780 
781 	map = conn->c_fcong;
782 	map_page = 0;
783 	map_off = 0;
784 
785 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
786 	frag_off = 0;
787 
788 	copied = 0;
789 
790 	while (copied < RDS_CONG_MAP_BYTES) {
791 		uint64_t *src, *dst;
792 		unsigned int k;
793 
794 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
795 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
796 
797 		addr = kmap_atomic(sg_page(&frag->f_sg));
798 
799 		src = addr + frag->f_sg.offset + frag_off;
800 		dst = (void *)map->m_page_addrs[map_page] + map_off;
801 		for (k = 0; k < to_copy; k += 8) {
802 			/* Record ports that became uncongested, ie
803 			 * bits that changed from 0 to 1. */
804 			uncongested |= ~(*src) & *dst;
805 			*dst++ = *src++;
806 		}
807 		kunmap_atomic(addr);
808 
809 		copied += to_copy;
810 
811 		map_off += to_copy;
812 		if (map_off == PAGE_SIZE) {
813 			map_off = 0;
814 			map_page++;
815 		}
816 
817 		frag_off += to_copy;
818 		if (frag_off == RDS_FRAG_SIZE) {
819 			frag = list_entry(frag->f_item.next,
820 					  struct rds_page_frag, f_item);
821 			frag_off = 0;
822 		}
823 	}
824 
825 	/* the congestion map is in little endian order */
826 	uncongested = le64_to_cpu(uncongested);
827 
828 	rds_cong_map_updated(map, uncongested);
829 }
830 
831 static void rds_ib_process_recv(struct rds_connection *conn,
832 				struct rds_ib_recv_work *recv, u32 data_len,
833 				struct rds_ib_ack_state *state)
834 {
835 	struct rds_ib_connection *ic = conn->c_transport_data;
836 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
837 	struct rds_header *ihdr, *hdr;
838 
839 	/* XXX shut down the connection if port 0,0 are seen? */
840 
841 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
842 		 data_len);
843 
844 	if (data_len < sizeof(struct rds_header)) {
845 		rds_ib_conn_error(conn, "incoming message "
846 		       "from %pI4 didn't include a "
847 		       "header, disconnecting and "
848 		       "reconnecting\n",
849 		       &conn->c_faddr);
850 		return;
851 	}
852 	data_len -= sizeof(struct rds_header);
853 
854 	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
855 
856 	/* Validate the checksum. */
857 	if (!rds_message_verify_checksum(ihdr)) {
858 		rds_ib_conn_error(conn, "incoming message "
859 		       "from %pI4 has corrupted header - "
860 		       "forcing a reconnect\n",
861 		       &conn->c_faddr);
862 		rds_stats_inc(s_recv_drop_bad_checksum);
863 		return;
864 	}
865 
866 	/* Process the ACK sequence which comes with every packet */
867 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
868 	state->ack_recv_valid = 1;
869 
870 	/* Process the credits update if there was one */
871 	if (ihdr->h_credit)
872 		rds_ib_send_add_credits(conn, ihdr->h_credit);
873 
874 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
875 		/* This is an ACK-only packet. The fact that it gets
876 		 * special treatment here is that historically, ACKs
877 		 * were rather special beasts.
878 		 */
879 		rds_ib_stats_inc(s_ib_ack_received);
880 
881 		/*
882 		 * Usually the frags make their way on to incs and are then freed as
883 		 * the inc is freed.  We don't go that route, so we have to drop the
884 		 * page ref ourselves.  We can't just leave the page on the recv
885 		 * because that confuses the dma mapping of pages and each recv's use
886 		 * of a partial page.
887 		 *
888 		 * FIXME: Fold this into the code path below.
889 		 */
890 		rds_ib_frag_free(ic, recv->r_frag);
891 		recv->r_frag = NULL;
892 		return;
893 	}
894 
895 	/*
896 	 * If we don't already have an inc on the connection then this
897 	 * fragment has a header and starts a message.. copy its header
898 	 * into the inc and save the inc so we can hang upcoming fragments
899 	 * off its list.
900 	 */
901 	if (!ibinc) {
902 		ibinc = recv->r_ibinc;
903 		recv->r_ibinc = NULL;
904 		ic->i_ibinc = ibinc;
905 
906 		hdr = &ibinc->ii_inc.i_hdr;
907 		memcpy(hdr, ihdr, sizeof(*hdr));
908 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
909 
910 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
911 			 ic->i_recv_data_rem, hdr->h_flags);
912 	} else {
913 		hdr = &ibinc->ii_inc.i_hdr;
914 		/* We can't just use memcmp here; fragments of a
915 		 * single message may carry different ACKs */
916 		if (hdr->h_sequence != ihdr->h_sequence ||
917 		    hdr->h_len != ihdr->h_len ||
918 		    hdr->h_sport != ihdr->h_sport ||
919 		    hdr->h_dport != ihdr->h_dport) {
920 			rds_ib_conn_error(conn,
921 				"fragment header mismatch; forcing reconnect\n");
922 			return;
923 		}
924 	}
925 
926 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
927 	recv->r_frag = NULL;
928 
929 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
930 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
931 	else {
932 		ic->i_recv_data_rem = 0;
933 		ic->i_ibinc = NULL;
934 
935 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
936 			rds_ib_cong_recv(conn, ibinc);
937 		else {
938 			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
939 					  &ibinc->ii_inc, GFP_ATOMIC);
940 			state->ack_next = be64_to_cpu(hdr->h_sequence);
941 			state->ack_next_valid = 1;
942 		}
943 
944 		/* Evaluate the ACK_REQUIRED flag *after* we received
945 		 * the complete frame, and after bumping the next_rx
946 		 * sequence. */
947 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
948 			rds_stats_inc(s_recv_ack_required);
949 			state->ack_required = 1;
950 		}
951 
952 		rds_inc_put(&ibinc->ii_inc);
953 	}
954 }
955 
956 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
957 			     struct ib_wc *wc,
958 			     struct rds_ib_ack_state *state)
959 {
960 	struct rds_connection *conn = ic->conn;
961 	struct rds_ib_recv_work *recv;
962 
963 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
964 		 (unsigned long long)wc->wr_id, wc->status,
965 		 ib_wc_status_msg(wc->status), wc->byte_len,
966 		 be32_to_cpu(wc->ex.imm_data));
967 
968 	rds_ib_stats_inc(s_ib_rx_cq_event);
969 	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
970 	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
971 			DMA_FROM_DEVICE);
972 
973 	/* Also process recvs in connecting state because it is possible
974 	 * to get a recv completion _before_ the rdmacm ESTABLISHED
975 	 * event is processed.
976 	 */
977 	if (wc->status == IB_WC_SUCCESS) {
978 		rds_ib_process_recv(conn, recv, wc->byte_len, state);
979 	} else {
980 		/* We expect errors as the qp is drained during shutdown */
981 		if (rds_conn_up(conn) || rds_conn_connecting(conn))
982 			rds_ib_conn_error(conn, "recv completion on %pI4 had status %u (%s), disconnecting and reconnecting\n",
983 					  &conn->c_faddr,
984 					  wc->status,
985 					  ib_wc_status_msg(wc->status));
986 	}
987 
988 	/* rds_ib_process_recv() doesn't always consume the frag, and
989 	 * we might not have called it at all if the wc didn't indicate
990 	 * success. We already unmapped the frag's pages, though, and
991 	 * the following rds_ib_ring_free() call tells the refill path
992 	 * that it will not find an allocated frag here. Make sure we
993 	 * keep that promise by freeing a frag that's still on the ring.
994 	 */
995 	if (recv->r_frag) {
996 		rds_ib_frag_free(ic, recv->r_frag);
997 		recv->r_frag = NULL;
998 	}
999 	rds_ib_ring_free(&ic->i_recv_ring, 1);
1000 
1001 	/* If we ever end up with a really empty receive ring, we're
1002 	 * in deep trouble, as the sender will definitely see RNR
1003 	 * timeouts. */
1004 	if (rds_ib_ring_empty(&ic->i_recv_ring))
1005 		rds_ib_stats_inc(s_ib_rx_ring_empty);
1006 
1007 	if (rds_ib_ring_low(&ic->i_recv_ring))
1008 		rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
1009 }
1010 
1011 int rds_ib_recv(struct rds_connection *conn)
1012 {
1013 	struct rds_ib_connection *ic = conn->c_transport_data;
1014 	int ret = 0;
1015 
1016 	rdsdebug("conn %p\n", conn);
1017 	if (rds_conn_up(conn)) {
1018 		rds_ib_attempt_ack(ic);
1019 		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1020 	}
1021 
1022 	return ret;
1023 }
1024 
1025 int rds_ib_recv_init(void)
1026 {
1027 	struct sysinfo si;
1028 	int ret = -ENOMEM;
1029 
1030 	/* Default to 30% of all available RAM for recv memory */
1031 	si_meminfo(&si);
1032 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1033 
1034 	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1035 					sizeof(struct rds_ib_incoming),
1036 					0, SLAB_HWCACHE_ALIGN, NULL);
1037 	if (!rds_ib_incoming_slab)
1038 		goto out;
1039 
1040 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1041 					sizeof(struct rds_page_frag),
1042 					0, SLAB_HWCACHE_ALIGN, NULL);
1043 	if (!rds_ib_frag_slab) {
1044 		kmem_cache_destroy(rds_ib_incoming_slab);
1045 		rds_ib_incoming_slab = NULL;
1046 	} else
1047 		ret = 0;
1048 out:
1049 	return ret;
1050 }
1051 
1052 void rds_ib_recv_exit(void)
1053 {
1054 	kmem_cache_destroy(rds_ib_incoming_slab);
1055 	kmem_cache_destroy(rds_ib_frag_slab);
1056 }
1057