1 /* 2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <linux/pci.h> 36 #include <linux/dma-mapping.h> 37 #include <rdma/rdma_cm.h> 38 39 #include "rds_single_path.h" 40 #include "rds.h" 41 #include "ib.h" 42 43 static struct kmem_cache *rds_ib_incoming_slab; 44 static struct kmem_cache *rds_ib_frag_slab; 45 static atomic_t rds_ib_allocation = ATOMIC_INIT(0); 46 47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic) 48 { 49 struct rds_ib_recv_work *recv; 50 u32 i; 51 52 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { 53 struct ib_sge *sge; 54 55 recv->r_ibinc = NULL; 56 recv->r_frag = NULL; 57 58 recv->r_wr.next = NULL; 59 recv->r_wr.wr_id = i; 60 recv->r_wr.sg_list = recv->r_sge; 61 recv->r_wr.num_sge = RDS_IB_RECV_SGE; 62 63 sge = &recv->r_sge[0]; 64 sge->addr = ic->i_recv_hdrs_dma[i]; 65 sge->length = sizeof(struct rds_header); 66 sge->lkey = ic->i_pd->local_dma_lkey; 67 68 sge = &recv->r_sge[1]; 69 sge->addr = 0; 70 sge->length = RDS_FRAG_SIZE; 71 sge->lkey = ic->i_pd->local_dma_lkey; 72 } 73 } 74 75 /* 76 * The entire 'from' list, including the from element itself, is put on 77 * to the tail of the 'to' list. 78 */ 79 static void list_splice_entire_tail(struct list_head *from, 80 struct list_head *to) 81 { 82 struct list_head *from_last = from->prev; 83 84 list_splice_tail(from_last, to); 85 list_add_tail(from_last, to); 86 } 87 88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache) 89 { 90 struct list_head *tmp; 91 92 tmp = xchg(&cache->xfer, NULL); 93 if (tmp) { 94 if (cache->ready) 95 list_splice_entire_tail(tmp, cache->ready); 96 else 97 cache->ready = tmp; 98 } 99 } 100 101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp) 102 { 103 struct rds_ib_cache_head *head; 104 int cpu; 105 106 cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp); 107 if (!cache->percpu) 108 return -ENOMEM; 109 110 for_each_possible_cpu(cpu) { 111 head = per_cpu_ptr(cache->percpu, cpu); 112 head->first = NULL; 113 head->count = 0; 114 } 115 cache->xfer = NULL; 116 cache->ready = NULL; 117 118 return 0; 119 } 120 121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp) 122 { 123 int ret; 124 125 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp); 126 if (!ret) { 127 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp); 128 if (ret) 129 free_percpu(ic->i_cache_incs.percpu); 130 } 131 132 return ret; 133 } 134 135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache, 136 struct list_head *caller_list) 137 { 138 struct rds_ib_cache_head *head; 139 int cpu; 140 141 for_each_possible_cpu(cpu) { 142 head = per_cpu_ptr(cache->percpu, cpu); 143 if (head->first) { 144 list_splice_entire_tail(head->first, caller_list); 145 head->first = NULL; 146 } 147 } 148 149 if (cache->ready) { 150 list_splice_entire_tail(cache->ready, caller_list); 151 cache->ready = NULL; 152 } 153 } 154 155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic) 156 { 157 struct rds_ib_incoming *inc; 158 struct rds_ib_incoming *inc_tmp; 159 struct rds_page_frag *frag; 160 struct rds_page_frag *frag_tmp; 161 LIST_HEAD(list); 162 163 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 164 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list); 165 free_percpu(ic->i_cache_incs.percpu); 166 167 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) { 168 list_del(&inc->ii_cache_entry); 169 WARN_ON(!list_empty(&inc->ii_frags)); 170 kmem_cache_free(rds_ib_incoming_slab, inc); 171 atomic_dec(&rds_ib_allocation); 172 } 173 174 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 175 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list); 176 free_percpu(ic->i_cache_frags.percpu); 177 178 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) { 179 list_del(&frag->f_cache_entry); 180 WARN_ON(!list_empty(&frag->f_item)); 181 kmem_cache_free(rds_ib_frag_slab, frag); 182 } 183 } 184 185 /* fwd decl */ 186 static void rds_ib_recv_cache_put(struct list_head *new_item, 187 struct rds_ib_refill_cache *cache); 188 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache); 189 190 191 /* Recycle frag and attached recv buffer f_sg */ 192 static void rds_ib_frag_free(struct rds_ib_connection *ic, 193 struct rds_page_frag *frag) 194 { 195 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg)); 196 197 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags); 198 atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs); 199 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE); 200 } 201 202 /* Recycle inc after freeing attached frags */ 203 void rds_ib_inc_free(struct rds_incoming *inc) 204 { 205 struct rds_ib_incoming *ibinc; 206 struct rds_page_frag *frag; 207 struct rds_page_frag *pos; 208 struct rds_ib_connection *ic = inc->i_conn->c_transport_data; 209 210 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 211 212 /* Free attached frags */ 213 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { 214 list_del_init(&frag->f_item); 215 rds_ib_frag_free(ic, frag); 216 } 217 BUG_ON(!list_empty(&ibinc->ii_frags)); 218 219 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); 220 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs); 221 } 222 223 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, 224 struct rds_ib_recv_work *recv) 225 { 226 if (recv->r_ibinc) { 227 rds_inc_put(&recv->r_ibinc->ii_inc); 228 recv->r_ibinc = NULL; 229 } 230 if (recv->r_frag) { 231 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); 232 rds_ib_frag_free(ic, recv->r_frag); 233 recv->r_frag = NULL; 234 } 235 } 236 237 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) 238 { 239 u32 i; 240 241 for (i = 0; i < ic->i_recv_ring.w_nr; i++) 242 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); 243 } 244 245 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic, 246 gfp_t slab_mask) 247 { 248 struct rds_ib_incoming *ibinc; 249 struct list_head *cache_item; 250 int avail_allocs; 251 252 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs); 253 if (cache_item) { 254 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry); 255 } else { 256 avail_allocs = atomic_add_unless(&rds_ib_allocation, 257 1, rds_ib_sysctl_max_recv_allocation); 258 if (!avail_allocs) { 259 rds_ib_stats_inc(s_ib_rx_alloc_limit); 260 return NULL; 261 } 262 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask); 263 if (!ibinc) { 264 atomic_dec(&rds_ib_allocation); 265 return NULL; 266 } 267 rds_ib_stats_inc(s_ib_rx_total_incs); 268 } 269 INIT_LIST_HEAD(&ibinc->ii_frags); 270 rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr); 271 272 return ibinc; 273 } 274 275 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic, 276 gfp_t slab_mask, gfp_t page_mask) 277 { 278 struct rds_page_frag *frag; 279 struct list_head *cache_item; 280 int ret; 281 282 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags); 283 if (cache_item) { 284 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry); 285 atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs); 286 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE); 287 } else { 288 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask); 289 if (!frag) 290 return NULL; 291 292 sg_init_table(&frag->f_sg, 1); 293 ret = rds_page_remainder_alloc(&frag->f_sg, 294 RDS_FRAG_SIZE, page_mask); 295 if (ret) { 296 kmem_cache_free(rds_ib_frag_slab, frag); 297 return NULL; 298 } 299 rds_ib_stats_inc(s_ib_rx_total_frags); 300 } 301 302 INIT_LIST_HEAD(&frag->f_item); 303 304 return frag; 305 } 306 307 static int rds_ib_recv_refill_one(struct rds_connection *conn, 308 struct rds_ib_recv_work *recv, gfp_t gfp) 309 { 310 struct rds_ib_connection *ic = conn->c_transport_data; 311 struct ib_sge *sge; 312 int ret = -ENOMEM; 313 gfp_t slab_mask = GFP_NOWAIT; 314 gfp_t page_mask = GFP_NOWAIT; 315 316 if (gfp & __GFP_DIRECT_RECLAIM) { 317 slab_mask = GFP_KERNEL; 318 page_mask = GFP_HIGHUSER; 319 } 320 321 if (!ic->i_cache_incs.ready) 322 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); 323 if (!ic->i_cache_frags.ready) 324 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); 325 326 /* 327 * ibinc was taken from recv if recv contained the start of a message. 328 * recvs that were continuations will still have this allocated. 329 */ 330 if (!recv->r_ibinc) { 331 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask); 332 if (!recv->r_ibinc) 333 goto out; 334 } 335 336 WARN_ON(recv->r_frag); /* leak! */ 337 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask); 338 if (!recv->r_frag) 339 goto out; 340 341 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 342 1, DMA_FROM_DEVICE); 343 WARN_ON(ret != 1); 344 345 sge = &recv->r_sge[0]; 346 sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs]; 347 sge->length = sizeof(struct rds_header); 348 349 sge = &recv->r_sge[1]; 350 sge->addr = sg_dma_address(&recv->r_frag->f_sg); 351 sge->length = sg_dma_len(&recv->r_frag->f_sg); 352 353 ret = 0; 354 out: 355 return ret; 356 } 357 358 static int acquire_refill(struct rds_connection *conn) 359 { 360 return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0; 361 } 362 363 static void release_refill(struct rds_connection *conn) 364 { 365 clear_bit(RDS_RECV_REFILL, &conn->c_flags); 366 367 /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a 368 * hot path and finding waiters is very rare. We don't want to walk 369 * the system-wide hashed waitqueue buckets in the fast path only to 370 * almost never find waiters. 371 */ 372 if (waitqueue_active(&conn->c_waitq)) 373 wake_up_all(&conn->c_waitq); 374 } 375 376 /* 377 * This tries to allocate and post unused work requests after making sure that 378 * they have all the allocations they need to queue received fragments into 379 * sockets. 380 */ 381 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp) 382 { 383 struct rds_ib_connection *ic = conn->c_transport_data; 384 struct rds_ib_recv_work *recv; 385 unsigned int posted = 0; 386 int ret = 0; 387 bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM); 388 bool must_wake = false; 389 u32 pos; 390 391 /* the goal here is to just make sure that someone, somewhere 392 * is posting buffers. If we can't get the refill lock, 393 * let them do their thing 394 */ 395 if (!acquire_refill(conn)) 396 return; 397 398 while ((prefill || rds_conn_up(conn)) && 399 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { 400 if (pos >= ic->i_recv_ring.w_nr) { 401 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", 402 pos); 403 break; 404 } 405 406 recv = &ic->i_recvs[pos]; 407 ret = rds_ib_recv_refill_one(conn, recv, gfp); 408 if (ret) { 409 must_wake = true; 410 break; 411 } 412 413 rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv, 414 recv->r_ibinc, sg_page(&recv->r_frag->f_sg), 415 (long)sg_dma_address(&recv->r_frag->f_sg)); 416 417 /* XXX when can this fail? */ 418 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL); 419 if (ret) { 420 rds_ib_conn_error(conn, "recv post on " 421 "%pI6c returned %d, disconnecting and " 422 "reconnecting\n", &conn->c_faddr, 423 ret); 424 break; 425 } 426 427 posted++; 428 429 if ((posted > 128 && need_resched()) || posted > 8192) { 430 must_wake = true; 431 break; 432 } 433 } 434 435 /* We're doing flow control - update the window. */ 436 if (ic->i_flowctl && posted) 437 rds_ib_advertise_credits(conn, posted); 438 439 if (ret) 440 rds_ib_ring_unalloc(&ic->i_recv_ring, 1); 441 442 release_refill(conn); 443 444 /* if we're called from the softirq handler, we'll be GFP_NOWAIT. 445 * in this case the ring being low is going to lead to more interrupts 446 * and we can safely let the softirq code take care of it unless the 447 * ring is completely empty. 448 * 449 * if we're called from krdsd, we'll be GFP_KERNEL. In this case 450 * we might have raced with the softirq code while we had the refill 451 * lock held. Use rds_ib_ring_low() instead of ring_empty to decide 452 * if we should requeue. 453 */ 454 if (rds_conn_up(conn) && 455 (must_wake || 456 (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) || 457 rds_ib_ring_empty(&ic->i_recv_ring))) { 458 queue_delayed_work(rds_wq, &conn->c_recv_w, 1); 459 } 460 if (can_wait) 461 cond_resched(); 462 } 463 464 /* 465 * We want to recycle several types of recv allocations, like incs and frags. 466 * To use this, the *_free() function passes in the ptr to a list_head within 467 * the recyclee, as well as the cache to put it on. 468 * 469 * First, we put the memory on a percpu list. When this reaches a certain size, 470 * We move it to an intermediate non-percpu list in a lockless manner, with some 471 * xchg/compxchg wizardry. 472 * 473 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can 474 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and 475 * list_empty() will return true with one element is actually present. 476 */ 477 static void rds_ib_recv_cache_put(struct list_head *new_item, 478 struct rds_ib_refill_cache *cache) 479 { 480 unsigned long flags; 481 struct list_head *old, *chpfirst; 482 483 local_irq_save(flags); 484 485 chpfirst = __this_cpu_read(cache->percpu->first); 486 if (!chpfirst) 487 INIT_LIST_HEAD(new_item); 488 else /* put on front */ 489 list_add_tail(new_item, chpfirst); 490 491 __this_cpu_write(cache->percpu->first, new_item); 492 __this_cpu_inc(cache->percpu->count); 493 494 if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT) 495 goto end; 496 497 /* 498 * Return our per-cpu first list to the cache's xfer by atomically 499 * grabbing the current xfer list, appending it to our per-cpu list, 500 * and then atomically returning that entire list back to the 501 * cache's xfer list as long as it's still empty. 502 */ 503 do { 504 old = xchg(&cache->xfer, NULL); 505 if (old) 506 list_splice_entire_tail(old, chpfirst); 507 old = cmpxchg(&cache->xfer, NULL, chpfirst); 508 } while (old); 509 510 511 __this_cpu_write(cache->percpu->first, NULL); 512 __this_cpu_write(cache->percpu->count, 0); 513 end: 514 local_irq_restore(flags); 515 } 516 517 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache) 518 { 519 struct list_head *head = cache->ready; 520 521 if (head) { 522 if (!list_empty(head)) { 523 cache->ready = head->next; 524 list_del_init(head); 525 } else 526 cache->ready = NULL; 527 } 528 529 return head; 530 } 531 532 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to) 533 { 534 struct rds_ib_incoming *ibinc; 535 struct rds_page_frag *frag; 536 unsigned long to_copy; 537 unsigned long frag_off = 0; 538 int copied = 0; 539 int ret; 540 u32 len; 541 542 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); 543 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 544 len = be32_to_cpu(inc->i_hdr.h_len); 545 546 while (iov_iter_count(to) && copied < len) { 547 if (frag_off == RDS_FRAG_SIZE) { 548 frag = list_entry(frag->f_item.next, 549 struct rds_page_frag, f_item); 550 frag_off = 0; 551 } 552 to_copy = min_t(unsigned long, iov_iter_count(to), 553 RDS_FRAG_SIZE - frag_off); 554 to_copy = min_t(unsigned long, to_copy, len - copied); 555 556 /* XXX needs + offset for multiple recvs per page */ 557 rds_stats_add(s_copy_to_user, to_copy); 558 ret = copy_page_to_iter(sg_page(&frag->f_sg), 559 frag->f_sg.offset + frag_off, 560 to_copy, 561 to); 562 if (ret != to_copy) 563 return -EFAULT; 564 565 frag_off += to_copy; 566 copied += to_copy; 567 } 568 569 return copied; 570 } 571 572 /* ic starts out kzalloc()ed */ 573 void rds_ib_recv_init_ack(struct rds_ib_connection *ic) 574 { 575 struct ib_send_wr *wr = &ic->i_ack_wr; 576 struct ib_sge *sge = &ic->i_ack_sge; 577 578 sge->addr = ic->i_ack_dma; 579 sge->length = sizeof(struct rds_header); 580 sge->lkey = ic->i_pd->local_dma_lkey; 581 582 wr->sg_list = sge; 583 wr->num_sge = 1; 584 wr->opcode = IB_WR_SEND; 585 wr->wr_id = RDS_IB_ACK_WR_ID; 586 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; 587 } 588 589 /* 590 * You'd think that with reliable IB connections you wouldn't need to ack 591 * messages that have been received. The problem is that IB hardware generates 592 * an ack message before it has DMAed the message into memory. This creates a 593 * potential message loss if the HCA is disabled for any reason between when it 594 * sends the ack and before the message is DMAed and processed. This is only a 595 * potential issue if another HCA is available for fail-over. 596 * 597 * When the remote host receives our ack they'll free the sent message from 598 * their send queue. To decrease the latency of this we always send an ack 599 * immediately after we've received messages. 600 * 601 * For simplicity, we only have one ack in flight at a time. This puts 602 * pressure on senders to have deep enough send queues to absorb the latency of 603 * a single ack frame being in flight. This might not be good enough. 604 * 605 * This is implemented by have a long-lived send_wr and sge which point to a 606 * statically allocated ack frame. This ack wr does not fall under the ring 607 * accounting that the tx and rx wrs do. The QP attribute specifically makes 608 * room for it beyond the ring size. Send completion notices its special 609 * wr_id and avoids working with the ring in that case. 610 */ 611 #ifndef KERNEL_HAS_ATOMIC64 612 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) 613 { 614 unsigned long flags; 615 616 spin_lock_irqsave(&ic->i_ack_lock, flags); 617 ic->i_ack_next = seq; 618 if (ack_required) 619 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 620 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 621 } 622 623 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 624 { 625 unsigned long flags; 626 u64 seq; 627 628 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 629 630 spin_lock_irqsave(&ic->i_ack_lock, flags); 631 seq = ic->i_ack_next; 632 spin_unlock_irqrestore(&ic->i_ack_lock, flags); 633 634 return seq; 635 } 636 #else 637 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) 638 { 639 atomic64_set(&ic->i_ack_next, seq); 640 if (ack_required) { 641 smp_mb__before_atomic(); 642 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 643 } 644 } 645 646 static u64 rds_ib_get_ack(struct rds_ib_connection *ic) 647 { 648 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 649 smp_mb__after_atomic(); 650 651 return atomic64_read(&ic->i_ack_next); 652 } 653 #endif 654 655 656 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) 657 { 658 struct rds_header *hdr = ic->i_ack; 659 u64 seq; 660 int ret; 661 662 seq = rds_ib_get_ack(ic); 663 664 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); 665 rds_message_populate_header(hdr, 0, 0, 0); 666 hdr->h_ack = cpu_to_be64(seq); 667 hdr->h_credit = adv_credits; 668 rds_message_make_checksum(hdr); 669 ic->i_ack_queued = jiffies; 670 671 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL); 672 if (unlikely(ret)) { 673 /* Failed to send. Release the WR, and 674 * force another ACK. 675 */ 676 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 677 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 678 679 rds_ib_stats_inc(s_ib_ack_send_failure); 680 681 rds_ib_conn_error(ic->conn, "sending ack failed\n"); 682 } else 683 rds_ib_stats_inc(s_ib_ack_sent); 684 } 685 686 /* 687 * There are 3 ways of getting acknowledgements to the peer: 688 * 1. We call rds_ib_attempt_ack from the recv completion handler 689 * to send an ACK-only frame. 690 * However, there can be only one such frame in the send queue 691 * at any time, so we may have to postpone it. 692 * 2. When another (data) packet is transmitted while there's 693 * an ACK in the queue, we piggyback the ACK sequence number 694 * on the data packet. 695 * 3. If the ACK WR is done sending, we get called from the 696 * send queue completion handler, and check whether there's 697 * another ACK pending (postponed because the WR was on the 698 * queue). If so, we transmit it. 699 * 700 * We maintain 2 variables: 701 * - i_ack_flags, which keeps track of whether the ACK WR 702 * is currently in the send queue or not (IB_ACK_IN_FLIGHT) 703 * - i_ack_next, which is the last sequence number we received 704 * 705 * Potentially, send queue and receive queue handlers can run concurrently. 706 * It would be nice to not have to use a spinlock to synchronize things, 707 * but the one problem that rules this out is that 64bit updates are 708 * not atomic on all platforms. Things would be a lot simpler if 709 * we had atomic64 or maybe cmpxchg64 everywhere. 710 * 711 * Reconnecting complicates this picture just slightly. When we 712 * reconnect, we may be seeing duplicate packets. The peer 713 * is retransmitting them, because it hasn't seen an ACK for 714 * them. It is important that we ACK these. 715 * 716 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with 717 * this flag set *MUST* be acknowledged immediately. 718 */ 719 720 /* 721 * When we get here, we're called from the recv queue handler. 722 * Check whether we ought to transmit an ACK. 723 */ 724 void rds_ib_attempt_ack(struct rds_ib_connection *ic) 725 { 726 unsigned int adv_credits; 727 728 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 729 return; 730 731 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { 732 rds_ib_stats_inc(s_ib_ack_send_delayed); 733 return; 734 } 735 736 /* Can we get a send credit? */ 737 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { 738 rds_ib_stats_inc(s_ib_tx_throttle); 739 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 740 return; 741 } 742 743 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); 744 rds_ib_send_ack(ic, adv_credits); 745 } 746 747 /* 748 * We get here from the send completion handler, when the 749 * adapter tells us the ACK frame was sent. 750 */ 751 void rds_ib_ack_send_complete(struct rds_ib_connection *ic) 752 { 753 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 754 rds_ib_attempt_ack(ic); 755 } 756 757 /* 758 * This is called by the regular xmit code when it wants to piggyback 759 * an ACK on an outgoing frame. 760 */ 761 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) 762 { 763 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) 764 rds_ib_stats_inc(s_ib_ack_send_piggybacked); 765 return rds_ib_get_ack(ic); 766 } 767 768 /* 769 * It's kind of lame that we're copying from the posted receive pages into 770 * long-lived bitmaps. We could have posted the bitmaps and rdma written into 771 * them. But receiving new congestion bitmaps should be a *rare* event, so 772 * hopefully we won't need to invest that complexity in making it more 773 * efficient. By copying we can share a simpler core with TCP which has to 774 * copy. 775 */ 776 static void rds_ib_cong_recv(struct rds_connection *conn, 777 struct rds_ib_incoming *ibinc) 778 { 779 struct rds_cong_map *map; 780 unsigned int map_off; 781 unsigned int map_page; 782 struct rds_page_frag *frag; 783 unsigned long frag_off; 784 unsigned long to_copy; 785 unsigned long copied; 786 __le64 uncongested = 0; 787 void *addr; 788 789 /* catch completely corrupt packets */ 790 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) 791 return; 792 793 map = conn->c_fcong; 794 map_page = 0; 795 map_off = 0; 796 797 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); 798 frag_off = 0; 799 800 copied = 0; 801 802 while (copied < RDS_CONG_MAP_BYTES) { 803 __le64 *src, *dst; 804 unsigned int k; 805 806 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); 807 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ 808 809 addr = kmap_atomic(sg_page(&frag->f_sg)); 810 811 src = addr + frag->f_sg.offset + frag_off; 812 dst = (void *)map->m_page_addrs[map_page] + map_off; 813 for (k = 0; k < to_copy; k += 8) { 814 /* Record ports that became uncongested, ie 815 * bits that changed from 0 to 1. */ 816 uncongested |= ~(*src) & *dst; 817 *dst++ = *src++; 818 } 819 kunmap_atomic(addr); 820 821 copied += to_copy; 822 823 map_off += to_copy; 824 if (map_off == PAGE_SIZE) { 825 map_off = 0; 826 map_page++; 827 } 828 829 frag_off += to_copy; 830 if (frag_off == RDS_FRAG_SIZE) { 831 frag = list_entry(frag->f_item.next, 832 struct rds_page_frag, f_item); 833 frag_off = 0; 834 } 835 } 836 837 /* the congestion map is in little endian order */ 838 rds_cong_map_updated(map, le64_to_cpu(uncongested)); 839 } 840 841 static void rds_ib_process_recv(struct rds_connection *conn, 842 struct rds_ib_recv_work *recv, u32 data_len, 843 struct rds_ib_ack_state *state) 844 { 845 struct rds_ib_connection *ic = conn->c_transport_data; 846 struct rds_ib_incoming *ibinc = ic->i_ibinc; 847 struct rds_header *ihdr, *hdr; 848 849 /* XXX shut down the connection if port 0,0 are seen? */ 850 851 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, 852 data_len); 853 854 if (data_len < sizeof(struct rds_header)) { 855 rds_ib_conn_error(conn, "incoming message " 856 "from %pI6c didn't include a " 857 "header, disconnecting and " 858 "reconnecting\n", 859 &conn->c_faddr); 860 return; 861 } 862 data_len -= sizeof(struct rds_header); 863 864 ihdr = ic->i_recv_hdrs[recv - ic->i_recvs]; 865 866 /* Validate the checksum. */ 867 if (!rds_message_verify_checksum(ihdr)) { 868 rds_ib_conn_error(conn, "incoming message " 869 "from %pI6c has corrupted header - " 870 "forcing a reconnect\n", 871 &conn->c_faddr); 872 rds_stats_inc(s_recv_drop_bad_checksum); 873 return; 874 } 875 876 /* Process the ACK sequence which comes with every packet */ 877 state->ack_recv = be64_to_cpu(ihdr->h_ack); 878 state->ack_recv_valid = 1; 879 880 /* Process the credits update if there was one */ 881 if (ihdr->h_credit) 882 rds_ib_send_add_credits(conn, ihdr->h_credit); 883 884 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) { 885 /* This is an ACK-only packet. The fact that it gets 886 * special treatment here is that historically, ACKs 887 * were rather special beasts. 888 */ 889 rds_ib_stats_inc(s_ib_ack_received); 890 891 /* 892 * Usually the frags make their way on to incs and are then freed as 893 * the inc is freed. We don't go that route, so we have to drop the 894 * page ref ourselves. We can't just leave the page on the recv 895 * because that confuses the dma mapping of pages and each recv's use 896 * of a partial page. 897 * 898 * FIXME: Fold this into the code path below. 899 */ 900 rds_ib_frag_free(ic, recv->r_frag); 901 recv->r_frag = NULL; 902 return; 903 } 904 905 /* 906 * If we don't already have an inc on the connection then this 907 * fragment has a header and starts a message.. copy its header 908 * into the inc and save the inc so we can hang upcoming fragments 909 * off its list. 910 */ 911 if (!ibinc) { 912 ibinc = recv->r_ibinc; 913 recv->r_ibinc = NULL; 914 ic->i_ibinc = ibinc; 915 916 hdr = &ibinc->ii_inc.i_hdr; 917 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] = 918 local_clock(); 919 memcpy(hdr, ihdr, sizeof(*hdr)); 920 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); 921 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] = 922 local_clock(); 923 924 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, 925 ic->i_recv_data_rem, hdr->h_flags); 926 } else { 927 hdr = &ibinc->ii_inc.i_hdr; 928 /* We can't just use memcmp here; fragments of a 929 * single message may carry different ACKs */ 930 if (hdr->h_sequence != ihdr->h_sequence || 931 hdr->h_len != ihdr->h_len || 932 hdr->h_sport != ihdr->h_sport || 933 hdr->h_dport != ihdr->h_dport) { 934 rds_ib_conn_error(conn, 935 "fragment header mismatch; forcing reconnect\n"); 936 return; 937 } 938 } 939 940 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); 941 recv->r_frag = NULL; 942 943 if (ic->i_recv_data_rem > RDS_FRAG_SIZE) 944 ic->i_recv_data_rem -= RDS_FRAG_SIZE; 945 else { 946 ic->i_recv_data_rem = 0; 947 ic->i_ibinc = NULL; 948 949 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) { 950 rds_ib_cong_recv(conn, ibinc); 951 } else { 952 rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr, 953 &ibinc->ii_inc, GFP_ATOMIC); 954 state->ack_next = be64_to_cpu(hdr->h_sequence); 955 state->ack_next_valid = 1; 956 } 957 958 /* Evaluate the ACK_REQUIRED flag *after* we received 959 * the complete frame, and after bumping the next_rx 960 * sequence. */ 961 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { 962 rds_stats_inc(s_recv_ack_required); 963 state->ack_required = 1; 964 } 965 966 rds_inc_put(&ibinc->ii_inc); 967 } 968 } 969 970 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic, 971 struct ib_wc *wc, 972 struct rds_ib_ack_state *state) 973 { 974 struct rds_connection *conn = ic->conn; 975 struct rds_ib_recv_work *recv; 976 977 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", 978 (unsigned long long)wc->wr_id, wc->status, 979 ib_wc_status_msg(wc->status), wc->byte_len, 980 be32_to_cpu(wc->ex.imm_data)); 981 982 rds_ib_stats_inc(s_ib_rx_cq_event); 983 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; 984 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, 985 DMA_FROM_DEVICE); 986 987 /* Also process recvs in connecting state because it is possible 988 * to get a recv completion _before_ the rdmacm ESTABLISHED 989 * event is processed. 990 */ 991 if (wc->status == IB_WC_SUCCESS) { 992 rds_ib_process_recv(conn, recv, wc->byte_len, state); 993 } else { 994 /* We expect errors as the qp is drained during shutdown */ 995 if (rds_conn_up(conn) || rds_conn_connecting(conn)) 996 rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n", 997 &conn->c_laddr, &conn->c_faddr, 998 conn->c_tos, wc->status, 999 ib_wc_status_msg(wc->status), 1000 wc->vendor_err); 1001 } 1002 1003 /* rds_ib_process_recv() doesn't always consume the frag, and 1004 * we might not have called it at all if the wc didn't indicate 1005 * success. We already unmapped the frag's pages, though, and 1006 * the following rds_ib_ring_free() call tells the refill path 1007 * that it will not find an allocated frag here. Make sure we 1008 * keep that promise by freeing a frag that's still on the ring. 1009 */ 1010 if (recv->r_frag) { 1011 rds_ib_frag_free(ic, recv->r_frag); 1012 recv->r_frag = NULL; 1013 } 1014 rds_ib_ring_free(&ic->i_recv_ring, 1); 1015 1016 /* If we ever end up with a really empty receive ring, we're 1017 * in deep trouble, as the sender will definitely see RNR 1018 * timeouts. */ 1019 if (rds_ib_ring_empty(&ic->i_recv_ring)) 1020 rds_ib_stats_inc(s_ib_rx_ring_empty); 1021 1022 if (rds_ib_ring_low(&ic->i_recv_ring)) { 1023 rds_ib_recv_refill(conn, 0, GFP_NOWAIT); 1024 rds_ib_stats_inc(s_ib_rx_refill_from_cq); 1025 } 1026 } 1027 1028 int rds_ib_recv_path(struct rds_conn_path *cp) 1029 { 1030 struct rds_connection *conn = cp->cp_conn; 1031 struct rds_ib_connection *ic = conn->c_transport_data; 1032 1033 rdsdebug("conn %p\n", conn); 1034 if (rds_conn_up(conn)) { 1035 rds_ib_attempt_ack(ic); 1036 rds_ib_recv_refill(conn, 0, GFP_KERNEL); 1037 rds_ib_stats_inc(s_ib_rx_refill_from_thread); 1038 } 1039 1040 return 0; 1041 } 1042 1043 int rds_ib_recv_init(void) 1044 { 1045 struct sysinfo si; 1046 int ret = -ENOMEM; 1047 1048 /* Default to 30% of all available RAM for recv memory */ 1049 si_meminfo(&si); 1050 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; 1051 1052 rds_ib_incoming_slab = 1053 kmem_cache_create_usercopy("rds_ib_incoming", 1054 sizeof(struct rds_ib_incoming), 1055 0, SLAB_HWCACHE_ALIGN, 1056 offsetof(struct rds_ib_incoming, 1057 ii_inc.i_usercopy), 1058 sizeof(struct rds_inc_usercopy), 1059 NULL); 1060 if (!rds_ib_incoming_slab) 1061 goto out; 1062 1063 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", 1064 sizeof(struct rds_page_frag), 1065 0, SLAB_HWCACHE_ALIGN, NULL); 1066 if (!rds_ib_frag_slab) { 1067 kmem_cache_destroy(rds_ib_incoming_slab); 1068 rds_ib_incoming_slab = NULL; 1069 } else 1070 ret = 0; 1071 out: 1072 return ret; 1073 } 1074 1075 void rds_ib_recv_exit(void) 1076 { 1077 WARN_ON(atomic_read(&rds_ib_allocation)); 1078 1079 kmem_cache_destroy(rds_ib_incoming_slab); 1080 kmem_cache_destroy(rds_ib_frag_slab); 1081 } 1082