xref: /openbmc/linux/net/rds/ib_recv.c (revision 4bacd796)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds.h"
40 #include "ib.h"
41 
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
45 
46 static void rds_ib_frag_drop_page(struct rds_page_frag *frag)
47 {
48 	rdsdebug("frag %p page %p\n", frag, frag->f_page);
49 	__free_page(frag->f_page);
50 	frag->f_page = NULL;
51 }
52 
53 static void rds_ib_frag_free(struct rds_page_frag *frag)
54 {
55 	rdsdebug("frag %p page %p\n", frag, frag->f_page);
56 	BUG_ON(frag->f_page != NULL);
57 	kmem_cache_free(rds_ib_frag_slab, frag);
58 }
59 
60 /*
61  * We map a page at a time.  Its fragments are posted in order.  This
62  * is called in fragment order as the fragments get send completion events.
63  * Only the last frag in the page performs the unmapping.
64  *
65  * It's OK for ring cleanup to call this in whatever order it likes because
66  * DMA is not in flight and so we can unmap while other ring entries still
67  * hold page references in their frags.
68  */
69 static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic,
70 				   struct rds_ib_recv_work *recv)
71 {
72 	struct rds_page_frag *frag = recv->r_frag;
73 
74 	rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
75 	if (frag->f_mapped)
76 		ib_dma_unmap_page(ic->i_cm_id->device,
77 			       frag->f_mapped,
78 			       RDS_FRAG_SIZE, DMA_FROM_DEVICE);
79 	frag->f_mapped = 0;
80 }
81 
82 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
83 {
84 	struct rds_ib_recv_work *recv;
85 	u32 i;
86 
87 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
88 		struct ib_sge *sge;
89 
90 		recv->r_ibinc = NULL;
91 		recv->r_frag = NULL;
92 
93 		recv->r_wr.next = NULL;
94 		recv->r_wr.wr_id = i;
95 		recv->r_wr.sg_list = recv->r_sge;
96 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
97 
98 		sge = rds_ib_data_sge(ic, recv->r_sge);
99 		sge->addr = 0;
100 		sge->length = RDS_FRAG_SIZE;
101 		sge->lkey = ic->i_mr->lkey;
102 
103 		sge = rds_ib_header_sge(ic, recv->r_sge);
104 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
105 		sge->length = sizeof(struct rds_header);
106 		sge->lkey = ic->i_mr->lkey;
107 	}
108 }
109 
110 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
111 				  struct rds_ib_recv_work *recv)
112 {
113 	if (recv->r_ibinc) {
114 		rds_inc_put(&recv->r_ibinc->ii_inc);
115 		recv->r_ibinc = NULL;
116 	}
117 	if (recv->r_frag) {
118 		rds_ib_recv_unmap_page(ic, recv);
119 		if (recv->r_frag->f_page)
120 			rds_ib_frag_drop_page(recv->r_frag);
121 		rds_ib_frag_free(recv->r_frag);
122 		recv->r_frag = NULL;
123 	}
124 }
125 
126 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
127 {
128 	u32 i;
129 
130 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
131 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
132 
133 	if (ic->i_frag.f_page)
134 		rds_ib_frag_drop_page(&ic->i_frag);
135 }
136 
137 static int rds_ib_recv_refill_one(struct rds_connection *conn,
138 				  struct rds_ib_recv_work *recv,
139 				  gfp_t kptr_gfp, gfp_t page_gfp)
140 {
141 	struct rds_ib_connection *ic = conn->c_transport_data;
142 	dma_addr_t dma_addr;
143 	struct ib_sge *sge;
144 	int ret = -ENOMEM;
145 
146 	if (recv->r_ibinc == NULL) {
147 		if (!atomic_add_unless(&rds_ib_allocation, 1, rds_ib_sysctl_max_recv_allocation)) {
148 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
149 			goto out;
150 		}
151 		recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab,
152 						 kptr_gfp);
153 		if (recv->r_ibinc == NULL) {
154 			atomic_dec(&rds_ib_allocation);
155 			goto out;
156 		}
157 		INIT_LIST_HEAD(&recv->r_ibinc->ii_frags);
158 		rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr);
159 	}
160 
161 	if (recv->r_frag == NULL) {
162 		recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp);
163 		if (recv->r_frag == NULL)
164 			goto out;
165 		INIT_LIST_HEAD(&recv->r_frag->f_item);
166 		recv->r_frag->f_page = NULL;
167 	}
168 
169 	if (ic->i_frag.f_page == NULL) {
170 		ic->i_frag.f_page = alloc_page(page_gfp);
171 		if (ic->i_frag.f_page == NULL)
172 			goto out;
173 		ic->i_frag.f_offset = 0;
174 	}
175 
176 	dma_addr = ib_dma_map_page(ic->i_cm_id->device,
177 				  ic->i_frag.f_page,
178 				  ic->i_frag.f_offset,
179 				  RDS_FRAG_SIZE,
180 				  DMA_FROM_DEVICE);
181 	if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
182 		goto out;
183 
184 	/*
185 	 * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap()
186 	 * must be called on this recv.  This happens as completions hit
187 	 * in order or on connection shutdown.
188 	 */
189 	recv->r_frag->f_page = ic->i_frag.f_page;
190 	recv->r_frag->f_offset = ic->i_frag.f_offset;
191 	recv->r_frag->f_mapped = dma_addr;
192 
193 	sge = rds_ib_data_sge(ic, recv->r_sge);
194 	sge->addr = dma_addr;
195 	sge->length = RDS_FRAG_SIZE;
196 
197 	sge = rds_ib_header_sge(ic, recv->r_sge);
198 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
199 	sge->length = sizeof(struct rds_header);
200 
201 	get_page(recv->r_frag->f_page);
202 
203 	if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
204 		ic->i_frag.f_offset += RDS_FRAG_SIZE;
205 	} else {
206 		put_page(ic->i_frag.f_page);
207 		ic->i_frag.f_page = NULL;
208 		ic->i_frag.f_offset = 0;
209 	}
210 
211 	ret = 0;
212 out:
213 	return ret;
214 }
215 
216 /*
217  * This tries to allocate and post unused work requests after making sure that
218  * they have all the allocations they need to queue received fragments into
219  * sockets.  The i_recv_mutex is held here so that ring_alloc and _unalloc
220  * pairs don't go unmatched.
221  *
222  * -1 is returned if posting fails due to temporary resource exhaustion.
223  */
224 int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
225 		       gfp_t page_gfp, int prefill)
226 {
227 	struct rds_ib_connection *ic = conn->c_transport_data;
228 	struct rds_ib_recv_work *recv;
229 	struct ib_recv_wr *failed_wr;
230 	unsigned int posted = 0;
231 	int ret = 0;
232 	u32 pos;
233 
234 	while ((prefill || rds_conn_up(conn)) &&
235 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
236 		if (pos >= ic->i_recv_ring.w_nr) {
237 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
238 					pos);
239 			ret = -EINVAL;
240 			break;
241 		}
242 
243 		recv = &ic->i_recvs[pos];
244 		ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
245 		if (ret) {
246 			ret = -1;
247 			break;
248 		}
249 
250 		/* XXX when can this fail? */
251 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
252 		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
253 			 recv->r_ibinc, recv->r_frag->f_page,
254 			 (long) recv->r_frag->f_mapped, ret);
255 		if (ret) {
256 			rds_ib_conn_error(conn, "recv post on "
257 			       "%pI4 returned %d, disconnecting and "
258 			       "reconnecting\n", &conn->c_faddr,
259 			       ret);
260 			ret = -1;
261 			break;
262 		}
263 
264 		posted++;
265 	}
266 
267 	/* We're doing flow control - update the window. */
268 	if (ic->i_flowctl && posted)
269 		rds_ib_advertise_credits(conn, posted);
270 
271 	if (ret)
272 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
273 	return ret;
274 }
275 
276 void rds_ib_inc_purge(struct rds_incoming *inc)
277 {
278 	struct rds_ib_incoming *ibinc;
279 	struct rds_page_frag *frag;
280 	struct rds_page_frag *pos;
281 
282 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
283 	rdsdebug("purging ibinc %p inc %p\n", ibinc, inc);
284 
285 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
286 		list_del_init(&frag->f_item);
287 		rds_ib_frag_drop_page(frag);
288 		rds_ib_frag_free(frag);
289 	}
290 }
291 
292 void rds_ib_inc_free(struct rds_incoming *inc)
293 {
294 	struct rds_ib_incoming *ibinc;
295 
296 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
297 
298 	rds_ib_inc_purge(inc);
299 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
300 	BUG_ON(!list_empty(&ibinc->ii_frags));
301 	kmem_cache_free(rds_ib_incoming_slab, ibinc);
302 	atomic_dec(&rds_ib_allocation);
303 	BUG_ON(atomic_read(&rds_ib_allocation) < 0);
304 }
305 
306 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
307 			    size_t size)
308 {
309 	struct rds_ib_incoming *ibinc;
310 	struct rds_page_frag *frag;
311 	struct iovec *iov = first_iov;
312 	unsigned long to_copy;
313 	unsigned long frag_off = 0;
314 	unsigned long iov_off = 0;
315 	int copied = 0;
316 	int ret;
317 	u32 len;
318 
319 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
320 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
321 	len = be32_to_cpu(inc->i_hdr.h_len);
322 
323 	while (copied < size && copied < len) {
324 		if (frag_off == RDS_FRAG_SIZE) {
325 			frag = list_entry(frag->f_item.next,
326 					  struct rds_page_frag, f_item);
327 			frag_off = 0;
328 		}
329 		while (iov_off == iov->iov_len) {
330 			iov_off = 0;
331 			iov++;
332 		}
333 
334 		to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
335 		to_copy = min_t(size_t, to_copy, size - copied);
336 		to_copy = min_t(unsigned long, to_copy, len - copied);
337 
338 		rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
339 			 "[%p, %lu] + %lu\n",
340 			 to_copy, iov->iov_base, iov->iov_len, iov_off,
341 			 frag->f_page, frag->f_offset, frag_off);
342 
343 		/* XXX needs + offset for multiple recvs per page */
344 		ret = rds_page_copy_to_user(frag->f_page,
345 					    frag->f_offset + frag_off,
346 					    iov->iov_base + iov_off,
347 					    to_copy);
348 		if (ret) {
349 			copied = ret;
350 			break;
351 		}
352 
353 		iov_off += to_copy;
354 		frag_off += to_copy;
355 		copied += to_copy;
356 	}
357 
358 	return copied;
359 }
360 
361 /* ic starts out kzalloc()ed */
362 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
363 {
364 	struct ib_send_wr *wr = &ic->i_ack_wr;
365 	struct ib_sge *sge = &ic->i_ack_sge;
366 
367 	sge->addr = ic->i_ack_dma;
368 	sge->length = sizeof(struct rds_header);
369 	sge->lkey = ic->i_mr->lkey;
370 
371 	wr->sg_list = sge;
372 	wr->num_sge = 1;
373 	wr->opcode = IB_WR_SEND;
374 	wr->wr_id = RDS_IB_ACK_WR_ID;
375 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
376 }
377 
378 /*
379  * You'd think that with reliable IB connections you wouldn't need to ack
380  * messages that have been received.  The problem is that IB hardware generates
381  * an ack message before it has DMAed the message into memory.  This creates a
382  * potential message loss if the HCA is disabled for any reason between when it
383  * sends the ack and before the message is DMAed and processed.  This is only a
384  * potential issue if another HCA is available for fail-over.
385  *
386  * When the remote host receives our ack they'll free the sent message from
387  * their send queue.  To decrease the latency of this we always send an ack
388  * immediately after we've received messages.
389  *
390  * For simplicity, we only have one ack in flight at a time.  This puts
391  * pressure on senders to have deep enough send queues to absorb the latency of
392  * a single ack frame being in flight.  This might not be good enough.
393  *
394  * This is implemented by have a long-lived send_wr and sge which point to a
395  * statically allocated ack frame.  This ack wr does not fall under the ring
396  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
397  * room for it beyond the ring size.  Send completion notices its special
398  * wr_id and avoids working with the ring in that case.
399  */
400 #ifndef KERNEL_HAS_ATOMIC64
401 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
402 				int ack_required)
403 {
404 	unsigned long flags;
405 
406 	spin_lock_irqsave(&ic->i_ack_lock, flags);
407 	ic->i_ack_next = seq;
408 	if (ack_required)
409 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
410 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
411 }
412 
413 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
414 {
415 	unsigned long flags;
416 	u64 seq;
417 
418 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
419 
420 	spin_lock_irqsave(&ic->i_ack_lock, flags);
421 	seq = ic->i_ack_next;
422 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
423 
424 	return seq;
425 }
426 #else
427 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
428 				int ack_required)
429 {
430 	atomic64_set(&ic->i_ack_next, seq);
431 	if (ack_required) {
432 		smp_mb__before_clear_bit();
433 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
434 	}
435 }
436 
437 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
438 {
439 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
440 	smp_mb__after_clear_bit();
441 
442 	return atomic64_read(&ic->i_ack_next);
443 }
444 #endif
445 
446 
447 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
448 {
449 	struct rds_header *hdr = ic->i_ack;
450 	struct ib_send_wr *failed_wr;
451 	u64 seq;
452 	int ret;
453 
454 	seq = rds_ib_get_ack(ic);
455 
456 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
457 	rds_message_populate_header(hdr, 0, 0, 0);
458 	hdr->h_ack = cpu_to_be64(seq);
459 	hdr->h_credit = adv_credits;
460 	rds_message_make_checksum(hdr);
461 	ic->i_ack_queued = jiffies;
462 
463 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
464 	if (unlikely(ret)) {
465 		/* Failed to send. Release the WR, and
466 		 * force another ACK.
467 		 */
468 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
469 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
470 
471 		rds_ib_stats_inc(s_ib_ack_send_failure);
472 
473 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
474 	} else
475 		rds_ib_stats_inc(s_ib_ack_sent);
476 }
477 
478 /*
479  * There are 3 ways of getting acknowledgements to the peer:
480  *  1.	We call rds_ib_attempt_ack from the recv completion handler
481  *	to send an ACK-only frame.
482  *	However, there can be only one such frame in the send queue
483  *	at any time, so we may have to postpone it.
484  *  2.	When another (data) packet is transmitted while there's
485  *	an ACK in the queue, we piggyback the ACK sequence number
486  *	on the data packet.
487  *  3.	If the ACK WR is done sending, we get called from the
488  *	send queue completion handler, and check whether there's
489  *	another ACK pending (postponed because the WR was on the
490  *	queue). If so, we transmit it.
491  *
492  * We maintain 2 variables:
493  *  -	i_ack_flags, which keeps track of whether the ACK WR
494  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
495  *  -	i_ack_next, which is the last sequence number we received
496  *
497  * Potentially, send queue and receive queue handlers can run concurrently.
498  * It would be nice to not have to use a spinlock to synchronize things,
499  * but the one problem that rules this out is that 64bit updates are
500  * not atomic on all platforms. Things would be a lot simpler if
501  * we had atomic64 or maybe cmpxchg64 everywhere.
502  *
503  * Reconnecting complicates this picture just slightly. When we
504  * reconnect, we may be seeing duplicate packets. The peer
505  * is retransmitting them, because it hasn't seen an ACK for
506  * them. It is important that we ACK these.
507  *
508  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
509  * this flag set *MUST* be acknowledged immediately.
510  */
511 
512 /*
513  * When we get here, we're called from the recv queue handler.
514  * Check whether we ought to transmit an ACK.
515  */
516 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
517 {
518 	unsigned int adv_credits;
519 
520 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
521 		return;
522 
523 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
524 		rds_ib_stats_inc(s_ib_ack_send_delayed);
525 		return;
526 	}
527 
528 	/* Can we get a send credit? */
529 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
530 		rds_ib_stats_inc(s_ib_tx_throttle);
531 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
532 		return;
533 	}
534 
535 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
536 	rds_ib_send_ack(ic, adv_credits);
537 }
538 
539 /*
540  * We get here from the send completion handler, when the
541  * adapter tells us the ACK frame was sent.
542  */
543 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
544 {
545 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
546 	rds_ib_attempt_ack(ic);
547 }
548 
549 /*
550  * This is called by the regular xmit code when it wants to piggyback
551  * an ACK on an outgoing frame.
552  */
553 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
554 {
555 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
556 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
557 	return rds_ib_get_ack(ic);
558 }
559 
560 static struct rds_header *rds_ib_get_header(struct rds_connection *conn,
561 					    struct rds_ib_recv_work *recv,
562 					    u32 data_len)
563 {
564 	struct rds_ib_connection *ic = conn->c_transport_data;
565 	void *hdr_buff = &ic->i_recv_hdrs[recv - ic->i_recvs];
566 	void *addr;
567 	u32 misplaced_hdr_bytes;
568 
569 	/*
570 	 * Support header at the front (RDS 3.1+) as well as header-at-end.
571 	 *
572 	 * Cases:
573 	 * 1) header all in header buff (great!)
574 	 * 2) header all in data page (copy all to header buff)
575 	 * 3) header split across hdr buf + data page
576 	 *    (move bit in hdr buff to end before copying other bit from data page)
577 	 */
578 	if (conn->c_version > RDS_PROTOCOL_3_0 || data_len == RDS_FRAG_SIZE)
579 	        return hdr_buff;
580 
581 	if (data_len <= (RDS_FRAG_SIZE - sizeof(struct rds_header))) {
582 		addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
583 		memcpy(hdr_buff,
584 		       addr + recv->r_frag->f_offset + data_len,
585 		       sizeof(struct rds_header));
586 		kunmap_atomic(addr, KM_SOFTIRQ0);
587 		return hdr_buff;
588 	}
589 
590 	misplaced_hdr_bytes = (sizeof(struct rds_header) - (RDS_FRAG_SIZE - data_len));
591 
592 	memmove(hdr_buff + misplaced_hdr_bytes, hdr_buff, misplaced_hdr_bytes);
593 
594 	addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
595 	memcpy(hdr_buff, addr + recv->r_frag->f_offset + data_len,
596 	       sizeof(struct rds_header) - misplaced_hdr_bytes);
597 	kunmap_atomic(addr, KM_SOFTIRQ0);
598 	return hdr_buff;
599 }
600 
601 /*
602  * It's kind of lame that we're copying from the posted receive pages into
603  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
604  * them.  But receiving new congestion bitmaps should be a *rare* event, so
605  * hopefully we won't need to invest that complexity in making it more
606  * efficient.  By copying we can share a simpler core with TCP which has to
607  * copy.
608  */
609 static void rds_ib_cong_recv(struct rds_connection *conn,
610 			      struct rds_ib_incoming *ibinc)
611 {
612 	struct rds_cong_map *map;
613 	unsigned int map_off;
614 	unsigned int map_page;
615 	struct rds_page_frag *frag;
616 	unsigned long frag_off;
617 	unsigned long to_copy;
618 	unsigned long copied;
619 	uint64_t uncongested = 0;
620 	void *addr;
621 
622 	/* catch completely corrupt packets */
623 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
624 		return;
625 
626 	map = conn->c_fcong;
627 	map_page = 0;
628 	map_off = 0;
629 
630 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
631 	frag_off = 0;
632 
633 	copied = 0;
634 
635 	while (copied < RDS_CONG_MAP_BYTES) {
636 		uint64_t *src, *dst;
637 		unsigned int k;
638 
639 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
640 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
641 
642 		addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0);
643 
644 		src = addr + frag_off;
645 		dst = (void *)map->m_page_addrs[map_page] + map_off;
646 		for (k = 0; k < to_copy; k += 8) {
647 			/* Record ports that became uncongested, ie
648 			 * bits that changed from 0 to 1. */
649 			uncongested |= ~(*src) & *dst;
650 			*dst++ = *src++;
651 		}
652 		kunmap_atomic(addr, KM_SOFTIRQ0);
653 
654 		copied += to_copy;
655 
656 		map_off += to_copy;
657 		if (map_off == PAGE_SIZE) {
658 			map_off = 0;
659 			map_page++;
660 		}
661 
662 		frag_off += to_copy;
663 		if (frag_off == RDS_FRAG_SIZE) {
664 			frag = list_entry(frag->f_item.next,
665 					  struct rds_page_frag, f_item);
666 			frag_off = 0;
667 		}
668 	}
669 
670 	/* the congestion map is in little endian order */
671 	uncongested = le64_to_cpu(uncongested);
672 
673 	rds_cong_map_updated(map, uncongested);
674 }
675 
676 /*
677  * Rings are posted with all the allocations they'll need to queue the
678  * incoming message to the receiving socket so this can't fail.
679  * All fragments start with a header, so we can make sure we're not receiving
680  * garbage, and we can tell a small 8 byte fragment from an ACK frame.
681  */
682 struct rds_ib_ack_state {
683 	u64		ack_next;
684 	u64		ack_recv;
685 	unsigned int	ack_required:1;
686 	unsigned int	ack_next_valid:1;
687 	unsigned int	ack_recv_valid:1;
688 };
689 
690 static void rds_ib_process_recv(struct rds_connection *conn,
691 				struct rds_ib_recv_work *recv, u32 data_len,
692 				struct rds_ib_ack_state *state)
693 {
694 	struct rds_ib_connection *ic = conn->c_transport_data;
695 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
696 	struct rds_header *ihdr, *hdr;
697 
698 	/* XXX shut down the connection if port 0,0 are seen? */
699 
700 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
701 		 data_len);
702 
703 	if (data_len < sizeof(struct rds_header)) {
704 		rds_ib_conn_error(conn, "incoming message "
705 		       "from %pI4 didn't inclue a "
706 		       "header, disconnecting and "
707 		       "reconnecting\n",
708 		       &conn->c_faddr);
709 		return;
710 	}
711 	data_len -= sizeof(struct rds_header);
712 
713 	ihdr = rds_ib_get_header(conn, recv, data_len);
714 
715 	/* Validate the checksum. */
716 	if (!rds_message_verify_checksum(ihdr)) {
717 		rds_ib_conn_error(conn, "incoming message "
718 		       "from %pI4 has corrupted header - "
719 		       "forcing a reconnect\n",
720 		       &conn->c_faddr);
721 		rds_stats_inc(s_recv_drop_bad_checksum);
722 		return;
723 	}
724 
725 	/* Process the ACK sequence which comes with every packet */
726 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
727 	state->ack_recv_valid = 1;
728 
729 	/* Process the credits update if there was one */
730 	if (ihdr->h_credit)
731 		rds_ib_send_add_credits(conn, ihdr->h_credit);
732 
733 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
734 		/* This is an ACK-only packet. The fact that it gets
735 		 * special treatment here is that historically, ACKs
736 		 * were rather special beasts.
737 		 */
738 		rds_ib_stats_inc(s_ib_ack_received);
739 
740 		/*
741 		 * Usually the frags make their way on to incs and are then freed as
742 		 * the inc is freed.  We don't go that route, so we have to drop the
743 		 * page ref ourselves.  We can't just leave the page on the recv
744 		 * because that confuses the dma mapping of pages and each recv's use
745 		 * of a partial page.  We can leave the frag, though, it will be
746 		 * reused.
747 		 *
748 		 * FIXME: Fold this into the code path below.
749 		 */
750 		rds_ib_frag_drop_page(recv->r_frag);
751 		return;
752 	}
753 
754 	/*
755 	 * If we don't already have an inc on the connection then this
756 	 * fragment has a header and starts a message.. copy its header
757 	 * into the inc and save the inc so we can hang upcoming fragments
758 	 * off its list.
759 	 */
760 	if (ibinc == NULL) {
761 		ibinc = recv->r_ibinc;
762 		recv->r_ibinc = NULL;
763 		ic->i_ibinc = ibinc;
764 
765 		hdr = &ibinc->ii_inc.i_hdr;
766 		memcpy(hdr, ihdr, sizeof(*hdr));
767 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
768 
769 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
770 			 ic->i_recv_data_rem, hdr->h_flags);
771 	} else {
772 		hdr = &ibinc->ii_inc.i_hdr;
773 		/* We can't just use memcmp here; fragments of a
774 		 * single message may carry different ACKs */
775 		if (hdr->h_sequence != ihdr->h_sequence ||
776 		    hdr->h_len != ihdr->h_len ||
777 		    hdr->h_sport != ihdr->h_sport ||
778 		    hdr->h_dport != ihdr->h_dport) {
779 			rds_ib_conn_error(conn,
780 				"fragment header mismatch; forcing reconnect\n");
781 			return;
782 		}
783 	}
784 
785 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
786 	recv->r_frag = NULL;
787 
788 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
789 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
790 	else {
791 		ic->i_recv_data_rem = 0;
792 		ic->i_ibinc = NULL;
793 
794 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
795 			rds_ib_cong_recv(conn, ibinc);
796 		else {
797 			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
798 					  &ibinc->ii_inc, GFP_ATOMIC,
799 					  KM_SOFTIRQ0);
800 			state->ack_next = be64_to_cpu(hdr->h_sequence);
801 			state->ack_next_valid = 1;
802 		}
803 
804 		/* Evaluate the ACK_REQUIRED flag *after* we received
805 		 * the complete frame, and after bumping the next_rx
806 		 * sequence. */
807 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
808 			rds_stats_inc(s_recv_ack_required);
809 			state->ack_required = 1;
810 		}
811 
812 		rds_inc_put(&ibinc->ii_inc);
813 	}
814 }
815 
816 /*
817  * Plucking the oldest entry from the ring can be done concurrently with
818  * the thread refilling the ring.  Each ring operation is protected by
819  * spinlocks and the transient state of refilling doesn't change the
820  * recording of which entry is oldest.
821  *
822  * This relies on IB only calling one cq comp_handler for each cq so that
823  * there will only be one caller of rds_recv_incoming() per RDS connection.
824  */
825 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
826 {
827 	struct rds_connection *conn = context;
828 	struct rds_ib_connection *ic = conn->c_transport_data;
829 
830 	rdsdebug("conn %p cq %p\n", conn, cq);
831 
832 	rds_ib_stats_inc(s_ib_rx_cq_call);
833 
834 	tasklet_schedule(&ic->i_recv_tasklet);
835 }
836 
837 static inline void rds_poll_cq(struct rds_ib_connection *ic,
838 			       struct rds_ib_ack_state *state)
839 {
840 	struct rds_connection *conn = ic->conn;
841 	struct ib_wc wc;
842 	struct rds_ib_recv_work *recv;
843 
844 	while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
845 		rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
846 			 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
847 			 be32_to_cpu(wc.ex.imm_data));
848 		rds_ib_stats_inc(s_ib_rx_cq_event);
849 
850 		recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
851 
852 		rds_ib_recv_unmap_page(ic, recv);
853 
854 		/*
855 		 * Also process recvs in connecting state because it is possible
856 		 * to get a recv completion _before_ the rdmacm ESTABLISHED
857 		 * event is processed.
858 		 */
859 		if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
860 			/* We expect errors as the qp is drained during shutdown */
861 			if (wc.status == IB_WC_SUCCESS) {
862 				rds_ib_process_recv(conn, recv, wc.byte_len, state);
863 			} else {
864 				rds_ib_conn_error(conn, "recv completion on "
865 				       "%pI4 had status %u, disconnecting and "
866 				       "reconnecting\n", &conn->c_faddr,
867 				       wc.status);
868 			}
869 		}
870 
871 		rds_ib_ring_free(&ic->i_recv_ring, 1);
872 	}
873 }
874 
875 void rds_ib_recv_tasklet_fn(unsigned long data)
876 {
877 	struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
878 	struct rds_connection *conn = ic->conn;
879 	struct rds_ib_ack_state state = { 0, };
880 
881 	rds_poll_cq(ic, &state);
882 	ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
883 	rds_poll_cq(ic, &state);
884 
885 	if (state.ack_next_valid)
886 		rds_ib_set_ack(ic, state.ack_next, state.ack_required);
887 	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
888 		rds_send_drop_acked(conn, state.ack_recv, NULL);
889 		ic->i_ack_recv = state.ack_recv;
890 	}
891 	if (rds_conn_up(conn))
892 		rds_ib_attempt_ack(ic);
893 
894 	/* If we ever end up with a really empty receive ring, we're
895 	 * in deep trouble, as the sender will definitely see RNR
896 	 * timeouts. */
897 	if (rds_ib_ring_empty(&ic->i_recv_ring))
898 		rds_ib_stats_inc(s_ib_rx_ring_empty);
899 
900 	/*
901 	 * If the ring is running low, then schedule the thread to refill.
902 	 */
903 	if (rds_ib_ring_low(&ic->i_recv_ring))
904 		queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
905 }
906 
907 int rds_ib_recv(struct rds_connection *conn)
908 {
909 	struct rds_ib_connection *ic = conn->c_transport_data;
910 	int ret = 0;
911 
912 	rdsdebug("conn %p\n", conn);
913 
914 	/*
915 	 * If we get a temporary posting failure in this context then
916 	 * we're really low and we want the caller to back off for a bit.
917 	 */
918 	mutex_lock(&ic->i_recv_mutex);
919 	if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
920 		ret = -ENOMEM;
921 	else
922 		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
923 	mutex_unlock(&ic->i_recv_mutex);
924 
925 	if (rds_conn_up(conn))
926 		rds_ib_attempt_ack(ic);
927 
928 	return ret;
929 }
930 
931 int __init rds_ib_recv_init(void)
932 {
933 	struct sysinfo si;
934 	int ret = -ENOMEM;
935 
936 	/* Default to 30% of all available RAM for recv memory */
937 	si_meminfo(&si);
938 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
939 
940 	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
941 					sizeof(struct rds_ib_incoming),
942 					0, 0, NULL);
943 	if (rds_ib_incoming_slab == NULL)
944 		goto out;
945 
946 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
947 					sizeof(struct rds_page_frag),
948 					0, 0, NULL);
949 	if (rds_ib_frag_slab == NULL)
950 		kmem_cache_destroy(rds_ib_incoming_slab);
951 	else
952 		ret = 0;
953 out:
954 	return ret;
955 }
956 
957 void rds_ib_recv_exit(void)
958 {
959 	kmem_cache_destroy(rds_ib_incoming_slab);
960 	kmem_cache_destroy(rds_ib_frag_slab);
961 }
962