xref: /openbmc/linux/net/rds/ib_recv.c (revision 3bf90eca)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42 
43 static struct kmem_cache *rds_ib_incoming_slab;
44 static struct kmem_cache *rds_ib_frag_slab;
45 static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
46 
47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
48 {
49 	struct rds_ib_recv_work *recv;
50 	u32 i;
51 
52 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
53 		struct ib_sge *sge;
54 
55 		recv->r_ibinc = NULL;
56 		recv->r_frag = NULL;
57 
58 		recv->r_wr.next = NULL;
59 		recv->r_wr.wr_id = i;
60 		recv->r_wr.sg_list = recv->r_sge;
61 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
62 
63 		sge = &recv->r_sge[0];
64 		sge->addr = ic->i_recv_hdrs_dma[i];
65 		sge->length = sizeof(struct rds_header);
66 		sge->lkey = ic->i_pd->local_dma_lkey;
67 
68 		sge = &recv->r_sge[1];
69 		sge->addr = 0;
70 		sge->length = RDS_FRAG_SIZE;
71 		sge->lkey = ic->i_pd->local_dma_lkey;
72 	}
73 }
74 
75 /*
76  * The entire 'from' list, including the from element itself, is put on
77  * to the tail of the 'to' list.
78  */
79 static void list_splice_entire_tail(struct list_head *from,
80 				    struct list_head *to)
81 {
82 	struct list_head *from_last = from->prev;
83 
84 	list_splice_tail(from_last, to);
85 	list_add_tail(from_last, to);
86 }
87 
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
89 {
90 	struct list_head *tmp;
91 
92 	tmp = xchg(&cache->xfer, NULL);
93 	if (tmp) {
94 		if (cache->ready)
95 			list_splice_entire_tail(tmp, cache->ready);
96 		else
97 			cache->ready = tmp;
98 	}
99 }
100 
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
102 {
103 	struct rds_ib_cache_head *head;
104 	int cpu;
105 
106 	cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
107 	if (!cache->percpu)
108 	       return -ENOMEM;
109 
110 	for_each_possible_cpu(cpu) {
111 		head = per_cpu_ptr(cache->percpu, cpu);
112 		head->first = NULL;
113 		head->count = 0;
114 	}
115 	cache->xfer = NULL;
116 	cache->ready = NULL;
117 
118 	return 0;
119 }
120 
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
122 {
123 	int ret;
124 
125 	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
126 	if (!ret) {
127 		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
128 		if (ret)
129 			free_percpu(ic->i_cache_incs.percpu);
130 	}
131 
132 	return ret;
133 }
134 
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
136 					  struct list_head *caller_list)
137 {
138 	struct rds_ib_cache_head *head;
139 	int cpu;
140 
141 	for_each_possible_cpu(cpu) {
142 		head = per_cpu_ptr(cache->percpu, cpu);
143 		if (head->first) {
144 			list_splice_entire_tail(head->first, caller_list);
145 			head->first = NULL;
146 		}
147 	}
148 
149 	if (cache->ready) {
150 		list_splice_entire_tail(cache->ready, caller_list);
151 		cache->ready = NULL;
152 	}
153 }
154 
155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
156 {
157 	struct rds_ib_incoming *inc;
158 	struct rds_ib_incoming *inc_tmp;
159 	struct rds_page_frag *frag;
160 	struct rds_page_frag *frag_tmp;
161 	LIST_HEAD(list);
162 
163 	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
164 	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
165 	free_percpu(ic->i_cache_incs.percpu);
166 
167 	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
168 		list_del(&inc->ii_cache_entry);
169 		WARN_ON(!list_empty(&inc->ii_frags));
170 		kmem_cache_free(rds_ib_incoming_slab, inc);
171 		atomic_dec(&rds_ib_allocation);
172 	}
173 
174 	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
175 	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
176 	free_percpu(ic->i_cache_frags.percpu);
177 
178 	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
179 		list_del(&frag->f_cache_entry);
180 		WARN_ON(!list_empty(&frag->f_item));
181 		kmem_cache_free(rds_ib_frag_slab, frag);
182 	}
183 }
184 
185 /* fwd decl */
186 static void rds_ib_recv_cache_put(struct list_head *new_item,
187 				  struct rds_ib_refill_cache *cache);
188 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
189 
190 
191 /* Recycle frag and attached recv buffer f_sg */
192 static void rds_ib_frag_free(struct rds_ib_connection *ic,
193 			     struct rds_page_frag *frag)
194 {
195 	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
196 
197 	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
198 	atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
199 	rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
200 }
201 
202 /* Recycle inc after freeing attached frags */
203 void rds_ib_inc_free(struct rds_incoming *inc)
204 {
205 	struct rds_ib_incoming *ibinc;
206 	struct rds_page_frag *frag;
207 	struct rds_page_frag *pos;
208 	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
209 
210 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
211 
212 	/* Free attached frags */
213 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
214 		list_del_init(&frag->f_item);
215 		rds_ib_frag_free(ic, frag);
216 	}
217 	BUG_ON(!list_empty(&ibinc->ii_frags));
218 
219 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
220 	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
221 }
222 
223 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
224 				  struct rds_ib_recv_work *recv)
225 {
226 	if (recv->r_ibinc) {
227 		rds_inc_put(&recv->r_ibinc->ii_inc);
228 		recv->r_ibinc = NULL;
229 	}
230 	if (recv->r_frag) {
231 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
232 		rds_ib_frag_free(ic, recv->r_frag);
233 		recv->r_frag = NULL;
234 	}
235 }
236 
237 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
238 {
239 	u32 i;
240 
241 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
242 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
243 }
244 
245 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
246 						     gfp_t slab_mask)
247 {
248 	struct rds_ib_incoming *ibinc;
249 	struct list_head *cache_item;
250 	int avail_allocs;
251 
252 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
253 	if (cache_item) {
254 		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
255 	} else {
256 		avail_allocs = atomic_add_unless(&rds_ib_allocation,
257 						 1, rds_ib_sysctl_max_recv_allocation);
258 		if (!avail_allocs) {
259 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
260 			return NULL;
261 		}
262 		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
263 		if (!ibinc) {
264 			atomic_dec(&rds_ib_allocation);
265 			return NULL;
266 		}
267 		rds_ib_stats_inc(s_ib_rx_total_incs);
268 	}
269 	INIT_LIST_HEAD(&ibinc->ii_frags);
270 	rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
271 
272 	return ibinc;
273 }
274 
275 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
276 						    gfp_t slab_mask, gfp_t page_mask)
277 {
278 	struct rds_page_frag *frag;
279 	struct list_head *cache_item;
280 	int ret;
281 
282 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
283 	if (cache_item) {
284 		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
285 		atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
286 		rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
287 	} else {
288 		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
289 		if (!frag)
290 			return NULL;
291 
292 		sg_init_table(&frag->f_sg, 1);
293 		ret = rds_page_remainder_alloc(&frag->f_sg,
294 					       RDS_FRAG_SIZE, page_mask);
295 		if (ret) {
296 			kmem_cache_free(rds_ib_frag_slab, frag);
297 			return NULL;
298 		}
299 		rds_ib_stats_inc(s_ib_rx_total_frags);
300 	}
301 
302 	INIT_LIST_HEAD(&frag->f_item);
303 
304 	return frag;
305 }
306 
307 static int rds_ib_recv_refill_one(struct rds_connection *conn,
308 				  struct rds_ib_recv_work *recv, gfp_t gfp)
309 {
310 	struct rds_ib_connection *ic = conn->c_transport_data;
311 	struct ib_sge *sge;
312 	int ret = -ENOMEM;
313 	gfp_t slab_mask = gfp;
314 	gfp_t page_mask = gfp;
315 
316 	if (gfp & __GFP_DIRECT_RECLAIM) {
317 		slab_mask = GFP_KERNEL;
318 		page_mask = GFP_HIGHUSER;
319 	}
320 
321 	if (!ic->i_cache_incs.ready)
322 		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
323 	if (!ic->i_cache_frags.ready)
324 		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
325 
326 	/*
327 	 * ibinc was taken from recv if recv contained the start of a message.
328 	 * recvs that were continuations will still have this allocated.
329 	 */
330 	if (!recv->r_ibinc) {
331 		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
332 		if (!recv->r_ibinc)
333 			goto out;
334 	}
335 
336 	WARN_ON(recv->r_frag); /* leak! */
337 	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
338 	if (!recv->r_frag)
339 		goto out;
340 
341 	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
342 			    1, DMA_FROM_DEVICE);
343 	WARN_ON(ret != 1);
344 
345 	sge = &recv->r_sge[0];
346 	sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
347 	sge->length = sizeof(struct rds_header);
348 
349 	sge = &recv->r_sge[1];
350 	sge->addr = sg_dma_address(&recv->r_frag->f_sg);
351 	sge->length = sg_dma_len(&recv->r_frag->f_sg);
352 
353 	ret = 0;
354 out:
355 	return ret;
356 }
357 
358 static int acquire_refill(struct rds_connection *conn)
359 {
360 	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
361 }
362 
363 static void release_refill(struct rds_connection *conn)
364 {
365 	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
366 	smp_mb__after_atomic();
367 
368 	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
369 	 * hot path and finding waiters is very rare.  We don't want to walk
370 	 * the system-wide hashed waitqueue buckets in the fast path only to
371 	 * almost never find waiters.
372 	 */
373 	if (waitqueue_active(&conn->c_waitq))
374 		wake_up_all(&conn->c_waitq);
375 }
376 
377 /*
378  * This tries to allocate and post unused work requests after making sure that
379  * they have all the allocations they need to queue received fragments into
380  * sockets.
381  */
382 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
383 {
384 	struct rds_ib_connection *ic = conn->c_transport_data;
385 	struct rds_ib_recv_work *recv;
386 	unsigned int posted = 0;
387 	int ret = 0;
388 	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
389 	bool must_wake = false;
390 	u32 pos;
391 
392 	/* the goal here is to just make sure that someone, somewhere
393 	 * is posting buffers.  If we can't get the refill lock,
394 	 * let them do their thing
395 	 */
396 	if (!acquire_refill(conn))
397 		return;
398 
399 	while ((prefill || rds_conn_up(conn)) &&
400 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
401 		if (pos >= ic->i_recv_ring.w_nr) {
402 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
403 					pos);
404 			break;
405 		}
406 
407 		recv = &ic->i_recvs[pos];
408 		ret = rds_ib_recv_refill_one(conn, recv, gfp);
409 		if (ret) {
410 			must_wake = true;
411 			break;
412 		}
413 
414 		rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
415 			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
416 			 (long)sg_dma_address(&recv->r_frag->f_sg));
417 
418 		/* XXX when can this fail? */
419 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
420 		if (ret) {
421 			rds_ib_conn_error(conn, "recv post on "
422 			       "%pI6c returned %d, disconnecting and "
423 			       "reconnecting\n", &conn->c_faddr,
424 			       ret);
425 			break;
426 		}
427 
428 		posted++;
429 
430 		if ((posted > 128 && need_resched()) || posted > 8192) {
431 			must_wake = true;
432 			break;
433 		}
434 	}
435 
436 	/* We're doing flow control - update the window. */
437 	if (ic->i_flowctl && posted)
438 		rds_ib_advertise_credits(conn, posted);
439 
440 	if (ret)
441 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
442 
443 	release_refill(conn);
444 
445 	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
446 	 * in this case the ring being low is going to lead to more interrupts
447 	 * and we can safely let the softirq code take care of it unless the
448 	 * ring is completely empty.
449 	 *
450 	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
451 	 * we might have raced with the softirq code while we had the refill
452 	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
453 	 * if we should requeue.
454 	 */
455 	if (rds_conn_up(conn) &&
456 	    (must_wake ||
457 	    (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
458 	    rds_ib_ring_empty(&ic->i_recv_ring))) {
459 		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
460 	}
461 	if (can_wait)
462 		cond_resched();
463 }
464 
465 /*
466  * We want to recycle several types of recv allocations, like incs and frags.
467  * To use this, the *_free() function passes in the ptr to a list_head within
468  * the recyclee, as well as the cache to put it on.
469  *
470  * First, we put the memory on a percpu list. When this reaches a certain size,
471  * We move it to an intermediate non-percpu list in a lockless manner, with some
472  * xchg/compxchg wizardry.
473  *
474  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
475  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
476  * list_empty() will return true with one element is actually present.
477  */
478 static void rds_ib_recv_cache_put(struct list_head *new_item,
479 				 struct rds_ib_refill_cache *cache)
480 {
481 	unsigned long flags;
482 	struct list_head *old, *chpfirst;
483 
484 	local_irq_save(flags);
485 
486 	chpfirst = __this_cpu_read(cache->percpu->first);
487 	if (!chpfirst)
488 		INIT_LIST_HEAD(new_item);
489 	else /* put on front */
490 		list_add_tail(new_item, chpfirst);
491 
492 	__this_cpu_write(cache->percpu->first, new_item);
493 	__this_cpu_inc(cache->percpu->count);
494 
495 	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
496 		goto end;
497 
498 	/*
499 	 * Return our per-cpu first list to the cache's xfer by atomically
500 	 * grabbing the current xfer list, appending it to our per-cpu list,
501 	 * and then atomically returning that entire list back to the
502 	 * cache's xfer list as long as it's still empty.
503 	 */
504 	do {
505 		old = xchg(&cache->xfer, NULL);
506 		if (old)
507 			list_splice_entire_tail(old, chpfirst);
508 		old = cmpxchg(&cache->xfer, NULL, chpfirst);
509 	} while (old);
510 
511 
512 	__this_cpu_write(cache->percpu->first, NULL);
513 	__this_cpu_write(cache->percpu->count, 0);
514 end:
515 	local_irq_restore(flags);
516 }
517 
518 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
519 {
520 	struct list_head *head = cache->ready;
521 
522 	if (head) {
523 		if (!list_empty(head)) {
524 			cache->ready = head->next;
525 			list_del_init(head);
526 		} else
527 			cache->ready = NULL;
528 	}
529 
530 	return head;
531 }
532 
533 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
534 {
535 	struct rds_ib_incoming *ibinc;
536 	struct rds_page_frag *frag;
537 	unsigned long to_copy;
538 	unsigned long frag_off = 0;
539 	int copied = 0;
540 	int ret;
541 	u32 len;
542 
543 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
544 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
545 	len = be32_to_cpu(inc->i_hdr.h_len);
546 
547 	while (iov_iter_count(to) && copied < len) {
548 		if (frag_off == RDS_FRAG_SIZE) {
549 			frag = list_entry(frag->f_item.next,
550 					  struct rds_page_frag, f_item);
551 			frag_off = 0;
552 		}
553 		to_copy = min_t(unsigned long, iov_iter_count(to),
554 				RDS_FRAG_SIZE - frag_off);
555 		to_copy = min_t(unsigned long, to_copy, len - copied);
556 
557 		/* XXX needs + offset for multiple recvs per page */
558 		rds_stats_add(s_copy_to_user, to_copy);
559 		ret = copy_page_to_iter(sg_page(&frag->f_sg),
560 					frag->f_sg.offset + frag_off,
561 					to_copy,
562 					to);
563 		if (ret != to_copy)
564 			return -EFAULT;
565 
566 		frag_off += to_copy;
567 		copied += to_copy;
568 	}
569 
570 	return copied;
571 }
572 
573 /* ic starts out kzalloc()ed */
574 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
575 {
576 	struct ib_send_wr *wr = &ic->i_ack_wr;
577 	struct ib_sge *sge = &ic->i_ack_sge;
578 
579 	sge->addr = ic->i_ack_dma;
580 	sge->length = sizeof(struct rds_header);
581 	sge->lkey = ic->i_pd->local_dma_lkey;
582 
583 	wr->sg_list = sge;
584 	wr->num_sge = 1;
585 	wr->opcode = IB_WR_SEND;
586 	wr->wr_id = RDS_IB_ACK_WR_ID;
587 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
588 }
589 
590 /*
591  * You'd think that with reliable IB connections you wouldn't need to ack
592  * messages that have been received.  The problem is that IB hardware generates
593  * an ack message before it has DMAed the message into memory.  This creates a
594  * potential message loss if the HCA is disabled for any reason between when it
595  * sends the ack and before the message is DMAed and processed.  This is only a
596  * potential issue if another HCA is available for fail-over.
597  *
598  * When the remote host receives our ack they'll free the sent message from
599  * their send queue.  To decrease the latency of this we always send an ack
600  * immediately after we've received messages.
601  *
602  * For simplicity, we only have one ack in flight at a time.  This puts
603  * pressure on senders to have deep enough send queues to absorb the latency of
604  * a single ack frame being in flight.  This might not be good enough.
605  *
606  * This is implemented by have a long-lived send_wr and sge which point to a
607  * statically allocated ack frame.  This ack wr does not fall under the ring
608  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
609  * room for it beyond the ring size.  Send completion notices its special
610  * wr_id and avoids working with the ring in that case.
611  */
612 #ifndef KERNEL_HAS_ATOMIC64
613 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
614 {
615 	unsigned long flags;
616 
617 	spin_lock_irqsave(&ic->i_ack_lock, flags);
618 	ic->i_ack_next = seq;
619 	if (ack_required)
620 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
621 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
622 }
623 
624 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
625 {
626 	unsigned long flags;
627 	u64 seq;
628 
629 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
630 
631 	spin_lock_irqsave(&ic->i_ack_lock, flags);
632 	seq = ic->i_ack_next;
633 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
634 
635 	return seq;
636 }
637 #else
638 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
639 {
640 	atomic64_set(&ic->i_ack_next, seq);
641 	if (ack_required) {
642 		smp_mb__before_atomic();
643 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
644 	}
645 }
646 
647 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
648 {
649 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
650 	smp_mb__after_atomic();
651 
652 	return atomic64_read(&ic->i_ack_next);
653 }
654 #endif
655 
656 
657 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
658 {
659 	struct rds_header *hdr = ic->i_ack;
660 	u64 seq;
661 	int ret;
662 
663 	seq = rds_ib_get_ack(ic);
664 
665 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
666 
667 	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, ic->i_ack_dma,
668 				   sizeof(*hdr), DMA_TO_DEVICE);
669 	rds_message_populate_header(hdr, 0, 0, 0);
670 	hdr->h_ack = cpu_to_be64(seq);
671 	hdr->h_credit = adv_credits;
672 	rds_message_make_checksum(hdr);
673 	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, ic->i_ack_dma,
674 				      sizeof(*hdr), DMA_TO_DEVICE);
675 
676 	ic->i_ack_queued = jiffies;
677 
678 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
679 	if (unlikely(ret)) {
680 		/* Failed to send. Release the WR, and
681 		 * force another ACK.
682 		 */
683 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
684 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
685 
686 		rds_ib_stats_inc(s_ib_ack_send_failure);
687 
688 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
689 	} else
690 		rds_ib_stats_inc(s_ib_ack_sent);
691 }
692 
693 /*
694  * There are 3 ways of getting acknowledgements to the peer:
695  *  1.	We call rds_ib_attempt_ack from the recv completion handler
696  *	to send an ACK-only frame.
697  *	However, there can be only one such frame in the send queue
698  *	at any time, so we may have to postpone it.
699  *  2.	When another (data) packet is transmitted while there's
700  *	an ACK in the queue, we piggyback the ACK sequence number
701  *	on the data packet.
702  *  3.	If the ACK WR is done sending, we get called from the
703  *	send queue completion handler, and check whether there's
704  *	another ACK pending (postponed because the WR was on the
705  *	queue). If so, we transmit it.
706  *
707  * We maintain 2 variables:
708  *  -	i_ack_flags, which keeps track of whether the ACK WR
709  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
710  *  -	i_ack_next, which is the last sequence number we received
711  *
712  * Potentially, send queue and receive queue handlers can run concurrently.
713  * It would be nice to not have to use a spinlock to synchronize things,
714  * but the one problem that rules this out is that 64bit updates are
715  * not atomic on all platforms. Things would be a lot simpler if
716  * we had atomic64 or maybe cmpxchg64 everywhere.
717  *
718  * Reconnecting complicates this picture just slightly. When we
719  * reconnect, we may be seeing duplicate packets. The peer
720  * is retransmitting them, because it hasn't seen an ACK for
721  * them. It is important that we ACK these.
722  *
723  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
724  * this flag set *MUST* be acknowledged immediately.
725  */
726 
727 /*
728  * When we get here, we're called from the recv queue handler.
729  * Check whether we ought to transmit an ACK.
730  */
731 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
732 {
733 	unsigned int adv_credits;
734 
735 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
736 		return;
737 
738 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
739 		rds_ib_stats_inc(s_ib_ack_send_delayed);
740 		return;
741 	}
742 
743 	/* Can we get a send credit? */
744 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
745 		rds_ib_stats_inc(s_ib_tx_throttle);
746 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
747 		return;
748 	}
749 
750 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
751 	rds_ib_send_ack(ic, adv_credits);
752 }
753 
754 /*
755  * We get here from the send completion handler, when the
756  * adapter tells us the ACK frame was sent.
757  */
758 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
759 {
760 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
761 	rds_ib_attempt_ack(ic);
762 }
763 
764 /*
765  * This is called by the regular xmit code when it wants to piggyback
766  * an ACK on an outgoing frame.
767  */
768 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
769 {
770 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
771 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
772 	return rds_ib_get_ack(ic);
773 }
774 
775 /*
776  * It's kind of lame that we're copying from the posted receive pages into
777  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
778  * them.  But receiving new congestion bitmaps should be a *rare* event, so
779  * hopefully we won't need to invest that complexity in making it more
780  * efficient.  By copying we can share a simpler core with TCP which has to
781  * copy.
782  */
783 static void rds_ib_cong_recv(struct rds_connection *conn,
784 			      struct rds_ib_incoming *ibinc)
785 {
786 	struct rds_cong_map *map;
787 	unsigned int map_off;
788 	unsigned int map_page;
789 	struct rds_page_frag *frag;
790 	unsigned long frag_off;
791 	unsigned long to_copy;
792 	unsigned long copied;
793 	__le64 uncongested = 0;
794 	void *addr;
795 
796 	/* catch completely corrupt packets */
797 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
798 		return;
799 
800 	map = conn->c_fcong;
801 	map_page = 0;
802 	map_off = 0;
803 
804 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
805 	frag_off = 0;
806 
807 	copied = 0;
808 
809 	while (copied < RDS_CONG_MAP_BYTES) {
810 		__le64 *src, *dst;
811 		unsigned int k;
812 
813 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
814 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
815 
816 		addr = kmap_atomic(sg_page(&frag->f_sg));
817 
818 		src = addr + frag->f_sg.offset + frag_off;
819 		dst = (void *)map->m_page_addrs[map_page] + map_off;
820 		for (k = 0; k < to_copy; k += 8) {
821 			/* Record ports that became uncongested, ie
822 			 * bits that changed from 0 to 1. */
823 			uncongested |= ~(*src) & *dst;
824 			*dst++ = *src++;
825 		}
826 		kunmap_atomic(addr);
827 
828 		copied += to_copy;
829 
830 		map_off += to_copy;
831 		if (map_off == PAGE_SIZE) {
832 			map_off = 0;
833 			map_page++;
834 		}
835 
836 		frag_off += to_copy;
837 		if (frag_off == RDS_FRAG_SIZE) {
838 			frag = list_entry(frag->f_item.next,
839 					  struct rds_page_frag, f_item);
840 			frag_off = 0;
841 		}
842 	}
843 
844 	/* the congestion map is in little endian order */
845 	rds_cong_map_updated(map, le64_to_cpu(uncongested));
846 }
847 
848 static void rds_ib_process_recv(struct rds_connection *conn,
849 				struct rds_ib_recv_work *recv, u32 data_len,
850 				struct rds_ib_ack_state *state)
851 {
852 	struct rds_ib_connection *ic = conn->c_transport_data;
853 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
854 	struct rds_header *ihdr, *hdr;
855 	dma_addr_t dma_addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
856 
857 	/* XXX shut down the connection if port 0,0 are seen? */
858 
859 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
860 		 data_len);
861 
862 	if (data_len < sizeof(struct rds_header)) {
863 		rds_ib_conn_error(conn, "incoming message "
864 		       "from %pI6c didn't include a "
865 		       "header, disconnecting and "
866 		       "reconnecting\n",
867 		       &conn->c_faddr);
868 		return;
869 	}
870 	data_len -= sizeof(struct rds_header);
871 
872 	ihdr = ic->i_recv_hdrs[recv - ic->i_recvs];
873 
874 	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, dma_addr,
875 				   sizeof(*ihdr), DMA_FROM_DEVICE);
876 	/* Validate the checksum. */
877 	if (!rds_message_verify_checksum(ihdr)) {
878 		rds_ib_conn_error(conn, "incoming message "
879 		       "from %pI6c has corrupted header - "
880 		       "forcing a reconnect\n",
881 		       &conn->c_faddr);
882 		rds_stats_inc(s_recv_drop_bad_checksum);
883 		goto done;
884 	}
885 
886 	/* Process the ACK sequence which comes with every packet */
887 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
888 	state->ack_recv_valid = 1;
889 
890 	/* Process the credits update if there was one */
891 	if (ihdr->h_credit)
892 		rds_ib_send_add_credits(conn, ihdr->h_credit);
893 
894 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
895 		/* This is an ACK-only packet. The fact that it gets
896 		 * special treatment here is that historically, ACKs
897 		 * were rather special beasts.
898 		 */
899 		rds_ib_stats_inc(s_ib_ack_received);
900 
901 		/*
902 		 * Usually the frags make their way on to incs and are then freed as
903 		 * the inc is freed.  We don't go that route, so we have to drop the
904 		 * page ref ourselves.  We can't just leave the page on the recv
905 		 * because that confuses the dma mapping of pages and each recv's use
906 		 * of a partial page.
907 		 *
908 		 * FIXME: Fold this into the code path below.
909 		 */
910 		rds_ib_frag_free(ic, recv->r_frag);
911 		recv->r_frag = NULL;
912 		goto done;
913 	}
914 
915 	/*
916 	 * If we don't already have an inc on the connection then this
917 	 * fragment has a header and starts a message.. copy its header
918 	 * into the inc and save the inc so we can hang upcoming fragments
919 	 * off its list.
920 	 */
921 	if (!ibinc) {
922 		ibinc = recv->r_ibinc;
923 		recv->r_ibinc = NULL;
924 		ic->i_ibinc = ibinc;
925 
926 		hdr = &ibinc->ii_inc.i_hdr;
927 		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
928 				local_clock();
929 		memcpy(hdr, ihdr, sizeof(*hdr));
930 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
931 		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
932 				local_clock();
933 
934 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
935 			 ic->i_recv_data_rem, hdr->h_flags);
936 	} else {
937 		hdr = &ibinc->ii_inc.i_hdr;
938 		/* We can't just use memcmp here; fragments of a
939 		 * single message may carry different ACKs */
940 		if (hdr->h_sequence != ihdr->h_sequence ||
941 		    hdr->h_len != ihdr->h_len ||
942 		    hdr->h_sport != ihdr->h_sport ||
943 		    hdr->h_dport != ihdr->h_dport) {
944 			rds_ib_conn_error(conn,
945 				"fragment header mismatch; forcing reconnect\n");
946 			goto done;
947 		}
948 	}
949 
950 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
951 	recv->r_frag = NULL;
952 
953 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
954 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
955 	else {
956 		ic->i_recv_data_rem = 0;
957 		ic->i_ibinc = NULL;
958 
959 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
960 			rds_ib_cong_recv(conn, ibinc);
961 		} else {
962 			rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
963 					  &ibinc->ii_inc, GFP_ATOMIC);
964 			state->ack_next = be64_to_cpu(hdr->h_sequence);
965 			state->ack_next_valid = 1;
966 		}
967 
968 		/* Evaluate the ACK_REQUIRED flag *after* we received
969 		 * the complete frame, and after bumping the next_rx
970 		 * sequence. */
971 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
972 			rds_stats_inc(s_recv_ack_required);
973 			state->ack_required = 1;
974 		}
975 
976 		rds_inc_put(&ibinc->ii_inc);
977 	}
978 done:
979 	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, dma_addr,
980 				      sizeof(*ihdr), DMA_FROM_DEVICE);
981 }
982 
983 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
984 			     struct ib_wc *wc,
985 			     struct rds_ib_ack_state *state)
986 {
987 	struct rds_connection *conn = ic->conn;
988 	struct rds_ib_recv_work *recv;
989 
990 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
991 		 (unsigned long long)wc->wr_id, wc->status,
992 		 ib_wc_status_msg(wc->status), wc->byte_len,
993 		 be32_to_cpu(wc->ex.imm_data));
994 
995 	rds_ib_stats_inc(s_ib_rx_cq_event);
996 	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
997 	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
998 			DMA_FROM_DEVICE);
999 
1000 	/* Also process recvs in connecting state because it is possible
1001 	 * to get a recv completion _before_ the rdmacm ESTABLISHED
1002 	 * event is processed.
1003 	 */
1004 	if (wc->status == IB_WC_SUCCESS) {
1005 		rds_ib_process_recv(conn, recv, wc->byte_len, state);
1006 	} else {
1007 		/* We expect errors as the qp is drained during shutdown */
1008 		if (rds_conn_up(conn) || rds_conn_connecting(conn))
1009 			rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
1010 					  &conn->c_laddr, &conn->c_faddr,
1011 					  conn->c_tos, wc->status,
1012 					  ib_wc_status_msg(wc->status),
1013 					  wc->vendor_err);
1014 	}
1015 
1016 	/* rds_ib_process_recv() doesn't always consume the frag, and
1017 	 * we might not have called it at all if the wc didn't indicate
1018 	 * success. We already unmapped the frag's pages, though, and
1019 	 * the following rds_ib_ring_free() call tells the refill path
1020 	 * that it will not find an allocated frag here. Make sure we
1021 	 * keep that promise by freeing a frag that's still on the ring.
1022 	 */
1023 	if (recv->r_frag) {
1024 		rds_ib_frag_free(ic, recv->r_frag);
1025 		recv->r_frag = NULL;
1026 	}
1027 	rds_ib_ring_free(&ic->i_recv_ring, 1);
1028 
1029 	/* If we ever end up with a really empty receive ring, we're
1030 	 * in deep trouble, as the sender will definitely see RNR
1031 	 * timeouts. */
1032 	if (rds_ib_ring_empty(&ic->i_recv_ring))
1033 		rds_ib_stats_inc(s_ib_rx_ring_empty);
1034 
1035 	if (rds_ib_ring_low(&ic->i_recv_ring)) {
1036 		rds_ib_recv_refill(conn, 0, GFP_NOWAIT | __GFP_NOWARN);
1037 		rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1038 	}
1039 }
1040 
1041 int rds_ib_recv_path(struct rds_conn_path *cp)
1042 {
1043 	struct rds_connection *conn = cp->cp_conn;
1044 	struct rds_ib_connection *ic = conn->c_transport_data;
1045 
1046 	rdsdebug("conn %p\n", conn);
1047 	if (rds_conn_up(conn)) {
1048 		rds_ib_attempt_ack(ic);
1049 		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1050 		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 int rds_ib_recv_init(void)
1057 {
1058 	struct sysinfo si;
1059 	int ret = -ENOMEM;
1060 
1061 	/* Default to 30% of all available RAM for recv memory */
1062 	si_meminfo(&si);
1063 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1064 
1065 	rds_ib_incoming_slab =
1066 		kmem_cache_create_usercopy("rds_ib_incoming",
1067 					   sizeof(struct rds_ib_incoming),
1068 					   0, SLAB_HWCACHE_ALIGN,
1069 					   offsetof(struct rds_ib_incoming,
1070 						    ii_inc.i_usercopy),
1071 					   sizeof(struct rds_inc_usercopy),
1072 					   NULL);
1073 	if (!rds_ib_incoming_slab)
1074 		goto out;
1075 
1076 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1077 					sizeof(struct rds_page_frag),
1078 					0, SLAB_HWCACHE_ALIGN, NULL);
1079 	if (!rds_ib_frag_slab) {
1080 		kmem_cache_destroy(rds_ib_incoming_slab);
1081 		rds_ib_incoming_slab = NULL;
1082 	} else
1083 		ret = 0;
1084 out:
1085 	return ret;
1086 }
1087 
1088 void rds_ib_recv_exit(void)
1089 {
1090 	WARN_ON(atomic_read(&rds_ib_allocation));
1091 
1092 	kmem_cache_destroy(rds_ib_incoming_slab);
1093 	kmem_cache_destroy(rds_ib_frag_slab);
1094 }
1095