xref: /openbmc/linux/net/rds/ib_recv.c (revision 020c5260)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42 
43 static struct kmem_cache *rds_ib_incoming_slab;
44 static struct kmem_cache *rds_ib_frag_slab;
45 static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
46 
47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
48 {
49 	struct rds_ib_recv_work *recv;
50 	u32 i;
51 
52 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
53 		struct ib_sge *sge;
54 
55 		recv->r_ibinc = NULL;
56 		recv->r_frag = NULL;
57 
58 		recv->r_wr.next = NULL;
59 		recv->r_wr.wr_id = i;
60 		recv->r_wr.sg_list = recv->r_sge;
61 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
62 
63 		sge = &recv->r_sge[0];
64 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
65 		sge->length = sizeof(struct rds_header);
66 		sge->lkey = ic->i_pd->local_dma_lkey;
67 
68 		sge = &recv->r_sge[1];
69 		sge->addr = 0;
70 		sge->length = RDS_FRAG_SIZE;
71 		sge->lkey = ic->i_pd->local_dma_lkey;
72 	}
73 }
74 
75 /*
76  * The entire 'from' list, including the from element itself, is put on
77  * to the tail of the 'to' list.
78  */
79 static void list_splice_entire_tail(struct list_head *from,
80 				    struct list_head *to)
81 {
82 	struct list_head *from_last = from->prev;
83 
84 	list_splice_tail(from_last, to);
85 	list_add_tail(from_last, to);
86 }
87 
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
89 {
90 	struct list_head *tmp;
91 
92 	tmp = xchg(&cache->xfer, NULL);
93 	if (tmp) {
94 		if (cache->ready)
95 			list_splice_entire_tail(tmp, cache->ready);
96 		else
97 			cache->ready = tmp;
98 	}
99 }
100 
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
102 {
103 	struct rds_ib_cache_head *head;
104 	int cpu;
105 
106 	cache->percpu = alloc_percpu(struct rds_ib_cache_head);
107 	if (!cache->percpu)
108 	       return -ENOMEM;
109 
110 	for_each_possible_cpu(cpu) {
111 		head = per_cpu_ptr(cache->percpu, cpu);
112 		head->first = NULL;
113 		head->count = 0;
114 	}
115 	cache->xfer = NULL;
116 	cache->ready = NULL;
117 
118 	return 0;
119 }
120 
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
122 {
123 	int ret;
124 
125 	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
126 	if (!ret) {
127 		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
128 		if (ret)
129 			free_percpu(ic->i_cache_incs.percpu);
130 	}
131 
132 	return ret;
133 }
134 
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
136 					  struct list_head *caller_list)
137 {
138 	struct rds_ib_cache_head *head;
139 	int cpu;
140 
141 	for_each_possible_cpu(cpu) {
142 		head = per_cpu_ptr(cache->percpu, cpu);
143 		if (head->first) {
144 			list_splice_entire_tail(head->first, caller_list);
145 			head->first = NULL;
146 		}
147 	}
148 
149 	if (cache->ready) {
150 		list_splice_entire_tail(cache->ready, caller_list);
151 		cache->ready = NULL;
152 	}
153 }
154 
155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
156 {
157 	struct rds_ib_incoming *inc;
158 	struct rds_ib_incoming *inc_tmp;
159 	struct rds_page_frag *frag;
160 	struct rds_page_frag *frag_tmp;
161 	LIST_HEAD(list);
162 
163 	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
164 	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
165 	free_percpu(ic->i_cache_incs.percpu);
166 
167 	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
168 		list_del(&inc->ii_cache_entry);
169 		WARN_ON(!list_empty(&inc->ii_frags));
170 		kmem_cache_free(rds_ib_incoming_slab, inc);
171 	}
172 
173 	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
174 	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
175 	free_percpu(ic->i_cache_frags.percpu);
176 
177 	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
178 		list_del(&frag->f_cache_entry);
179 		WARN_ON(!list_empty(&frag->f_item));
180 		kmem_cache_free(rds_ib_frag_slab, frag);
181 	}
182 }
183 
184 /* fwd decl */
185 static void rds_ib_recv_cache_put(struct list_head *new_item,
186 				  struct rds_ib_refill_cache *cache);
187 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
188 
189 
190 /* Recycle frag and attached recv buffer f_sg */
191 static void rds_ib_frag_free(struct rds_ib_connection *ic,
192 			     struct rds_page_frag *frag)
193 {
194 	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
195 
196 	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
197 	atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
198 	rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
199 }
200 
201 /* Recycle inc after freeing attached frags */
202 void rds_ib_inc_free(struct rds_incoming *inc)
203 {
204 	struct rds_ib_incoming *ibinc;
205 	struct rds_page_frag *frag;
206 	struct rds_page_frag *pos;
207 	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
208 
209 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
210 
211 	/* Free attached frags */
212 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
213 		list_del_init(&frag->f_item);
214 		rds_ib_frag_free(ic, frag);
215 	}
216 	BUG_ON(!list_empty(&ibinc->ii_frags));
217 
218 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
219 	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
220 }
221 
222 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
223 				  struct rds_ib_recv_work *recv)
224 {
225 	if (recv->r_ibinc) {
226 		rds_inc_put(&recv->r_ibinc->ii_inc);
227 		recv->r_ibinc = NULL;
228 	}
229 	if (recv->r_frag) {
230 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
231 		rds_ib_frag_free(ic, recv->r_frag);
232 		recv->r_frag = NULL;
233 	}
234 }
235 
236 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
237 {
238 	u32 i;
239 
240 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
241 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
242 }
243 
244 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
245 						     gfp_t slab_mask)
246 {
247 	struct rds_ib_incoming *ibinc;
248 	struct list_head *cache_item;
249 	int avail_allocs;
250 
251 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
252 	if (cache_item) {
253 		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
254 	} else {
255 		avail_allocs = atomic_add_unless(&rds_ib_allocation,
256 						 1, rds_ib_sysctl_max_recv_allocation);
257 		if (!avail_allocs) {
258 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
259 			return NULL;
260 		}
261 		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
262 		if (!ibinc) {
263 			atomic_dec(&rds_ib_allocation);
264 			return NULL;
265 		}
266 		rds_ib_stats_inc(s_ib_rx_total_incs);
267 	}
268 	INIT_LIST_HEAD(&ibinc->ii_frags);
269 	rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
270 
271 	return ibinc;
272 }
273 
274 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
275 						    gfp_t slab_mask, gfp_t page_mask)
276 {
277 	struct rds_page_frag *frag;
278 	struct list_head *cache_item;
279 	int ret;
280 
281 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
282 	if (cache_item) {
283 		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
284 		atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
285 		rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
286 	} else {
287 		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
288 		if (!frag)
289 			return NULL;
290 
291 		sg_init_table(&frag->f_sg, 1);
292 		ret = rds_page_remainder_alloc(&frag->f_sg,
293 					       RDS_FRAG_SIZE, page_mask);
294 		if (ret) {
295 			kmem_cache_free(rds_ib_frag_slab, frag);
296 			return NULL;
297 		}
298 		rds_ib_stats_inc(s_ib_rx_total_frags);
299 	}
300 
301 	INIT_LIST_HEAD(&frag->f_item);
302 
303 	return frag;
304 }
305 
306 static int rds_ib_recv_refill_one(struct rds_connection *conn,
307 				  struct rds_ib_recv_work *recv, gfp_t gfp)
308 {
309 	struct rds_ib_connection *ic = conn->c_transport_data;
310 	struct ib_sge *sge;
311 	int ret = -ENOMEM;
312 	gfp_t slab_mask = GFP_NOWAIT;
313 	gfp_t page_mask = GFP_NOWAIT;
314 
315 	if (gfp & __GFP_DIRECT_RECLAIM) {
316 		slab_mask = GFP_KERNEL;
317 		page_mask = GFP_HIGHUSER;
318 	}
319 
320 	if (!ic->i_cache_incs.ready)
321 		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
322 	if (!ic->i_cache_frags.ready)
323 		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
324 
325 	/*
326 	 * ibinc was taken from recv if recv contained the start of a message.
327 	 * recvs that were continuations will still have this allocated.
328 	 */
329 	if (!recv->r_ibinc) {
330 		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
331 		if (!recv->r_ibinc)
332 			goto out;
333 	}
334 
335 	WARN_ON(recv->r_frag); /* leak! */
336 	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
337 	if (!recv->r_frag)
338 		goto out;
339 
340 	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
341 			    1, DMA_FROM_DEVICE);
342 	WARN_ON(ret != 1);
343 
344 	sge = &recv->r_sge[0];
345 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
346 	sge->length = sizeof(struct rds_header);
347 
348 	sge = &recv->r_sge[1];
349 	sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
350 	sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
351 
352 	ret = 0;
353 out:
354 	return ret;
355 }
356 
357 static int acquire_refill(struct rds_connection *conn)
358 {
359 	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
360 }
361 
362 static void release_refill(struct rds_connection *conn)
363 {
364 	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
365 
366 	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
367 	 * hot path and finding waiters is very rare.  We don't want to walk
368 	 * the system-wide hashed waitqueue buckets in the fast path only to
369 	 * almost never find waiters.
370 	 */
371 	if (waitqueue_active(&conn->c_waitq))
372 		wake_up_all(&conn->c_waitq);
373 }
374 
375 /*
376  * This tries to allocate and post unused work requests after making sure that
377  * they have all the allocations they need to queue received fragments into
378  * sockets.
379  *
380  * -1 is returned if posting fails due to temporary resource exhaustion.
381  */
382 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
383 {
384 	struct rds_ib_connection *ic = conn->c_transport_data;
385 	struct rds_ib_recv_work *recv;
386 	struct ib_recv_wr *failed_wr;
387 	unsigned int posted = 0;
388 	int ret = 0;
389 	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
390 	u32 pos;
391 
392 	/* the goal here is to just make sure that someone, somewhere
393 	 * is posting buffers.  If we can't get the refill lock,
394 	 * let them do their thing
395 	 */
396 	if (!acquire_refill(conn))
397 		return;
398 
399 	while ((prefill || rds_conn_up(conn)) &&
400 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
401 		if (pos >= ic->i_recv_ring.w_nr) {
402 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
403 					pos);
404 			break;
405 		}
406 
407 		recv = &ic->i_recvs[pos];
408 		ret = rds_ib_recv_refill_one(conn, recv, gfp);
409 		if (ret) {
410 			break;
411 		}
412 
413 		/* XXX when can this fail? */
414 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
415 		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
416 			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
417 			 (long) ib_sg_dma_address(
418 				ic->i_cm_id->device,
419 				&recv->r_frag->f_sg),
420 			ret);
421 		if (ret) {
422 			rds_ib_conn_error(conn, "recv post on "
423 			       "%pI4 returned %d, disconnecting and "
424 			       "reconnecting\n", &conn->c_faddr,
425 			       ret);
426 			break;
427 		}
428 
429 		posted++;
430 	}
431 
432 	/* We're doing flow control - update the window. */
433 	if (ic->i_flowctl && posted)
434 		rds_ib_advertise_credits(conn, posted);
435 
436 	if (ret)
437 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
438 
439 	release_refill(conn);
440 
441 	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
442 	 * in this case the ring being low is going to lead to more interrupts
443 	 * and we can safely let the softirq code take care of it unless the
444 	 * ring is completely empty.
445 	 *
446 	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
447 	 * we might have raced with the softirq code while we had the refill
448 	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
449 	 * if we should requeue.
450 	 */
451 	if (rds_conn_up(conn) &&
452 	    ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
453 	    rds_ib_ring_empty(&ic->i_recv_ring))) {
454 		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
455 	}
456 }
457 
458 /*
459  * We want to recycle several types of recv allocations, like incs and frags.
460  * To use this, the *_free() function passes in the ptr to a list_head within
461  * the recyclee, as well as the cache to put it on.
462  *
463  * First, we put the memory on a percpu list. When this reaches a certain size,
464  * We move it to an intermediate non-percpu list in a lockless manner, with some
465  * xchg/compxchg wizardry.
466  *
467  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
468  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
469  * list_empty() will return true with one element is actually present.
470  */
471 static void rds_ib_recv_cache_put(struct list_head *new_item,
472 				 struct rds_ib_refill_cache *cache)
473 {
474 	unsigned long flags;
475 	struct list_head *old, *chpfirst;
476 
477 	local_irq_save(flags);
478 
479 	chpfirst = __this_cpu_read(cache->percpu->first);
480 	if (!chpfirst)
481 		INIT_LIST_HEAD(new_item);
482 	else /* put on front */
483 		list_add_tail(new_item, chpfirst);
484 
485 	__this_cpu_write(cache->percpu->first, new_item);
486 	__this_cpu_inc(cache->percpu->count);
487 
488 	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
489 		goto end;
490 
491 	/*
492 	 * Return our per-cpu first list to the cache's xfer by atomically
493 	 * grabbing the current xfer list, appending it to our per-cpu list,
494 	 * and then atomically returning that entire list back to the
495 	 * cache's xfer list as long as it's still empty.
496 	 */
497 	do {
498 		old = xchg(&cache->xfer, NULL);
499 		if (old)
500 			list_splice_entire_tail(old, chpfirst);
501 		old = cmpxchg(&cache->xfer, NULL, chpfirst);
502 	} while (old);
503 
504 
505 	__this_cpu_write(cache->percpu->first, NULL);
506 	__this_cpu_write(cache->percpu->count, 0);
507 end:
508 	local_irq_restore(flags);
509 }
510 
511 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
512 {
513 	struct list_head *head = cache->ready;
514 
515 	if (head) {
516 		if (!list_empty(head)) {
517 			cache->ready = head->next;
518 			list_del_init(head);
519 		} else
520 			cache->ready = NULL;
521 	}
522 
523 	return head;
524 }
525 
526 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
527 {
528 	struct rds_ib_incoming *ibinc;
529 	struct rds_page_frag *frag;
530 	unsigned long to_copy;
531 	unsigned long frag_off = 0;
532 	int copied = 0;
533 	int ret;
534 	u32 len;
535 
536 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
537 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
538 	len = be32_to_cpu(inc->i_hdr.h_len);
539 
540 	while (iov_iter_count(to) && copied < len) {
541 		if (frag_off == RDS_FRAG_SIZE) {
542 			frag = list_entry(frag->f_item.next,
543 					  struct rds_page_frag, f_item);
544 			frag_off = 0;
545 		}
546 		to_copy = min_t(unsigned long, iov_iter_count(to),
547 				RDS_FRAG_SIZE - frag_off);
548 		to_copy = min_t(unsigned long, to_copy, len - copied);
549 
550 		/* XXX needs + offset for multiple recvs per page */
551 		rds_stats_add(s_copy_to_user, to_copy);
552 		ret = copy_page_to_iter(sg_page(&frag->f_sg),
553 					frag->f_sg.offset + frag_off,
554 					to_copy,
555 					to);
556 		if (ret != to_copy)
557 			return -EFAULT;
558 
559 		frag_off += to_copy;
560 		copied += to_copy;
561 	}
562 
563 	return copied;
564 }
565 
566 /* ic starts out kzalloc()ed */
567 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
568 {
569 	struct ib_send_wr *wr = &ic->i_ack_wr;
570 	struct ib_sge *sge = &ic->i_ack_sge;
571 
572 	sge->addr = ic->i_ack_dma;
573 	sge->length = sizeof(struct rds_header);
574 	sge->lkey = ic->i_pd->local_dma_lkey;
575 
576 	wr->sg_list = sge;
577 	wr->num_sge = 1;
578 	wr->opcode = IB_WR_SEND;
579 	wr->wr_id = RDS_IB_ACK_WR_ID;
580 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
581 }
582 
583 /*
584  * You'd think that with reliable IB connections you wouldn't need to ack
585  * messages that have been received.  The problem is that IB hardware generates
586  * an ack message before it has DMAed the message into memory.  This creates a
587  * potential message loss if the HCA is disabled for any reason between when it
588  * sends the ack and before the message is DMAed and processed.  This is only a
589  * potential issue if another HCA is available for fail-over.
590  *
591  * When the remote host receives our ack they'll free the sent message from
592  * their send queue.  To decrease the latency of this we always send an ack
593  * immediately after we've received messages.
594  *
595  * For simplicity, we only have one ack in flight at a time.  This puts
596  * pressure on senders to have deep enough send queues to absorb the latency of
597  * a single ack frame being in flight.  This might not be good enough.
598  *
599  * This is implemented by have a long-lived send_wr and sge which point to a
600  * statically allocated ack frame.  This ack wr does not fall under the ring
601  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
602  * room for it beyond the ring size.  Send completion notices its special
603  * wr_id and avoids working with the ring in that case.
604  */
605 #ifndef KERNEL_HAS_ATOMIC64
606 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
607 {
608 	unsigned long flags;
609 
610 	spin_lock_irqsave(&ic->i_ack_lock, flags);
611 	ic->i_ack_next = seq;
612 	if (ack_required)
613 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
614 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
615 }
616 
617 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
618 {
619 	unsigned long flags;
620 	u64 seq;
621 
622 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
623 
624 	spin_lock_irqsave(&ic->i_ack_lock, flags);
625 	seq = ic->i_ack_next;
626 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
627 
628 	return seq;
629 }
630 #else
631 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
632 {
633 	atomic64_set(&ic->i_ack_next, seq);
634 	if (ack_required) {
635 		smp_mb__before_atomic();
636 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
637 	}
638 }
639 
640 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
641 {
642 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
643 	smp_mb__after_atomic();
644 
645 	return atomic64_read(&ic->i_ack_next);
646 }
647 #endif
648 
649 
650 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
651 {
652 	struct rds_header *hdr = ic->i_ack;
653 	struct ib_send_wr *failed_wr;
654 	u64 seq;
655 	int ret;
656 
657 	seq = rds_ib_get_ack(ic);
658 
659 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
660 	rds_message_populate_header(hdr, 0, 0, 0);
661 	hdr->h_ack = cpu_to_be64(seq);
662 	hdr->h_credit = adv_credits;
663 	rds_message_make_checksum(hdr);
664 	ic->i_ack_queued = jiffies;
665 
666 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
667 	if (unlikely(ret)) {
668 		/* Failed to send. Release the WR, and
669 		 * force another ACK.
670 		 */
671 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
672 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
673 
674 		rds_ib_stats_inc(s_ib_ack_send_failure);
675 
676 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
677 	} else
678 		rds_ib_stats_inc(s_ib_ack_sent);
679 }
680 
681 /*
682  * There are 3 ways of getting acknowledgements to the peer:
683  *  1.	We call rds_ib_attempt_ack from the recv completion handler
684  *	to send an ACK-only frame.
685  *	However, there can be only one such frame in the send queue
686  *	at any time, so we may have to postpone it.
687  *  2.	When another (data) packet is transmitted while there's
688  *	an ACK in the queue, we piggyback the ACK sequence number
689  *	on the data packet.
690  *  3.	If the ACK WR is done sending, we get called from the
691  *	send queue completion handler, and check whether there's
692  *	another ACK pending (postponed because the WR was on the
693  *	queue). If so, we transmit it.
694  *
695  * We maintain 2 variables:
696  *  -	i_ack_flags, which keeps track of whether the ACK WR
697  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
698  *  -	i_ack_next, which is the last sequence number we received
699  *
700  * Potentially, send queue and receive queue handlers can run concurrently.
701  * It would be nice to not have to use a spinlock to synchronize things,
702  * but the one problem that rules this out is that 64bit updates are
703  * not atomic on all platforms. Things would be a lot simpler if
704  * we had atomic64 or maybe cmpxchg64 everywhere.
705  *
706  * Reconnecting complicates this picture just slightly. When we
707  * reconnect, we may be seeing duplicate packets. The peer
708  * is retransmitting them, because it hasn't seen an ACK for
709  * them. It is important that we ACK these.
710  *
711  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
712  * this flag set *MUST* be acknowledged immediately.
713  */
714 
715 /*
716  * When we get here, we're called from the recv queue handler.
717  * Check whether we ought to transmit an ACK.
718  */
719 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
720 {
721 	unsigned int adv_credits;
722 
723 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
724 		return;
725 
726 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
727 		rds_ib_stats_inc(s_ib_ack_send_delayed);
728 		return;
729 	}
730 
731 	/* Can we get a send credit? */
732 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
733 		rds_ib_stats_inc(s_ib_tx_throttle);
734 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
735 		return;
736 	}
737 
738 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
739 	rds_ib_send_ack(ic, adv_credits);
740 }
741 
742 /*
743  * We get here from the send completion handler, when the
744  * adapter tells us the ACK frame was sent.
745  */
746 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
747 {
748 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
749 	rds_ib_attempt_ack(ic);
750 }
751 
752 /*
753  * This is called by the regular xmit code when it wants to piggyback
754  * an ACK on an outgoing frame.
755  */
756 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
757 {
758 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
759 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
760 	return rds_ib_get_ack(ic);
761 }
762 
763 /*
764  * It's kind of lame that we're copying from the posted receive pages into
765  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
766  * them.  But receiving new congestion bitmaps should be a *rare* event, so
767  * hopefully we won't need to invest that complexity in making it more
768  * efficient.  By copying we can share a simpler core with TCP which has to
769  * copy.
770  */
771 static void rds_ib_cong_recv(struct rds_connection *conn,
772 			      struct rds_ib_incoming *ibinc)
773 {
774 	struct rds_cong_map *map;
775 	unsigned int map_off;
776 	unsigned int map_page;
777 	struct rds_page_frag *frag;
778 	unsigned long frag_off;
779 	unsigned long to_copy;
780 	unsigned long copied;
781 	uint64_t uncongested = 0;
782 	void *addr;
783 
784 	/* catch completely corrupt packets */
785 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
786 		return;
787 
788 	map = conn->c_fcong;
789 	map_page = 0;
790 	map_off = 0;
791 
792 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
793 	frag_off = 0;
794 
795 	copied = 0;
796 
797 	while (copied < RDS_CONG_MAP_BYTES) {
798 		uint64_t *src, *dst;
799 		unsigned int k;
800 
801 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
802 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
803 
804 		addr = kmap_atomic(sg_page(&frag->f_sg));
805 
806 		src = addr + frag->f_sg.offset + frag_off;
807 		dst = (void *)map->m_page_addrs[map_page] + map_off;
808 		for (k = 0; k < to_copy; k += 8) {
809 			/* Record ports that became uncongested, ie
810 			 * bits that changed from 0 to 1. */
811 			uncongested |= ~(*src) & *dst;
812 			*dst++ = *src++;
813 		}
814 		kunmap_atomic(addr);
815 
816 		copied += to_copy;
817 
818 		map_off += to_copy;
819 		if (map_off == PAGE_SIZE) {
820 			map_off = 0;
821 			map_page++;
822 		}
823 
824 		frag_off += to_copy;
825 		if (frag_off == RDS_FRAG_SIZE) {
826 			frag = list_entry(frag->f_item.next,
827 					  struct rds_page_frag, f_item);
828 			frag_off = 0;
829 		}
830 	}
831 
832 	/* the congestion map is in little endian order */
833 	uncongested = le64_to_cpu(uncongested);
834 
835 	rds_cong_map_updated(map, uncongested);
836 }
837 
838 static void rds_ib_process_recv(struct rds_connection *conn,
839 				struct rds_ib_recv_work *recv, u32 data_len,
840 				struct rds_ib_ack_state *state)
841 {
842 	struct rds_ib_connection *ic = conn->c_transport_data;
843 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
844 	struct rds_header *ihdr, *hdr;
845 
846 	/* XXX shut down the connection if port 0,0 are seen? */
847 
848 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
849 		 data_len);
850 
851 	if (data_len < sizeof(struct rds_header)) {
852 		rds_ib_conn_error(conn, "incoming message "
853 		       "from %pI4 didn't include a "
854 		       "header, disconnecting and "
855 		       "reconnecting\n",
856 		       &conn->c_faddr);
857 		return;
858 	}
859 	data_len -= sizeof(struct rds_header);
860 
861 	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
862 
863 	/* Validate the checksum. */
864 	if (!rds_message_verify_checksum(ihdr)) {
865 		rds_ib_conn_error(conn, "incoming message "
866 		       "from %pI4 has corrupted header - "
867 		       "forcing a reconnect\n",
868 		       &conn->c_faddr);
869 		rds_stats_inc(s_recv_drop_bad_checksum);
870 		return;
871 	}
872 
873 	/* Process the ACK sequence which comes with every packet */
874 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
875 	state->ack_recv_valid = 1;
876 
877 	/* Process the credits update if there was one */
878 	if (ihdr->h_credit)
879 		rds_ib_send_add_credits(conn, ihdr->h_credit);
880 
881 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
882 		/* This is an ACK-only packet. The fact that it gets
883 		 * special treatment here is that historically, ACKs
884 		 * were rather special beasts.
885 		 */
886 		rds_ib_stats_inc(s_ib_ack_received);
887 
888 		/*
889 		 * Usually the frags make their way on to incs and are then freed as
890 		 * the inc is freed.  We don't go that route, so we have to drop the
891 		 * page ref ourselves.  We can't just leave the page on the recv
892 		 * because that confuses the dma mapping of pages and each recv's use
893 		 * of a partial page.
894 		 *
895 		 * FIXME: Fold this into the code path below.
896 		 */
897 		rds_ib_frag_free(ic, recv->r_frag);
898 		recv->r_frag = NULL;
899 		return;
900 	}
901 
902 	/*
903 	 * If we don't already have an inc on the connection then this
904 	 * fragment has a header and starts a message.. copy its header
905 	 * into the inc and save the inc so we can hang upcoming fragments
906 	 * off its list.
907 	 */
908 	if (!ibinc) {
909 		ibinc = recv->r_ibinc;
910 		recv->r_ibinc = NULL;
911 		ic->i_ibinc = ibinc;
912 
913 		hdr = &ibinc->ii_inc.i_hdr;
914 		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
915 				local_clock();
916 		memcpy(hdr, ihdr, sizeof(*hdr));
917 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
918 		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
919 				local_clock();
920 
921 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
922 			 ic->i_recv_data_rem, hdr->h_flags);
923 	} else {
924 		hdr = &ibinc->ii_inc.i_hdr;
925 		/* We can't just use memcmp here; fragments of a
926 		 * single message may carry different ACKs */
927 		if (hdr->h_sequence != ihdr->h_sequence ||
928 		    hdr->h_len != ihdr->h_len ||
929 		    hdr->h_sport != ihdr->h_sport ||
930 		    hdr->h_dport != ihdr->h_dport) {
931 			rds_ib_conn_error(conn,
932 				"fragment header mismatch; forcing reconnect\n");
933 			return;
934 		}
935 	}
936 
937 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
938 	recv->r_frag = NULL;
939 
940 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
941 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
942 	else {
943 		ic->i_recv_data_rem = 0;
944 		ic->i_ibinc = NULL;
945 
946 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
947 			rds_ib_cong_recv(conn, ibinc);
948 		else {
949 			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
950 					  &ibinc->ii_inc, GFP_ATOMIC);
951 			state->ack_next = be64_to_cpu(hdr->h_sequence);
952 			state->ack_next_valid = 1;
953 		}
954 
955 		/* Evaluate the ACK_REQUIRED flag *after* we received
956 		 * the complete frame, and after bumping the next_rx
957 		 * sequence. */
958 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
959 			rds_stats_inc(s_recv_ack_required);
960 			state->ack_required = 1;
961 		}
962 
963 		rds_inc_put(&ibinc->ii_inc);
964 	}
965 }
966 
967 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
968 			     struct ib_wc *wc,
969 			     struct rds_ib_ack_state *state)
970 {
971 	struct rds_connection *conn = ic->conn;
972 	struct rds_ib_recv_work *recv;
973 
974 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
975 		 (unsigned long long)wc->wr_id, wc->status,
976 		 ib_wc_status_msg(wc->status), wc->byte_len,
977 		 be32_to_cpu(wc->ex.imm_data));
978 
979 	rds_ib_stats_inc(s_ib_rx_cq_event);
980 	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
981 	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
982 			DMA_FROM_DEVICE);
983 
984 	/* Also process recvs in connecting state because it is possible
985 	 * to get a recv completion _before_ the rdmacm ESTABLISHED
986 	 * event is processed.
987 	 */
988 	if (wc->status == IB_WC_SUCCESS) {
989 		rds_ib_process_recv(conn, recv, wc->byte_len, state);
990 	} else {
991 		/* We expect errors as the qp is drained during shutdown */
992 		if (rds_conn_up(conn) || rds_conn_connecting(conn))
993 			rds_ib_conn_error(conn, "recv completion on <%pI4,%pI4> had status %u (%s), disconnecting and reconnecting\n",
994 					  &conn->c_laddr, &conn->c_faddr,
995 					  wc->status,
996 					  ib_wc_status_msg(wc->status));
997 	}
998 
999 	/* rds_ib_process_recv() doesn't always consume the frag, and
1000 	 * we might not have called it at all if the wc didn't indicate
1001 	 * success. We already unmapped the frag's pages, though, and
1002 	 * the following rds_ib_ring_free() call tells the refill path
1003 	 * that it will not find an allocated frag here. Make sure we
1004 	 * keep that promise by freeing a frag that's still on the ring.
1005 	 */
1006 	if (recv->r_frag) {
1007 		rds_ib_frag_free(ic, recv->r_frag);
1008 		recv->r_frag = NULL;
1009 	}
1010 	rds_ib_ring_free(&ic->i_recv_ring, 1);
1011 
1012 	/* If we ever end up with a really empty receive ring, we're
1013 	 * in deep trouble, as the sender will definitely see RNR
1014 	 * timeouts. */
1015 	if (rds_ib_ring_empty(&ic->i_recv_ring))
1016 		rds_ib_stats_inc(s_ib_rx_ring_empty);
1017 
1018 	if (rds_ib_ring_low(&ic->i_recv_ring))
1019 		rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
1020 }
1021 
1022 int rds_ib_recv_path(struct rds_conn_path *cp)
1023 {
1024 	struct rds_connection *conn = cp->cp_conn;
1025 	struct rds_ib_connection *ic = conn->c_transport_data;
1026 	int ret = 0;
1027 
1028 	rdsdebug("conn %p\n", conn);
1029 	if (rds_conn_up(conn)) {
1030 		rds_ib_attempt_ack(ic);
1031 		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1032 	}
1033 
1034 	return ret;
1035 }
1036 
1037 int rds_ib_recv_init(void)
1038 {
1039 	struct sysinfo si;
1040 	int ret = -ENOMEM;
1041 
1042 	/* Default to 30% of all available RAM for recv memory */
1043 	si_meminfo(&si);
1044 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1045 
1046 	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1047 					sizeof(struct rds_ib_incoming),
1048 					0, SLAB_HWCACHE_ALIGN, NULL);
1049 	if (!rds_ib_incoming_slab)
1050 		goto out;
1051 
1052 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1053 					sizeof(struct rds_page_frag),
1054 					0, SLAB_HWCACHE_ALIGN, NULL);
1055 	if (!rds_ib_frag_slab) {
1056 		kmem_cache_destroy(rds_ib_incoming_slab);
1057 		rds_ib_incoming_slab = NULL;
1058 	} else
1059 		ret = 0;
1060 out:
1061 	return ret;
1062 }
1063 
1064 void rds_ib_recv_exit(void)
1065 {
1066 	kmem_cache_destroy(rds_ib_incoming_slab);
1067 	kmem_cache_destroy(rds_ib_frag_slab);
1068 }
1069