xref: /openbmc/linux/net/rds/ib_rdma.c (revision fd589a8f)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 
35 #include "rds.h"
36 #include "rdma.h"
37 #include "ib.h"
38 
39 
40 /*
41  * This is stored as mr->r_trans_private.
42  */
43 struct rds_ib_mr {
44 	struct rds_ib_device	*device;
45 	struct rds_ib_mr_pool	*pool;
46 	struct ib_fmr		*fmr;
47 	struct list_head	list;
48 	unsigned int		remap_count;
49 
50 	struct scatterlist	*sg;
51 	unsigned int		sg_len;
52 	u64			*dma;
53 	int			sg_dma_len;
54 };
55 
56 /*
57  * Our own little FMR pool
58  */
59 struct rds_ib_mr_pool {
60 	struct mutex		flush_lock;		/* serialize fmr invalidate */
61 	struct work_struct	flush_worker;		/* flush worker */
62 
63 	spinlock_t		list_lock;		/* protect variables below */
64 	atomic_t		item_count;		/* total # of MRs */
65 	atomic_t		dirty_count;		/* # dirty of MRs */
66 	struct list_head	drop_list;		/* MRs that have reached their max_maps limit */
67 	struct list_head	free_list;		/* unused MRs */
68 	struct list_head	clean_list;		/* unused & unamapped MRs */
69 	atomic_t		free_pinned;		/* memory pinned by free MRs */
70 	unsigned long		max_items;
71 	unsigned long		max_items_soft;
72 	unsigned long		max_free_pinned;
73 	struct ib_fmr_attr	fmr_attr;
74 };
75 
76 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all);
77 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
78 static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
79 
80 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
81 {
82 	struct rds_ib_device *rds_ibdev;
83 	struct rds_ib_ipaddr *i_ipaddr;
84 
85 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
86 		spin_lock_irq(&rds_ibdev->spinlock);
87 		list_for_each_entry(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
88 			if (i_ipaddr->ipaddr == ipaddr) {
89 				spin_unlock_irq(&rds_ibdev->spinlock);
90 				return rds_ibdev;
91 			}
92 		}
93 		spin_unlock_irq(&rds_ibdev->spinlock);
94 	}
95 
96 	return NULL;
97 }
98 
99 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
100 {
101 	struct rds_ib_ipaddr *i_ipaddr;
102 
103 	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
104 	if (!i_ipaddr)
105 		return -ENOMEM;
106 
107 	i_ipaddr->ipaddr = ipaddr;
108 
109 	spin_lock_irq(&rds_ibdev->spinlock);
110 	list_add_tail(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
111 	spin_unlock_irq(&rds_ibdev->spinlock);
112 
113 	return 0;
114 }
115 
116 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
117 {
118 	struct rds_ib_ipaddr *i_ipaddr, *next;
119 
120 	spin_lock_irq(&rds_ibdev->spinlock);
121 	list_for_each_entry_safe(i_ipaddr, next, &rds_ibdev->ipaddr_list, list) {
122 		if (i_ipaddr->ipaddr == ipaddr) {
123 			list_del(&i_ipaddr->list);
124 			kfree(i_ipaddr);
125 			break;
126 		}
127 	}
128 	spin_unlock_irq(&rds_ibdev->spinlock);
129 }
130 
131 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
132 {
133 	struct rds_ib_device *rds_ibdev_old;
134 
135 	rds_ibdev_old = rds_ib_get_device(ipaddr);
136 	if (rds_ibdev_old)
137 		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
138 
139 	return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
140 }
141 
142 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
143 {
144 	struct rds_ib_connection *ic = conn->c_transport_data;
145 
146 	/* conn was previously on the nodev_conns_list */
147 	spin_lock_irq(&ib_nodev_conns_lock);
148 	BUG_ON(list_empty(&ib_nodev_conns));
149 	BUG_ON(list_empty(&ic->ib_node));
150 	list_del(&ic->ib_node);
151 
152 	spin_lock_irq(&rds_ibdev->spinlock);
153 	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
154 	spin_unlock_irq(&rds_ibdev->spinlock);
155 	spin_unlock_irq(&ib_nodev_conns_lock);
156 
157 	ic->rds_ibdev = rds_ibdev;
158 }
159 
160 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
161 {
162 	struct rds_ib_connection *ic = conn->c_transport_data;
163 
164 	/* place conn on nodev_conns_list */
165 	spin_lock(&ib_nodev_conns_lock);
166 
167 	spin_lock_irq(&rds_ibdev->spinlock);
168 	BUG_ON(list_empty(&ic->ib_node));
169 	list_del(&ic->ib_node);
170 	spin_unlock_irq(&rds_ibdev->spinlock);
171 
172 	list_add_tail(&ic->ib_node, &ib_nodev_conns);
173 
174 	spin_unlock(&ib_nodev_conns_lock);
175 
176 	ic->rds_ibdev = NULL;
177 }
178 
179 void __rds_ib_destroy_conns(struct list_head *list, spinlock_t *list_lock)
180 {
181 	struct rds_ib_connection *ic, *_ic;
182 	LIST_HEAD(tmp_list);
183 
184 	/* avoid calling conn_destroy with irqs off */
185 	spin_lock_irq(list_lock);
186 	list_splice(list, &tmp_list);
187 	INIT_LIST_HEAD(list);
188 	spin_unlock_irq(list_lock);
189 
190 	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) {
191 		if (ic->conn->c_passive)
192 			rds_conn_destroy(ic->conn->c_passive);
193 		rds_conn_destroy(ic->conn);
194 	}
195 }
196 
197 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
198 {
199 	struct rds_ib_mr_pool *pool;
200 
201 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
202 	if (!pool)
203 		return ERR_PTR(-ENOMEM);
204 
205 	INIT_LIST_HEAD(&pool->free_list);
206 	INIT_LIST_HEAD(&pool->drop_list);
207 	INIT_LIST_HEAD(&pool->clean_list);
208 	mutex_init(&pool->flush_lock);
209 	spin_lock_init(&pool->list_lock);
210 	INIT_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
211 
212 	pool->fmr_attr.max_pages = fmr_message_size;
213 	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
214 	pool->fmr_attr.page_shift = PAGE_SHIFT;
215 	pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
216 
217 	/* We never allow more than max_items MRs to be allocated.
218 	 * When we exceed more than max_items_soft, we start freeing
219 	 * items more aggressively.
220 	 * Make sure that max_items > max_items_soft > max_items / 2
221 	 */
222 	pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
223 	pool->max_items = rds_ibdev->max_fmrs;
224 
225 	return pool;
226 }
227 
228 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
229 {
230 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
231 
232 	iinfo->rdma_mr_max = pool->max_items;
233 	iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
234 }
235 
236 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
237 {
238 	flush_workqueue(rds_wq);
239 	rds_ib_flush_mr_pool(pool, 1);
240 	BUG_ON(atomic_read(&pool->item_count));
241 	BUG_ON(atomic_read(&pool->free_pinned));
242 	kfree(pool);
243 }
244 
245 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
246 {
247 	struct rds_ib_mr *ibmr = NULL;
248 	unsigned long flags;
249 
250 	spin_lock_irqsave(&pool->list_lock, flags);
251 	if (!list_empty(&pool->clean_list)) {
252 		ibmr = list_entry(pool->clean_list.next, struct rds_ib_mr, list);
253 		list_del_init(&ibmr->list);
254 	}
255 	spin_unlock_irqrestore(&pool->list_lock, flags);
256 
257 	return ibmr;
258 }
259 
260 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
261 {
262 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
263 	struct rds_ib_mr *ibmr = NULL;
264 	int err = 0, iter = 0;
265 
266 	while (1) {
267 		ibmr = rds_ib_reuse_fmr(pool);
268 		if (ibmr)
269 			return ibmr;
270 
271 		/* No clean MRs - now we have the choice of either
272 		 * allocating a fresh MR up to the limit imposed by the
273 		 * driver, or flush any dirty unused MRs.
274 		 * We try to avoid stalling in the send path if possible,
275 		 * so we allocate as long as we're allowed to.
276 		 *
277 		 * We're fussy with enforcing the FMR limit, though. If the driver
278 		 * tells us we can't use more than N fmrs, we shouldn't start
279 		 * arguing with it */
280 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
281 			break;
282 
283 		atomic_dec(&pool->item_count);
284 
285 		if (++iter > 2) {
286 			rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
287 			return ERR_PTR(-EAGAIN);
288 		}
289 
290 		/* We do have some empty MRs. Flush them out. */
291 		rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
292 		rds_ib_flush_mr_pool(pool, 0);
293 	}
294 
295 	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
296 	if (!ibmr) {
297 		err = -ENOMEM;
298 		goto out_no_cigar;
299 	}
300 
301 	ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
302 			(IB_ACCESS_LOCAL_WRITE |
303 			 IB_ACCESS_REMOTE_READ |
304 			 IB_ACCESS_REMOTE_WRITE),
305 			&pool->fmr_attr);
306 	if (IS_ERR(ibmr->fmr)) {
307 		err = PTR_ERR(ibmr->fmr);
308 		ibmr->fmr = NULL;
309 		printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
310 		goto out_no_cigar;
311 	}
312 
313 	rds_ib_stats_inc(s_ib_rdma_mr_alloc);
314 	return ibmr;
315 
316 out_no_cigar:
317 	if (ibmr) {
318 		if (ibmr->fmr)
319 			ib_dealloc_fmr(ibmr->fmr);
320 		kfree(ibmr);
321 	}
322 	atomic_dec(&pool->item_count);
323 	return ERR_PTR(err);
324 }
325 
326 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
327 	       struct scatterlist *sg, unsigned int nents)
328 {
329 	struct ib_device *dev = rds_ibdev->dev;
330 	struct scatterlist *scat = sg;
331 	u64 io_addr = 0;
332 	u64 *dma_pages;
333 	u32 len;
334 	int page_cnt, sg_dma_len;
335 	int i, j;
336 	int ret;
337 
338 	sg_dma_len = ib_dma_map_sg(dev, sg, nents,
339 				 DMA_BIDIRECTIONAL);
340 	if (unlikely(!sg_dma_len)) {
341 		printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
342 		return -EBUSY;
343 	}
344 
345 	len = 0;
346 	page_cnt = 0;
347 
348 	for (i = 0; i < sg_dma_len; ++i) {
349 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
350 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
351 
352 		if (dma_addr & ~PAGE_MASK) {
353 			if (i > 0)
354 				return -EINVAL;
355 			else
356 				++page_cnt;
357 		}
358 		if ((dma_addr + dma_len) & ~PAGE_MASK) {
359 			if (i < sg_dma_len - 1)
360 				return -EINVAL;
361 			else
362 				++page_cnt;
363 		}
364 
365 		len += dma_len;
366 	}
367 
368 	page_cnt += len >> PAGE_SHIFT;
369 	if (page_cnt > fmr_message_size)
370 		return -EINVAL;
371 
372 	dma_pages = kmalloc(sizeof(u64) * page_cnt, GFP_ATOMIC);
373 	if (!dma_pages)
374 		return -ENOMEM;
375 
376 	page_cnt = 0;
377 	for (i = 0; i < sg_dma_len; ++i) {
378 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
379 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
380 
381 		for (j = 0; j < dma_len; j += PAGE_SIZE)
382 			dma_pages[page_cnt++] =
383 				(dma_addr & PAGE_MASK) + j;
384 	}
385 
386 	ret = ib_map_phys_fmr(ibmr->fmr,
387 				   dma_pages, page_cnt, io_addr);
388 	if (ret)
389 		goto out;
390 
391 	/* Success - we successfully remapped the MR, so we can
392 	 * safely tear down the old mapping. */
393 	rds_ib_teardown_mr(ibmr);
394 
395 	ibmr->sg = scat;
396 	ibmr->sg_len = nents;
397 	ibmr->sg_dma_len = sg_dma_len;
398 	ibmr->remap_count++;
399 
400 	rds_ib_stats_inc(s_ib_rdma_mr_used);
401 	ret = 0;
402 
403 out:
404 	kfree(dma_pages);
405 
406 	return ret;
407 }
408 
409 void rds_ib_sync_mr(void *trans_private, int direction)
410 {
411 	struct rds_ib_mr *ibmr = trans_private;
412 	struct rds_ib_device *rds_ibdev = ibmr->device;
413 
414 	switch (direction) {
415 	case DMA_FROM_DEVICE:
416 		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
417 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
418 		break;
419 	case DMA_TO_DEVICE:
420 		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
421 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
422 		break;
423 	}
424 }
425 
426 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
427 {
428 	struct rds_ib_device *rds_ibdev = ibmr->device;
429 
430 	if (ibmr->sg_dma_len) {
431 		ib_dma_unmap_sg(rds_ibdev->dev,
432 				ibmr->sg, ibmr->sg_len,
433 				DMA_BIDIRECTIONAL);
434 		ibmr->sg_dma_len = 0;
435 	}
436 
437 	/* Release the s/g list */
438 	if (ibmr->sg_len) {
439 		unsigned int i;
440 
441 		for (i = 0; i < ibmr->sg_len; ++i) {
442 			struct page *page = sg_page(&ibmr->sg[i]);
443 
444 			/* FIXME we need a way to tell a r/w MR
445 			 * from a r/o MR */
446 			set_page_dirty(page);
447 			put_page(page);
448 		}
449 		kfree(ibmr->sg);
450 
451 		ibmr->sg = NULL;
452 		ibmr->sg_len = 0;
453 	}
454 }
455 
456 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
457 {
458 	unsigned int pinned = ibmr->sg_len;
459 
460 	__rds_ib_teardown_mr(ibmr);
461 	if (pinned) {
462 		struct rds_ib_device *rds_ibdev = ibmr->device;
463 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
464 
465 		atomic_sub(pinned, &pool->free_pinned);
466 	}
467 }
468 
469 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
470 {
471 	unsigned int item_count;
472 
473 	item_count = atomic_read(&pool->item_count);
474 	if (free_all)
475 		return item_count;
476 
477 	return 0;
478 }
479 
480 /*
481  * Flush our pool of MRs.
482  * At a minimum, all currently unused MRs are unmapped.
483  * If the number of MRs allocated exceeds the limit, we also try
484  * to free as many MRs as needed to get back to this limit.
485  */
486 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all)
487 {
488 	struct rds_ib_mr *ibmr, *next;
489 	LIST_HEAD(unmap_list);
490 	LIST_HEAD(fmr_list);
491 	unsigned long unpinned = 0;
492 	unsigned long flags;
493 	unsigned int nfreed = 0, ncleaned = 0, free_goal;
494 	int ret = 0;
495 
496 	rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
497 
498 	mutex_lock(&pool->flush_lock);
499 
500 	spin_lock_irqsave(&pool->list_lock, flags);
501 	/* Get the list of all MRs to be dropped. Ordering matters -
502 	 * we want to put drop_list ahead of free_list. */
503 	list_splice_init(&pool->free_list, &unmap_list);
504 	list_splice_init(&pool->drop_list, &unmap_list);
505 	if (free_all)
506 		list_splice_init(&pool->clean_list, &unmap_list);
507 	spin_unlock_irqrestore(&pool->list_lock, flags);
508 
509 	free_goal = rds_ib_flush_goal(pool, free_all);
510 
511 	if (list_empty(&unmap_list))
512 		goto out;
513 
514 	/* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
515 	list_for_each_entry(ibmr, &unmap_list, list)
516 		list_add(&ibmr->fmr->list, &fmr_list);
517 	ret = ib_unmap_fmr(&fmr_list);
518 	if (ret)
519 		printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
520 
521 	/* Now we can destroy the DMA mapping and unpin any pages */
522 	list_for_each_entry_safe(ibmr, next, &unmap_list, list) {
523 		unpinned += ibmr->sg_len;
524 		__rds_ib_teardown_mr(ibmr);
525 		if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
526 			rds_ib_stats_inc(s_ib_rdma_mr_free);
527 			list_del(&ibmr->list);
528 			ib_dealloc_fmr(ibmr->fmr);
529 			kfree(ibmr);
530 			nfreed++;
531 		}
532 		ncleaned++;
533 	}
534 
535 	spin_lock_irqsave(&pool->list_lock, flags);
536 	list_splice(&unmap_list, &pool->clean_list);
537 	spin_unlock_irqrestore(&pool->list_lock, flags);
538 
539 	atomic_sub(unpinned, &pool->free_pinned);
540 	atomic_sub(ncleaned, &pool->dirty_count);
541 	atomic_sub(nfreed, &pool->item_count);
542 
543 out:
544 	mutex_unlock(&pool->flush_lock);
545 	return ret;
546 }
547 
548 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
549 {
550 	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker);
551 
552 	rds_ib_flush_mr_pool(pool, 0);
553 }
554 
555 void rds_ib_free_mr(void *trans_private, int invalidate)
556 {
557 	struct rds_ib_mr *ibmr = trans_private;
558 	struct rds_ib_device *rds_ibdev = ibmr->device;
559 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
560 	unsigned long flags;
561 
562 	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
563 
564 	/* Return it to the pool's free list */
565 	spin_lock_irqsave(&pool->list_lock, flags);
566 	if (ibmr->remap_count >= pool->fmr_attr.max_maps)
567 		list_add(&ibmr->list, &pool->drop_list);
568 	else
569 		list_add(&ibmr->list, &pool->free_list);
570 
571 	atomic_add(ibmr->sg_len, &pool->free_pinned);
572 	atomic_inc(&pool->dirty_count);
573 	spin_unlock_irqrestore(&pool->list_lock, flags);
574 
575 	/* If we've pinned too many pages, request a flush */
576 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned
577 	 || atomic_read(&pool->dirty_count) >= pool->max_items / 10)
578 		queue_work(rds_wq, &pool->flush_worker);
579 
580 	if (invalidate) {
581 		if (likely(!in_interrupt())) {
582 			rds_ib_flush_mr_pool(pool, 0);
583 		} else {
584 			/* We get here if the user created a MR marked
585 			 * as use_once and invalidate at the same time. */
586 			queue_work(rds_wq, &pool->flush_worker);
587 		}
588 	}
589 }
590 
591 void rds_ib_flush_mrs(void)
592 {
593 	struct rds_ib_device *rds_ibdev;
594 
595 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
596 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
597 
598 		if (pool)
599 			rds_ib_flush_mr_pool(pool, 0);
600 	}
601 }
602 
603 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
604 		    struct rds_sock *rs, u32 *key_ret)
605 {
606 	struct rds_ib_device *rds_ibdev;
607 	struct rds_ib_mr *ibmr = NULL;
608 	int ret;
609 
610 	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
611 	if (!rds_ibdev) {
612 		ret = -ENODEV;
613 		goto out;
614 	}
615 
616 	if (!rds_ibdev->mr_pool) {
617 		ret = -ENODEV;
618 		goto out;
619 	}
620 
621 	ibmr = rds_ib_alloc_fmr(rds_ibdev);
622 	if (IS_ERR(ibmr))
623 		return ibmr;
624 
625 	ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
626 	if (ret == 0)
627 		*key_ret = ibmr->fmr->rkey;
628 	else
629 		printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
630 
631 	ibmr->device = rds_ibdev;
632 
633  out:
634 	if (ret) {
635 		if (ibmr)
636 			rds_ib_free_mr(ibmr, 0);
637 		ibmr = ERR_PTR(ret);
638 	}
639 	return ibmr;
640 }
641