1 /* 2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <linux/rculist.h> 36 #include <linux/llist.h> 37 38 #include "rds_single_path.h" 39 #include "ib_mr.h" 40 41 struct workqueue_struct *rds_ib_mr_wq; 42 43 static DEFINE_PER_CPU(unsigned long, clean_list_grace); 44 #define CLEAN_LIST_BUSY_BIT 0 45 46 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr) 47 { 48 struct rds_ib_device *rds_ibdev; 49 struct rds_ib_ipaddr *i_ipaddr; 50 51 rcu_read_lock(); 52 list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) { 53 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { 54 if (i_ipaddr->ipaddr == ipaddr) { 55 refcount_inc(&rds_ibdev->refcount); 56 rcu_read_unlock(); 57 return rds_ibdev; 58 } 59 } 60 } 61 rcu_read_unlock(); 62 63 return NULL; 64 } 65 66 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) 67 { 68 struct rds_ib_ipaddr *i_ipaddr; 69 70 i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL); 71 if (!i_ipaddr) 72 return -ENOMEM; 73 74 i_ipaddr->ipaddr = ipaddr; 75 76 spin_lock_irq(&rds_ibdev->spinlock); 77 list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list); 78 spin_unlock_irq(&rds_ibdev->spinlock); 79 80 return 0; 81 } 82 83 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr) 84 { 85 struct rds_ib_ipaddr *i_ipaddr; 86 struct rds_ib_ipaddr *to_free = NULL; 87 88 89 spin_lock_irq(&rds_ibdev->spinlock); 90 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) { 91 if (i_ipaddr->ipaddr == ipaddr) { 92 list_del_rcu(&i_ipaddr->list); 93 to_free = i_ipaddr; 94 break; 95 } 96 } 97 spin_unlock_irq(&rds_ibdev->spinlock); 98 99 if (to_free) 100 kfree_rcu(to_free, rcu); 101 } 102 103 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, 104 struct in6_addr *ipaddr) 105 { 106 struct rds_ib_device *rds_ibdev_old; 107 108 rds_ibdev_old = rds_ib_get_device(ipaddr->s6_addr32[3]); 109 if (!rds_ibdev_old) 110 return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]); 111 112 if (rds_ibdev_old != rds_ibdev) { 113 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr->s6_addr32[3]); 114 rds_ib_dev_put(rds_ibdev_old); 115 return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]); 116 } 117 rds_ib_dev_put(rds_ibdev_old); 118 119 return 0; 120 } 121 122 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) 123 { 124 struct rds_ib_connection *ic = conn->c_transport_data; 125 126 /* conn was previously on the nodev_conns_list */ 127 spin_lock_irq(&ib_nodev_conns_lock); 128 BUG_ON(list_empty(&ib_nodev_conns)); 129 BUG_ON(list_empty(&ic->ib_node)); 130 list_del(&ic->ib_node); 131 132 spin_lock(&rds_ibdev->spinlock); 133 list_add_tail(&ic->ib_node, &rds_ibdev->conn_list); 134 spin_unlock(&rds_ibdev->spinlock); 135 spin_unlock_irq(&ib_nodev_conns_lock); 136 137 ic->rds_ibdev = rds_ibdev; 138 refcount_inc(&rds_ibdev->refcount); 139 } 140 141 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn) 142 { 143 struct rds_ib_connection *ic = conn->c_transport_data; 144 145 /* place conn on nodev_conns_list */ 146 spin_lock(&ib_nodev_conns_lock); 147 148 spin_lock_irq(&rds_ibdev->spinlock); 149 BUG_ON(list_empty(&ic->ib_node)); 150 list_del(&ic->ib_node); 151 spin_unlock_irq(&rds_ibdev->spinlock); 152 153 list_add_tail(&ic->ib_node, &ib_nodev_conns); 154 155 spin_unlock(&ib_nodev_conns_lock); 156 157 ic->rds_ibdev = NULL; 158 rds_ib_dev_put(rds_ibdev); 159 } 160 161 void rds_ib_destroy_nodev_conns(void) 162 { 163 struct rds_ib_connection *ic, *_ic; 164 LIST_HEAD(tmp_list); 165 166 /* avoid calling conn_destroy with irqs off */ 167 spin_lock_irq(&ib_nodev_conns_lock); 168 list_splice(&ib_nodev_conns, &tmp_list); 169 spin_unlock_irq(&ib_nodev_conns_lock); 170 171 list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node) 172 rds_conn_destroy(ic->conn); 173 } 174 175 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo) 176 { 177 struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool; 178 179 iinfo->rdma_mr_max = pool_1m->max_items; 180 iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages; 181 } 182 183 #if IS_ENABLED(CONFIG_IPV6) 184 void rds6_ib_get_mr_info(struct rds_ib_device *rds_ibdev, 185 struct rds6_info_rdma_connection *iinfo6) 186 { 187 struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool; 188 189 iinfo6->rdma_mr_max = pool_1m->max_items; 190 iinfo6->rdma_mr_size = pool_1m->fmr_attr.max_pages; 191 } 192 #endif 193 194 struct rds_ib_mr *rds_ib_reuse_mr(struct rds_ib_mr_pool *pool) 195 { 196 struct rds_ib_mr *ibmr = NULL; 197 struct llist_node *ret; 198 unsigned long *flag; 199 200 preempt_disable(); 201 flag = this_cpu_ptr(&clean_list_grace); 202 set_bit(CLEAN_LIST_BUSY_BIT, flag); 203 ret = llist_del_first(&pool->clean_list); 204 if (ret) { 205 ibmr = llist_entry(ret, struct rds_ib_mr, llnode); 206 if (pool->pool_type == RDS_IB_MR_8K_POOL) 207 rds_ib_stats_inc(s_ib_rdma_mr_8k_reused); 208 else 209 rds_ib_stats_inc(s_ib_rdma_mr_1m_reused); 210 } 211 212 clear_bit(CLEAN_LIST_BUSY_BIT, flag); 213 preempt_enable(); 214 return ibmr; 215 } 216 217 static inline void wait_clean_list_grace(void) 218 { 219 int cpu; 220 unsigned long *flag; 221 222 for_each_online_cpu(cpu) { 223 flag = &per_cpu(clean_list_grace, cpu); 224 while (test_bit(CLEAN_LIST_BUSY_BIT, flag)) 225 cpu_relax(); 226 } 227 } 228 229 void rds_ib_sync_mr(void *trans_private, int direction) 230 { 231 struct rds_ib_mr *ibmr = trans_private; 232 struct rds_ib_device *rds_ibdev = ibmr->device; 233 234 switch (direction) { 235 case DMA_FROM_DEVICE: 236 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg, 237 ibmr->sg_dma_len, DMA_BIDIRECTIONAL); 238 break; 239 case DMA_TO_DEVICE: 240 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg, 241 ibmr->sg_dma_len, DMA_BIDIRECTIONAL); 242 break; 243 } 244 } 245 246 void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr) 247 { 248 struct rds_ib_device *rds_ibdev = ibmr->device; 249 250 if (ibmr->sg_dma_len) { 251 ib_dma_unmap_sg(rds_ibdev->dev, 252 ibmr->sg, ibmr->sg_len, 253 DMA_BIDIRECTIONAL); 254 ibmr->sg_dma_len = 0; 255 } 256 257 /* Release the s/g list */ 258 if (ibmr->sg_len) { 259 unsigned int i; 260 261 for (i = 0; i < ibmr->sg_len; ++i) { 262 struct page *page = sg_page(&ibmr->sg[i]); 263 264 /* FIXME we need a way to tell a r/w MR 265 * from a r/o MR */ 266 WARN_ON(!page->mapping && irqs_disabled()); 267 set_page_dirty(page); 268 put_page(page); 269 } 270 kfree(ibmr->sg); 271 272 ibmr->sg = NULL; 273 ibmr->sg_len = 0; 274 } 275 } 276 277 void rds_ib_teardown_mr(struct rds_ib_mr *ibmr) 278 { 279 unsigned int pinned = ibmr->sg_len; 280 281 __rds_ib_teardown_mr(ibmr); 282 if (pinned) { 283 struct rds_ib_mr_pool *pool = ibmr->pool; 284 285 atomic_sub(pinned, &pool->free_pinned); 286 } 287 } 288 289 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all) 290 { 291 unsigned int item_count; 292 293 item_count = atomic_read(&pool->item_count); 294 if (free_all) 295 return item_count; 296 297 return 0; 298 } 299 300 /* 301 * given an llist of mrs, put them all into the list_head for more processing 302 */ 303 static unsigned int llist_append_to_list(struct llist_head *llist, 304 struct list_head *list) 305 { 306 struct rds_ib_mr *ibmr; 307 struct llist_node *node; 308 struct llist_node *next; 309 unsigned int count = 0; 310 311 node = llist_del_all(llist); 312 while (node) { 313 next = node->next; 314 ibmr = llist_entry(node, struct rds_ib_mr, llnode); 315 list_add_tail(&ibmr->unmap_list, list); 316 node = next; 317 count++; 318 } 319 return count; 320 } 321 322 /* 323 * this takes a list head of mrs and turns it into linked llist nodes 324 * of clusters. Each cluster has linked llist nodes of 325 * MR_CLUSTER_SIZE mrs that are ready for reuse. 326 */ 327 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool, 328 struct list_head *list, 329 struct llist_node **nodes_head, 330 struct llist_node **nodes_tail) 331 { 332 struct rds_ib_mr *ibmr; 333 struct llist_node *cur = NULL; 334 struct llist_node **next = nodes_head; 335 336 list_for_each_entry(ibmr, list, unmap_list) { 337 cur = &ibmr->llnode; 338 *next = cur; 339 next = &cur->next; 340 } 341 *next = NULL; 342 *nodes_tail = cur; 343 } 344 345 /* 346 * Flush our pool of MRs. 347 * At a minimum, all currently unused MRs are unmapped. 348 * If the number of MRs allocated exceeds the limit, we also try 349 * to free as many MRs as needed to get back to this limit. 350 */ 351 int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, 352 int free_all, struct rds_ib_mr **ibmr_ret) 353 { 354 struct rds_ib_mr *ibmr; 355 struct llist_node *clean_nodes; 356 struct llist_node *clean_tail; 357 LIST_HEAD(unmap_list); 358 unsigned long unpinned = 0; 359 unsigned int nfreed = 0, dirty_to_clean = 0, free_goal; 360 361 if (pool->pool_type == RDS_IB_MR_8K_POOL) 362 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush); 363 else 364 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush); 365 366 if (ibmr_ret) { 367 DEFINE_WAIT(wait); 368 while (!mutex_trylock(&pool->flush_lock)) { 369 ibmr = rds_ib_reuse_mr(pool); 370 if (ibmr) { 371 *ibmr_ret = ibmr; 372 finish_wait(&pool->flush_wait, &wait); 373 goto out_nolock; 374 } 375 376 prepare_to_wait(&pool->flush_wait, &wait, 377 TASK_UNINTERRUPTIBLE); 378 if (llist_empty(&pool->clean_list)) 379 schedule(); 380 381 ibmr = rds_ib_reuse_mr(pool); 382 if (ibmr) { 383 *ibmr_ret = ibmr; 384 finish_wait(&pool->flush_wait, &wait); 385 goto out_nolock; 386 } 387 } 388 finish_wait(&pool->flush_wait, &wait); 389 } else 390 mutex_lock(&pool->flush_lock); 391 392 if (ibmr_ret) { 393 ibmr = rds_ib_reuse_mr(pool); 394 if (ibmr) { 395 *ibmr_ret = ibmr; 396 goto out; 397 } 398 } 399 400 /* Get the list of all MRs to be dropped. Ordering matters - 401 * we want to put drop_list ahead of free_list. 402 */ 403 dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list); 404 dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list); 405 if (free_all) 406 llist_append_to_list(&pool->clean_list, &unmap_list); 407 408 free_goal = rds_ib_flush_goal(pool, free_all); 409 410 if (list_empty(&unmap_list)) 411 goto out; 412 413 if (pool->use_fastreg) 414 rds_ib_unreg_frmr(&unmap_list, &nfreed, &unpinned, free_goal); 415 else 416 rds_ib_unreg_fmr(&unmap_list, &nfreed, &unpinned, free_goal); 417 418 if (!list_empty(&unmap_list)) { 419 /* we have to make sure that none of the things we're about 420 * to put on the clean list would race with other cpus trying 421 * to pull items off. The llist would explode if we managed to 422 * remove something from the clean list and then add it back again 423 * while another CPU was spinning on that same item in llist_del_first. 424 * 425 * This is pretty unlikely, but just in case wait for an llist grace period 426 * here before adding anything back into the clean list. 427 */ 428 wait_clean_list_grace(); 429 430 list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail); 431 if (ibmr_ret) 432 *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode); 433 434 /* more than one entry in llist nodes */ 435 if (clean_nodes->next) 436 llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list); 437 438 } 439 440 atomic_sub(unpinned, &pool->free_pinned); 441 atomic_sub(dirty_to_clean, &pool->dirty_count); 442 atomic_sub(nfreed, &pool->item_count); 443 444 out: 445 mutex_unlock(&pool->flush_lock); 446 if (waitqueue_active(&pool->flush_wait)) 447 wake_up(&pool->flush_wait); 448 out_nolock: 449 return 0; 450 } 451 452 struct rds_ib_mr *rds_ib_try_reuse_ibmr(struct rds_ib_mr_pool *pool) 453 { 454 struct rds_ib_mr *ibmr = NULL; 455 int iter = 0; 456 457 if (atomic_read(&pool->dirty_count) >= pool->max_items_soft / 10) 458 queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10); 459 460 while (1) { 461 ibmr = rds_ib_reuse_mr(pool); 462 if (ibmr) 463 return ibmr; 464 465 if (atomic_inc_return(&pool->item_count) <= pool->max_items) 466 break; 467 468 atomic_dec(&pool->item_count); 469 470 if (++iter > 2) { 471 if (pool->pool_type == RDS_IB_MR_8K_POOL) 472 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted); 473 else 474 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted); 475 return ERR_PTR(-EAGAIN); 476 } 477 478 /* We do have some empty MRs. Flush them out. */ 479 if (pool->pool_type == RDS_IB_MR_8K_POOL) 480 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait); 481 else 482 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait); 483 484 rds_ib_flush_mr_pool(pool, 0, &ibmr); 485 if (ibmr) 486 return ibmr; 487 } 488 489 return ibmr; 490 } 491 492 static void rds_ib_mr_pool_flush_worker(struct work_struct *work) 493 { 494 struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work); 495 496 rds_ib_flush_mr_pool(pool, 0, NULL); 497 } 498 499 void rds_ib_free_mr(void *trans_private, int invalidate) 500 { 501 struct rds_ib_mr *ibmr = trans_private; 502 struct rds_ib_mr_pool *pool = ibmr->pool; 503 struct rds_ib_device *rds_ibdev = ibmr->device; 504 505 rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len); 506 507 /* Return it to the pool's free list */ 508 if (rds_ibdev->use_fastreg) 509 rds_ib_free_frmr_list(ibmr); 510 else 511 rds_ib_free_fmr_list(ibmr); 512 513 atomic_add(ibmr->sg_len, &pool->free_pinned); 514 atomic_inc(&pool->dirty_count); 515 516 /* If we've pinned too many pages, request a flush */ 517 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || 518 atomic_read(&pool->dirty_count) >= pool->max_items / 5) 519 queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10); 520 521 if (invalidate) { 522 if (likely(!in_interrupt())) { 523 rds_ib_flush_mr_pool(pool, 0, NULL); 524 } else { 525 /* We get here if the user created a MR marked 526 * as use_once and invalidate at the same time. 527 */ 528 queue_delayed_work(rds_ib_mr_wq, 529 &pool->flush_worker, 10); 530 } 531 } 532 533 rds_ib_dev_put(rds_ibdev); 534 } 535 536 void rds_ib_flush_mrs(void) 537 { 538 struct rds_ib_device *rds_ibdev; 539 540 down_read(&rds_ib_devices_lock); 541 list_for_each_entry(rds_ibdev, &rds_ib_devices, list) { 542 if (rds_ibdev->mr_8k_pool) 543 rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL); 544 545 if (rds_ibdev->mr_1m_pool) 546 rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL); 547 } 548 up_read(&rds_ib_devices_lock); 549 } 550 551 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents, 552 struct rds_sock *rs, u32 *key_ret, 553 struct rds_connection *conn) 554 { 555 struct rds_ib_device *rds_ibdev; 556 struct rds_ib_mr *ibmr = NULL; 557 struct rds_ib_connection *ic = NULL; 558 int ret; 559 560 rds_ibdev = rds_ib_get_device(rs->rs_bound_addr.s6_addr32[3]); 561 if (!rds_ibdev) { 562 ret = -ENODEV; 563 goto out; 564 } 565 566 if (conn) 567 ic = conn->c_transport_data; 568 569 if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) { 570 ret = -ENODEV; 571 goto out; 572 } 573 574 if (rds_ibdev->use_fastreg) 575 ibmr = rds_ib_reg_frmr(rds_ibdev, ic, sg, nents, key_ret); 576 else 577 ibmr = rds_ib_reg_fmr(rds_ibdev, sg, nents, key_ret); 578 if (IS_ERR(ibmr)) { 579 ret = PTR_ERR(ibmr); 580 pr_warn("RDS/IB: rds_ib_get_mr failed (errno=%d)\n", ret); 581 } else { 582 return ibmr; 583 } 584 585 out: 586 if (rds_ibdev) 587 rds_ib_dev_put(rds_ibdev); 588 589 return ERR_PTR(ret); 590 } 591 592 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool) 593 { 594 cancel_delayed_work_sync(&pool->flush_worker); 595 rds_ib_flush_mr_pool(pool, 1, NULL); 596 WARN_ON(atomic_read(&pool->item_count)); 597 WARN_ON(atomic_read(&pool->free_pinned)); 598 kfree(pool); 599 } 600 601 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev, 602 int pool_type) 603 { 604 struct rds_ib_mr_pool *pool; 605 606 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 607 if (!pool) 608 return ERR_PTR(-ENOMEM); 609 610 pool->pool_type = pool_type; 611 init_llist_head(&pool->free_list); 612 init_llist_head(&pool->drop_list); 613 init_llist_head(&pool->clean_list); 614 mutex_init(&pool->flush_lock); 615 init_waitqueue_head(&pool->flush_wait); 616 INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker); 617 618 if (pool_type == RDS_IB_MR_1M_POOL) { 619 /* +1 allows for unaligned MRs */ 620 pool->fmr_attr.max_pages = RDS_MR_1M_MSG_SIZE + 1; 621 pool->max_items = rds_ibdev->max_1m_mrs; 622 } else { 623 /* pool_type == RDS_IB_MR_8K_POOL */ 624 pool->fmr_attr.max_pages = RDS_MR_8K_MSG_SIZE + 1; 625 pool->max_items = rds_ibdev->max_8k_mrs; 626 } 627 628 pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4; 629 pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps; 630 pool->fmr_attr.page_shift = PAGE_SHIFT; 631 pool->max_items_soft = rds_ibdev->max_mrs * 3 / 4; 632 pool->use_fastreg = rds_ibdev->use_fastreg; 633 634 return pool; 635 } 636 637 int rds_ib_mr_init(void) 638 { 639 rds_ib_mr_wq = alloc_workqueue("rds_mr_flushd", WQ_MEM_RECLAIM, 0); 640 if (!rds_ib_mr_wq) 641 return -ENOMEM; 642 return 0; 643 } 644 645 /* By the time this is called all the IB devices should have been torn down and 646 * had their pools freed. As each pool is freed its work struct is waited on, 647 * so the pool flushing work queue should be idle by the time we get here. 648 */ 649 void rds_ib_mr_exit(void) 650 { 651 destroy_workqueue(rds_ib_mr_wq); 652 } 653