xref: /openbmc/linux/net/rds/ib_rdma.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
37 
38 #include "rds.h"
39 #include "ib.h"
40 
41 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
42 #define CLEAN_LIST_BUSY_BIT 0
43 
44 /*
45  * This is stored as mr->r_trans_private.
46  */
47 struct rds_ib_mr {
48 	struct rds_ib_device	*device;
49 	struct rds_ib_mr_pool	*pool;
50 	struct ib_fmr		*fmr;
51 
52 	struct llist_node	llnode;
53 
54 	/* unmap_list is for freeing */
55 	struct list_head	unmap_list;
56 	unsigned int		remap_count;
57 
58 	struct scatterlist	*sg;
59 	unsigned int		sg_len;
60 	u64			*dma;
61 	int			sg_dma_len;
62 };
63 
64 /*
65  * Our own little FMR pool
66  */
67 struct rds_ib_mr_pool {
68 	struct mutex		flush_lock;		/* serialize fmr invalidate */
69 	struct delayed_work	flush_worker;		/* flush worker */
70 
71 	atomic_t		item_count;		/* total # of MRs */
72 	atomic_t		dirty_count;		/* # dirty of MRs */
73 
74 	struct llist_head	drop_list;		/* MRs that have reached their max_maps limit */
75 	struct llist_head	free_list;		/* unused MRs */
76 	struct llist_head	clean_list;		/* global unused & unamapped MRs */
77 	wait_queue_head_t	flush_wait;
78 
79 	atomic_t		free_pinned;		/* memory pinned by free MRs */
80 	unsigned long		max_items;
81 	unsigned long		max_items_soft;
82 	unsigned long		max_free_pinned;
83 	struct ib_fmr_attr	fmr_attr;
84 };
85 
86 struct workqueue_struct *rds_ib_fmr_wq;
87 
88 int rds_ib_fmr_init(void)
89 {
90 	rds_ib_fmr_wq = create_workqueue("rds_fmr_flushd");
91 	if (!rds_ib_fmr_wq)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 /* By the time this is called all the IB devices should have been torn down and
97  * had their pools freed.  As each pool is freed its work struct is waited on,
98  * so the pool flushing work queue should be idle by the time we get here.
99  */
100 void rds_ib_fmr_exit(void)
101 {
102 	destroy_workqueue(rds_ib_fmr_wq);
103 }
104 
105 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
106 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
107 static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
108 
109 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
110 {
111 	struct rds_ib_device *rds_ibdev;
112 	struct rds_ib_ipaddr *i_ipaddr;
113 
114 	rcu_read_lock();
115 	list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
116 		list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
117 			if (i_ipaddr->ipaddr == ipaddr) {
118 				atomic_inc(&rds_ibdev->refcount);
119 				rcu_read_unlock();
120 				return rds_ibdev;
121 			}
122 		}
123 	}
124 	rcu_read_unlock();
125 
126 	return NULL;
127 }
128 
129 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
130 {
131 	struct rds_ib_ipaddr *i_ipaddr;
132 
133 	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
134 	if (!i_ipaddr)
135 		return -ENOMEM;
136 
137 	i_ipaddr->ipaddr = ipaddr;
138 
139 	spin_lock_irq(&rds_ibdev->spinlock);
140 	list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
141 	spin_unlock_irq(&rds_ibdev->spinlock);
142 
143 	return 0;
144 }
145 
146 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
147 {
148 	struct rds_ib_ipaddr *i_ipaddr;
149 	struct rds_ib_ipaddr *to_free = NULL;
150 
151 
152 	spin_lock_irq(&rds_ibdev->spinlock);
153 	list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
154 		if (i_ipaddr->ipaddr == ipaddr) {
155 			list_del_rcu(&i_ipaddr->list);
156 			to_free = i_ipaddr;
157 			break;
158 		}
159 	}
160 	spin_unlock_irq(&rds_ibdev->spinlock);
161 
162 	if (to_free) {
163 		synchronize_rcu();
164 		kfree(to_free);
165 	}
166 }
167 
168 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
169 {
170 	struct rds_ib_device *rds_ibdev_old;
171 
172 	rds_ibdev_old = rds_ib_get_device(ipaddr);
173 	if (!rds_ibdev_old)
174 		return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
175 
176 	if (rds_ibdev_old != rds_ibdev) {
177 		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
178 		rds_ib_dev_put(rds_ibdev_old);
179 		return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
180 	}
181 	rds_ib_dev_put(rds_ibdev_old);
182 
183 	return 0;
184 }
185 
186 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
187 {
188 	struct rds_ib_connection *ic = conn->c_transport_data;
189 
190 	/* conn was previously on the nodev_conns_list */
191 	spin_lock_irq(&ib_nodev_conns_lock);
192 	BUG_ON(list_empty(&ib_nodev_conns));
193 	BUG_ON(list_empty(&ic->ib_node));
194 	list_del(&ic->ib_node);
195 
196 	spin_lock(&rds_ibdev->spinlock);
197 	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
198 	spin_unlock(&rds_ibdev->spinlock);
199 	spin_unlock_irq(&ib_nodev_conns_lock);
200 
201 	ic->rds_ibdev = rds_ibdev;
202 	atomic_inc(&rds_ibdev->refcount);
203 }
204 
205 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
206 {
207 	struct rds_ib_connection *ic = conn->c_transport_data;
208 
209 	/* place conn on nodev_conns_list */
210 	spin_lock(&ib_nodev_conns_lock);
211 
212 	spin_lock_irq(&rds_ibdev->spinlock);
213 	BUG_ON(list_empty(&ic->ib_node));
214 	list_del(&ic->ib_node);
215 	spin_unlock_irq(&rds_ibdev->spinlock);
216 
217 	list_add_tail(&ic->ib_node, &ib_nodev_conns);
218 
219 	spin_unlock(&ib_nodev_conns_lock);
220 
221 	ic->rds_ibdev = NULL;
222 	rds_ib_dev_put(rds_ibdev);
223 }
224 
225 void rds_ib_destroy_nodev_conns(void)
226 {
227 	struct rds_ib_connection *ic, *_ic;
228 	LIST_HEAD(tmp_list);
229 
230 	/* avoid calling conn_destroy with irqs off */
231 	spin_lock_irq(&ib_nodev_conns_lock);
232 	list_splice(&ib_nodev_conns, &tmp_list);
233 	spin_unlock_irq(&ib_nodev_conns_lock);
234 
235 	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
236 		rds_conn_destroy(ic->conn);
237 }
238 
239 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
240 {
241 	struct rds_ib_mr_pool *pool;
242 
243 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
244 	if (!pool)
245 		return ERR_PTR(-ENOMEM);
246 
247 	init_llist_head(&pool->free_list);
248 	init_llist_head(&pool->drop_list);
249 	init_llist_head(&pool->clean_list);
250 	mutex_init(&pool->flush_lock);
251 	init_waitqueue_head(&pool->flush_wait);
252 	INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
253 
254 	pool->fmr_attr.max_pages = fmr_message_size;
255 	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
256 	pool->fmr_attr.page_shift = PAGE_SHIFT;
257 	pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
258 
259 	/* We never allow more than max_items MRs to be allocated.
260 	 * When we exceed more than max_items_soft, we start freeing
261 	 * items more aggressively.
262 	 * Make sure that max_items > max_items_soft > max_items / 2
263 	 */
264 	pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
265 	pool->max_items = rds_ibdev->max_fmrs;
266 
267 	return pool;
268 }
269 
270 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
271 {
272 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
273 
274 	iinfo->rdma_mr_max = pool->max_items;
275 	iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
276 }
277 
278 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
279 {
280 	cancel_delayed_work_sync(&pool->flush_worker);
281 	rds_ib_flush_mr_pool(pool, 1, NULL);
282 	WARN_ON(atomic_read(&pool->item_count));
283 	WARN_ON(atomic_read(&pool->free_pinned));
284 	kfree(pool);
285 }
286 
287 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
288 {
289 	struct rds_ib_mr *ibmr = NULL;
290 	struct llist_node *ret;
291 	unsigned long *flag;
292 
293 	preempt_disable();
294 	flag = this_cpu_ptr(&clean_list_grace);
295 	set_bit(CLEAN_LIST_BUSY_BIT, flag);
296 	ret = llist_del_first(&pool->clean_list);
297 	if (ret)
298 		ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
299 
300 	clear_bit(CLEAN_LIST_BUSY_BIT, flag);
301 	preempt_enable();
302 	return ibmr;
303 }
304 
305 static inline void wait_clean_list_grace(void)
306 {
307 	int cpu;
308 	unsigned long *flag;
309 
310 	for_each_online_cpu(cpu) {
311 		flag = &per_cpu(clean_list_grace, cpu);
312 		while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
313 			cpu_relax();
314 	}
315 }
316 
317 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
318 {
319 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
320 	struct rds_ib_mr *ibmr = NULL;
321 	int err = 0, iter = 0;
322 
323 	if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
324 		schedule_delayed_work(&pool->flush_worker, 10);
325 
326 	while (1) {
327 		ibmr = rds_ib_reuse_fmr(pool);
328 		if (ibmr)
329 			return ibmr;
330 
331 		/* No clean MRs - now we have the choice of either
332 		 * allocating a fresh MR up to the limit imposed by the
333 		 * driver, or flush any dirty unused MRs.
334 		 * We try to avoid stalling in the send path if possible,
335 		 * so we allocate as long as we're allowed to.
336 		 *
337 		 * We're fussy with enforcing the FMR limit, though. If the driver
338 		 * tells us we can't use more than N fmrs, we shouldn't start
339 		 * arguing with it */
340 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
341 			break;
342 
343 		atomic_dec(&pool->item_count);
344 
345 		if (++iter > 2) {
346 			rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
347 			return ERR_PTR(-EAGAIN);
348 		}
349 
350 		/* We do have some empty MRs. Flush them out. */
351 		rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
352 		rds_ib_flush_mr_pool(pool, 0, &ibmr);
353 		if (ibmr)
354 			return ibmr;
355 	}
356 
357 	ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
358 	if (!ibmr) {
359 		err = -ENOMEM;
360 		goto out_no_cigar;
361 	}
362 
363 	ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
364 			(IB_ACCESS_LOCAL_WRITE |
365 			 IB_ACCESS_REMOTE_READ |
366 			 IB_ACCESS_REMOTE_WRITE|
367 			 IB_ACCESS_REMOTE_ATOMIC),
368 			&pool->fmr_attr);
369 	if (IS_ERR(ibmr->fmr)) {
370 		err = PTR_ERR(ibmr->fmr);
371 		ibmr->fmr = NULL;
372 		printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
373 		goto out_no_cigar;
374 	}
375 
376 	rds_ib_stats_inc(s_ib_rdma_mr_alloc);
377 	return ibmr;
378 
379 out_no_cigar:
380 	if (ibmr) {
381 		if (ibmr->fmr)
382 			ib_dealloc_fmr(ibmr->fmr);
383 		kfree(ibmr);
384 	}
385 	atomic_dec(&pool->item_count);
386 	return ERR_PTR(err);
387 }
388 
389 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
390 	       struct scatterlist *sg, unsigned int nents)
391 {
392 	struct ib_device *dev = rds_ibdev->dev;
393 	struct scatterlist *scat = sg;
394 	u64 io_addr = 0;
395 	u64 *dma_pages;
396 	u32 len;
397 	int page_cnt, sg_dma_len;
398 	int i, j;
399 	int ret;
400 
401 	sg_dma_len = ib_dma_map_sg(dev, sg, nents,
402 				 DMA_BIDIRECTIONAL);
403 	if (unlikely(!sg_dma_len)) {
404 		printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
405 		return -EBUSY;
406 	}
407 
408 	len = 0;
409 	page_cnt = 0;
410 
411 	for (i = 0; i < sg_dma_len; ++i) {
412 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
413 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
414 
415 		if (dma_addr & ~PAGE_MASK) {
416 			if (i > 0)
417 				return -EINVAL;
418 			else
419 				++page_cnt;
420 		}
421 		if ((dma_addr + dma_len) & ~PAGE_MASK) {
422 			if (i < sg_dma_len - 1)
423 				return -EINVAL;
424 			else
425 				++page_cnt;
426 		}
427 
428 		len += dma_len;
429 	}
430 
431 	page_cnt += len >> PAGE_SHIFT;
432 	if (page_cnt > fmr_message_size)
433 		return -EINVAL;
434 
435 	dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
436 				 rdsibdev_to_node(rds_ibdev));
437 	if (!dma_pages)
438 		return -ENOMEM;
439 
440 	page_cnt = 0;
441 	for (i = 0; i < sg_dma_len; ++i) {
442 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
443 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
444 
445 		for (j = 0; j < dma_len; j += PAGE_SIZE)
446 			dma_pages[page_cnt++] =
447 				(dma_addr & PAGE_MASK) + j;
448 	}
449 
450 	ret = ib_map_phys_fmr(ibmr->fmr,
451 				   dma_pages, page_cnt, io_addr);
452 	if (ret)
453 		goto out;
454 
455 	/* Success - we successfully remapped the MR, so we can
456 	 * safely tear down the old mapping. */
457 	rds_ib_teardown_mr(ibmr);
458 
459 	ibmr->sg = scat;
460 	ibmr->sg_len = nents;
461 	ibmr->sg_dma_len = sg_dma_len;
462 	ibmr->remap_count++;
463 
464 	rds_ib_stats_inc(s_ib_rdma_mr_used);
465 	ret = 0;
466 
467 out:
468 	kfree(dma_pages);
469 
470 	return ret;
471 }
472 
473 void rds_ib_sync_mr(void *trans_private, int direction)
474 {
475 	struct rds_ib_mr *ibmr = trans_private;
476 	struct rds_ib_device *rds_ibdev = ibmr->device;
477 
478 	switch (direction) {
479 	case DMA_FROM_DEVICE:
480 		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
481 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
482 		break;
483 	case DMA_TO_DEVICE:
484 		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
485 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
486 		break;
487 	}
488 }
489 
490 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
491 {
492 	struct rds_ib_device *rds_ibdev = ibmr->device;
493 
494 	if (ibmr->sg_dma_len) {
495 		ib_dma_unmap_sg(rds_ibdev->dev,
496 				ibmr->sg, ibmr->sg_len,
497 				DMA_BIDIRECTIONAL);
498 		ibmr->sg_dma_len = 0;
499 	}
500 
501 	/* Release the s/g list */
502 	if (ibmr->sg_len) {
503 		unsigned int i;
504 
505 		for (i = 0; i < ibmr->sg_len; ++i) {
506 			struct page *page = sg_page(&ibmr->sg[i]);
507 
508 			/* FIXME we need a way to tell a r/w MR
509 			 * from a r/o MR */
510 			WARN_ON(!page->mapping && irqs_disabled());
511 			set_page_dirty(page);
512 			put_page(page);
513 		}
514 		kfree(ibmr->sg);
515 
516 		ibmr->sg = NULL;
517 		ibmr->sg_len = 0;
518 	}
519 }
520 
521 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
522 {
523 	unsigned int pinned = ibmr->sg_len;
524 
525 	__rds_ib_teardown_mr(ibmr);
526 	if (pinned) {
527 		struct rds_ib_device *rds_ibdev = ibmr->device;
528 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
529 
530 		atomic_sub(pinned, &pool->free_pinned);
531 	}
532 }
533 
534 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
535 {
536 	unsigned int item_count;
537 
538 	item_count = atomic_read(&pool->item_count);
539 	if (free_all)
540 		return item_count;
541 
542 	return 0;
543 }
544 
545 /*
546  * given an llist of mrs, put them all into the list_head for more processing
547  */
548 static unsigned int llist_append_to_list(struct llist_head *llist,
549 					 struct list_head *list)
550 {
551 	struct rds_ib_mr *ibmr;
552 	struct llist_node *node;
553 	struct llist_node *next;
554 	unsigned int count = 0;
555 
556 	node = llist_del_all(llist);
557 	while (node) {
558 		next = node->next;
559 		ibmr = llist_entry(node, struct rds_ib_mr, llnode);
560 		list_add_tail(&ibmr->unmap_list, list);
561 		node = next;
562 		count++;
563 	}
564 	return count;
565 }
566 
567 /*
568  * this takes a list head of mrs and turns it into linked llist nodes
569  * of clusters.  Each cluster has linked llist nodes of
570  * MR_CLUSTER_SIZE mrs that are ready for reuse.
571  */
572 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
573 				struct list_head *list,
574 				struct llist_node **nodes_head,
575 				struct llist_node **nodes_tail)
576 {
577 	struct rds_ib_mr *ibmr;
578 	struct llist_node *cur = NULL;
579 	struct llist_node **next = nodes_head;
580 
581 	list_for_each_entry(ibmr, list, unmap_list) {
582 		cur = &ibmr->llnode;
583 		*next = cur;
584 		next = &cur->next;
585 	}
586 	*next = NULL;
587 	*nodes_tail = cur;
588 }
589 
590 /*
591  * Flush our pool of MRs.
592  * At a minimum, all currently unused MRs are unmapped.
593  * If the number of MRs allocated exceeds the limit, we also try
594  * to free as many MRs as needed to get back to this limit.
595  */
596 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
597 			        int free_all, struct rds_ib_mr **ibmr_ret)
598 {
599 	struct rds_ib_mr *ibmr, *next;
600 	struct llist_node *clean_nodes;
601 	struct llist_node *clean_tail;
602 	LIST_HEAD(unmap_list);
603 	LIST_HEAD(fmr_list);
604 	unsigned long unpinned = 0;
605 	unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
606 	int ret = 0;
607 
608 	rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
609 
610 	if (ibmr_ret) {
611 		DEFINE_WAIT(wait);
612 		while(!mutex_trylock(&pool->flush_lock)) {
613 			ibmr = rds_ib_reuse_fmr(pool);
614 			if (ibmr) {
615 				*ibmr_ret = ibmr;
616 				finish_wait(&pool->flush_wait, &wait);
617 				goto out_nolock;
618 			}
619 
620 			prepare_to_wait(&pool->flush_wait, &wait,
621 					TASK_UNINTERRUPTIBLE);
622 			if (llist_empty(&pool->clean_list))
623 				schedule();
624 
625 			ibmr = rds_ib_reuse_fmr(pool);
626 			if (ibmr) {
627 				*ibmr_ret = ibmr;
628 				finish_wait(&pool->flush_wait, &wait);
629 				goto out_nolock;
630 			}
631 		}
632 		finish_wait(&pool->flush_wait, &wait);
633 	} else
634 		mutex_lock(&pool->flush_lock);
635 
636 	if (ibmr_ret) {
637 		ibmr = rds_ib_reuse_fmr(pool);
638 		if (ibmr) {
639 			*ibmr_ret = ibmr;
640 			goto out;
641 		}
642 	}
643 
644 	/* Get the list of all MRs to be dropped. Ordering matters -
645 	 * we want to put drop_list ahead of free_list.
646 	 */
647 	dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
648 	dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
649 	if (free_all)
650 		llist_append_to_list(&pool->clean_list, &unmap_list);
651 
652 	free_goal = rds_ib_flush_goal(pool, free_all);
653 
654 	if (list_empty(&unmap_list))
655 		goto out;
656 
657 	/* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
658 	list_for_each_entry(ibmr, &unmap_list, unmap_list)
659 		list_add(&ibmr->fmr->list, &fmr_list);
660 
661 	ret = ib_unmap_fmr(&fmr_list);
662 	if (ret)
663 		printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
664 
665 	/* Now we can destroy the DMA mapping and unpin any pages */
666 	list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
667 		unpinned += ibmr->sg_len;
668 		__rds_ib_teardown_mr(ibmr);
669 		if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
670 			rds_ib_stats_inc(s_ib_rdma_mr_free);
671 			list_del(&ibmr->unmap_list);
672 			ib_dealloc_fmr(ibmr->fmr);
673 			kfree(ibmr);
674 			nfreed++;
675 		}
676 	}
677 
678 	if (!list_empty(&unmap_list)) {
679 		/* we have to make sure that none of the things we're about
680 		 * to put on the clean list would race with other cpus trying
681 		 * to pull items off.  The llist would explode if we managed to
682 		 * remove something from the clean list and then add it back again
683 		 * while another CPU was spinning on that same item in llist_del_first.
684 		 *
685 		 * This is pretty unlikely, but just in case  wait for an llist grace period
686 		 * here before adding anything back into the clean list.
687 		 */
688 		wait_clean_list_grace();
689 
690 		list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
691 		if (ibmr_ret)
692 			*ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
693 
694 		/* more than one entry in llist nodes */
695 		if (clean_nodes->next)
696 			llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
697 
698 	}
699 
700 	atomic_sub(unpinned, &pool->free_pinned);
701 	atomic_sub(dirty_to_clean, &pool->dirty_count);
702 	atomic_sub(nfreed, &pool->item_count);
703 
704 out:
705 	mutex_unlock(&pool->flush_lock);
706 	if (waitqueue_active(&pool->flush_wait))
707 		wake_up(&pool->flush_wait);
708 out_nolock:
709 	return ret;
710 }
711 
712 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
713 {
714 	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
715 
716 	rds_ib_flush_mr_pool(pool, 0, NULL);
717 }
718 
719 void rds_ib_free_mr(void *trans_private, int invalidate)
720 {
721 	struct rds_ib_mr *ibmr = trans_private;
722 	struct rds_ib_device *rds_ibdev = ibmr->device;
723 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
724 
725 	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
726 
727 	/* Return it to the pool's free list */
728 	if (ibmr->remap_count >= pool->fmr_attr.max_maps)
729 		llist_add(&ibmr->llnode, &pool->drop_list);
730 	else
731 		llist_add(&ibmr->llnode, &pool->free_list);
732 
733 	atomic_add(ibmr->sg_len, &pool->free_pinned);
734 	atomic_inc(&pool->dirty_count);
735 
736 	/* If we've pinned too many pages, request a flush */
737 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
738 	    atomic_read(&pool->dirty_count) >= pool->max_items / 5)
739 		queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
740 
741 	if (invalidate) {
742 		if (likely(!in_interrupt())) {
743 			rds_ib_flush_mr_pool(pool, 0, NULL);
744 		} else {
745 			/* We get here if the user created a MR marked
746 			 * as use_once and invalidate at the same time.
747 			 */
748 			queue_delayed_work(rds_ib_fmr_wq,
749 					   &pool->flush_worker, 10);
750 		}
751 	}
752 
753 	rds_ib_dev_put(rds_ibdev);
754 }
755 
756 void rds_ib_flush_mrs(void)
757 {
758 	struct rds_ib_device *rds_ibdev;
759 
760 	down_read(&rds_ib_devices_lock);
761 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
762 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
763 
764 		if (pool)
765 			rds_ib_flush_mr_pool(pool, 0, NULL);
766 	}
767 	up_read(&rds_ib_devices_lock);
768 }
769 
770 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
771 		    struct rds_sock *rs, u32 *key_ret)
772 {
773 	struct rds_ib_device *rds_ibdev;
774 	struct rds_ib_mr *ibmr = NULL;
775 	int ret;
776 
777 	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
778 	if (!rds_ibdev) {
779 		ret = -ENODEV;
780 		goto out;
781 	}
782 
783 	if (!rds_ibdev->mr_pool) {
784 		ret = -ENODEV;
785 		goto out;
786 	}
787 
788 	ibmr = rds_ib_alloc_fmr(rds_ibdev);
789 	if (IS_ERR(ibmr)) {
790 		rds_ib_dev_put(rds_ibdev);
791 		return ibmr;
792 	}
793 
794 	ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
795 	if (ret == 0)
796 		*key_ret = ibmr->fmr->rkey;
797 	else
798 		printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
799 
800 	ibmr->device = rds_ibdev;
801 	rds_ibdev = NULL;
802 
803  out:
804 	if (ret) {
805 		if (ibmr)
806 			rds_ib_free_mr(ibmr, 0);
807 		ibmr = ERR_PTR(ret);
808 	}
809 	if (rds_ibdev)
810 		rds_ib_dev_put(rds_ibdev);
811 	return ibmr;
812 }
813 
814