xref: /openbmc/linux/net/rds/ib_rdma.c (revision 92ed1a76)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 
37 #include "rds.h"
38 #include "ib.h"
39 #include "xlist.h"
40 
41 static struct workqueue_struct *rds_ib_fmr_wq;
42 
43 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
44 #define CLEAN_LIST_BUSY_BIT 0
45 
46 /*
47  * This is stored as mr->r_trans_private.
48  */
49 struct rds_ib_mr {
50 	struct rds_ib_device	*device;
51 	struct rds_ib_mr_pool	*pool;
52 	struct ib_fmr		*fmr;
53 
54 	struct xlist_head	xlist;
55 
56 	/* unmap_list is for freeing */
57 	struct list_head	unmap_list;
58 	unsigned int		remap_count;
59 
60 	struct scatterlist	*sg;
61 	unsigned int		sg_len;
62 	u64			*dma;
63 	int			sg_dma_len;
64 };
65 
66 /*
67  * Our own little FMR pool
68  */
69 struct rds_ib_mr_pool {
70 	struct mutex		flush_lock;		/* serialize fmr invalidate */
71 	struct delayed_work	flush_worker;		/* flush worker */
72 
73 	atomic_t		item_count;		/* total # of MRs */
74 	atomic_t		dirty_count;		/* # dirty of MRs */
75 
76 	struct xlist_head	drop_list;		/* MRs that have reached their max_maps limit */
77 	struct xlist_head	free_list;		/* unused MRs */
78 	struct xlist_head	clean_list;		/* global unused & unamapped MRs */
79 	wait_queue_head_t	flush_wait;
80 
81 	atomic_t		free_pinned;		/* memory pinned by free MRs */
82 	unsigned long		max_items;
83 	unsigned long		max_items_soft;
84 	unsigned long		max_free_pinned;
85 	struct ib_fmr_attr	fmr_attr;
86 };
87 
88 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
89 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
90 static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
91 
92 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
93 {
94 	struct rds_ib_device *rds_ibdev;
95 	struct rds_ib_ipaddr *i_ipaddr;
96 
97 	rcu_read_lock();
98 	list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
99 		list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
100 			if (i_ipaddr->ipaddr == ipaddr) {
101 				atomic_inc(&rds_ibdev->refcount);
102 				rcu_read_unlock();
103 				return rds_ibdev;
104 			}
105 		}
106 	}
107 	rcu_read_unlock();
108 
109 	return NULL;
110 }
111 
112 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
113 {
114 	struct rds_ib_ipaddr *i_ipaddr;
115 
116 	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
117 	if (!i_ipaddr)
118 		return -ENOMEM;
119 
120 	i_ipaddr->ipaddr = ipaddr;
121 
122 	spin_lock_irq(&rds_ibdev->spinlock);
123 	list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
124 	spin_unlock_irq(&rds_ibdev->spinlock);
125 
126 	return 0;
127 }
128 
129 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
130 {
131 	struct rds_ib_ipaddr *i_ipaddr;
132 	struct rds_ib_ipaddr *to_free = NULL;
133 
134 
135 	spin_lock_irq(&rds_ibdev->spinlock);
136 	list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
137 		if (i_ipaddr->ipaddr == ipaddr) {
138 			list_del_rcu(&i_ipaddr->list);
139 			to_free = i_ipaddr;
140 			break;
141 		}
142 	}
143 	spin_unlock_irq(&rds_ibdev->spinlock);
144 
145 	if (to_free) {
146 		synchronize_rcu();
147 		kfree(to_free);
148 	}
149 }
150 
151 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
152 {
153 	struct rds_ib_device *rds_ibdev_old;
154 
155 	rds_ibdev_old = rds_ib_get_device(ipaddr);
156 	if (rds_ibdev_old) {
157 		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
158 		rds_ib_dev_put(rds_ibdev_old);
159 	}
160 
161 	return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
162 }
163 
164 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
165 {
166 	struct rds_ib_connection *ic = conn->c_transport_data;
167 
168 	/* conn was previously on the nodev_conns_list */
169 	spin_lock_irq(&ib_nodev_conns_lock);
170 	BUG_ON(list_empty(&ib_nodev_conns));
171 	BUG_ON(list_empty(&ic->ib_node));
172 	list_del(&ic->ib_node);
173 
174 	spin_lock(&rds_ibdev->spinlock);
175 	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
176 	spin_unlock(&rds_ibdev->spinlock);
177 	spin_unlock_irq(&ib_nodev_conns_lock);
178 
179 	ic->rds_ibdev = rds_ibdev;
180 	atomic_inc(&rds_ibdev->refcount);
181 }
182 
183 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
184 {
185 	struct rds_ib_connection *ic = conn->c_transport_data;
186 
187 	/* place conn on nodev_conns_list */
188 	spin_lock(&ib_nodev_conns_lock);
189 
190 	spin_lock_irq(&rds_ibdev->spinlock);
191 	BUG_ON(list_empty(&ic->ib_node));
192 	list_del(&ic->ib_node);
193 	spin_unlock_irq(&rds_ibdev->spinlock);
194 
195 	list_add_tail(&ic->ib_node, &ib_nodev_conns);
196 
197 	spin_unlock(&ib_nodev_conns_lock);
198 
199 	ic->rds_ibdev = NULL;
200 	rds_ib_dev_put(rds_ibdev);
201 }
202 
203 void rds_ib_destroy_nodev_conns(void)
204 {
205 	struct rds_ib_connection *ic, *_ic;
206 	LIST_HEAD(tmp_list);
207 
208 	/* avoid calling conn_destroy with irqs off */
209 	spin_lock_irq(&ib_nodev_conns_lock);
210 	list_splice(&ib_nodev_conns, &tmp_list);
211 	spin_unlock_irq(&ib_nodev_conns_lock);
212 
213 	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
214 		rds_conn_destroy(ic->conn);
215 }
216 
217 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
218 {
219 	struct rds_ib_mr_pool *pool;
220 
221 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
222 	if (!pool)
223 		return ERR_PTR(-ENOMEM);
224 
225 	INIT_XLIST_HEAD(&pool->free_list);
226 	INIT_XLIST_HEAD(&pool->drop_list);
227 	INIT_XLIST_HEAD(&pool->clean_list);
228 	mutex_init(&pool->flush_lock);
229 	init_waitqueue_head(&pool->flush_wait);
230 	INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
231 
232 	pool->fmr_attr.max_pages = fmr_message_size;
233 	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
234 	pool->fmr_attr.page_shift = PAGE_SHIFT;
235 	pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
236 
237 	/* We never allow more than max_items MRs to be allocated.
238 	 * When we exceed more than max_items_soft, we start freeing
239 	 * items more aggressively.
240 	 * Make sure that max_items > max_items_soft > max_items / 2
241 	 */
242 	pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
243 	pool->max_items = rds_ibdev->max_fmrs;
244 
245 	return pool;
246 }
247 
248 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
249 {
250 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
251 
252 	iinfo->rdma_mr_max = pool->max_items;
253 	iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
254 }
255 
256 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
257 {
258 	cancel_delayed_work_sync(&pool->flush_worker);
259 	rds_ib_flush_mr_pool(pool, 1, NULL);
260 	WARN_ON(atomic_read(&pool->item_count));
261 	WARN_ON(atomic_read(&pool->free_pinned));
262 	kfree(pool);
263 }
264 
265 static void refill_local(struct rds_ib_mr_pool *pool, struct xlist_head *xl,
266 			 struct rds_ib_mr **ibmr_ret)
267 {
268 	struct xlist_head *ibmr_xl;
269 	ibmr_xl = xlist_del_head_fast(xl);
270 	*ibmr_ret = list_entry(ibmr_xl, struct rds_ib_mr, xlist);
271 }
272 
273 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
274 {
275 	struct rds_ib_mr *ibmr = NULL;
276 	struct xlist_head *ret;
277 	unsigned long *flag;
278 
279 	preempt_disable();
280 	flag = &__get_cpu_var(clean_list_grace);
281 	set_bit(CLEAN_LIST_BUSY_BIT, flag);
282 	ret = xlist_del_head(&pool->clean_list);
283 	if (ret)
284 		ibmr = list_entry(ret, struct rds_ib_mr, xlist);
285 
286 	clear_bit(CLEAN_LIST_BUSY_BIT, flag);
287 	preempt_enable();
288 	return ibmr;
289 }
290 
291 static inline void wait_clean_list_grace(void)
292 {
293 	int cpu;
294 	unsigned long *flag;
295 
296 	for_each_online_cpu(cpu) {
297 		flag = &per_cpu(clean_list_grace, cpu);
298 		while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
299 			cpu_relax();
300 	}
301 }
302 
303 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
304 {
305 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
306 	struct rds_ib_mr *ibmr = NULL;
307 	int err = 0, iter = 0;
308 
309 	if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
310 		queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
311 
312 	while (1) {
313 		ibmr = rds_ib_reuse_fmr(pool);
314 		if (ibmr)
315 			return ibmr;
316 
317 		/* No clean MRs - now we have the choice of either
318 		 * allocating a fresh MR up to the limit imposed by the
319 		 * driver, or flush any dirty unused MRs.
320 		 * We try to avoid stalling in the send path if possible,
321 		 * so we allocate as long as we're allowed to.
322 		 *
323 		 * We're fussy with enforcing the FMR limit, though. If the driver
324 		 * tells us we can't use more than N fmrs, we shouldn't start
325 		 * arguing with it */
326 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
327 			break;
328 
329 		atomic_dec(&pool->item_count);
330 
331 		if (++iter > 2) {
332 			rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
333 			return ERR_PTR(-EAGAIN);
334 		}
335 
336 		/* We do have some empty MRs. Flush them out. */
337 		rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
338 		rds_ib_flush_mr_pool(pool, 0, &ibmr);
339 		if (ibmr)
340 			return ibmr;
341 	}
342 
343 	ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
344 	if (!ibmr) {
345 		err = -ENOMEM;
346 		goto out_no_cigar;
347 	}
348 
349 	memset(ibmr, 0, sizeof(*ibmr));
350 
351 	ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
352 			(IB_ACCESS_LOCAL_WRITE |
353 			 IB_ACCESS_REMOTE_READ |
354 			 IB_ACCESS_REMOTE_WRITE|
355 			 IB_ACCESS_REMOTE_ATOMIC),
356 			&pool->fmr_attr);
357 	if (IS_ERR(ibmr->fmr)) {
358 		err = PTR_ERR(ibmr->fmr);
359 		ibmr->fmr = NULL;
360 		printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
361 		goto out_no_cigar;
362 	}
363 
364 	rds_ib_stats_inc(s_ib_rdma_mr_alloc);
365 	return ibmr;
366 
367 out_no_cigar:
368 	if (ibmr) {
369 		if (ibmr->fmr)
370 			ib_dealloc_fmr(ibmr->fmr);
371 		kfree(ibmr);
372 	}
373 	atomic_dec(&pool->item_count);
374 	return ERR_PTR(err);
375 }
376 
377 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
378 	       struct scatterlist *sg, unsigned int nents)
379 {
380 	struct ib_device *dev = rds_ibdev->dev;
381 	struct scatterlist *scat = sg;
382 	u64 io_addr = 0;
383 	u64 *dma_pages;
384 	u32 len;
385 	int page_cnt, sg_dma_len;
386 	int i, j;
387 	int ret;
388 
389 	sg_dma_len = ib_dma_map_sg(dev, sg, nents,
390 				 DMA_BIDIRECTIONAL);
391 	if (unlikely(!sg_dma_len)) {
392 		printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
393 		return -EBUSY;
394 	}
395 
396 	len = 0;
397 	page_cnt = 0;
398 
399 	for (i = 0; i < sg_dma_len; ++i) {
400 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
401 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
402 
403 		if (dma_addr & ~PAGE_MASK) {
404 			if (i > 0)
405 				return -EINVAL;
406 			else
407 				++page_cnt;
408 		}
409 		if ((dma_addr + dma_len) & ~PAGE_MASK) {
410 			if (i < sg_dma_len - 1)
411 				return -EINVAL;
412 			else
413 				++page_cnt;
414 		}
415 
416 		len += dma_len;
417 	}
418 
419 	page_cnt += len >> PAGE_SHIFT;
420 	if (page_cnt > fmr_message_size)
421 		return -EINVAL;
422 
423 	dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
424 				 rdsibdev_to_node(rds_ibdev));
425 	if (!dma_pages)
426 		return -ENOMEM;
427 
428 	page_cnt = 0;
429 	for (i = 0; i < sg_dma_len; ++i) {
430 		unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
431 		u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
432 
433 		for (j = 0; j < dma_len; j += PAGE_SIZE)
434 			dma_pages[page_cnt++] =
435 				(dma_addr & PAGE_MASK) + j;
436 	}
437 
438 	ret = ib_map_phys_fmr(ibmr->fmr,
439 				   dma_pages, page_cnt, io_addr);
440 	if (ret)
441 		goto out;
442 
443 	/* Success - we successfully remapped the MR, so we can
444 	 * safely tear down the old mapping. */
445 	rds_ib_teardown_mr(ibmr);
446 
447 	ibmr->sg = scat;
448 	ibmr->sg_len = nents;
449 	ibmr->sg_dma_len = sg_dma_len;
450 	ibmr->remap_count++;
451 
452 	rds_ib_stats_inc(s_ib_rdma_mr_used);
453 	ret = 0;
454 
455 out:
456 	kfree(dma_pages);
457 
458 	return ret;
459 }
460 
461 void rds_ib_sync_mr(void *trans_private, int direction)
462 {
463 	struct rds_ib_mr *ibmr = trans_private;
464 	struct rds_ib_device *rds_ibdev = ibmr->device;
465 
466 	switch (direction) {
467 	case DMA_FROM_DEVICE:
468 		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
469 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
470 		break;
471 	case DMA_TO_DEVICE:
472 		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
473 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
474 		break;
475 	}
476 }
477 
478 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
479 {
480 	struct rds_ib_device *rds_ibdev = ibmr->device;
481 
482 	if (ibmr->sg_dma_len) {
483 		ib_dma_unmap_sg(rds_ibdev->dev,
484 				ibmr->sg, ibmr->sg_len,
485 				DMA_BIDIRECTIONAL);
486 		ibmr->sg_dma_len = 0;
487 	}
488 
489 	/* Release the s/g list */
490 	if (ibmr->sg_len) {
491 		unsigned int i;
492 
493 		for (i = 0; i < ibmr->sg_len; ++i) {
494 			struct page *page = sg_page(&ibmr->sg[i]);
495 
496 			/* FIXME we need a way to tell a r/w MR
497 			 * from a r/o MR */
498 			BUG_ON(irqs_disabled());
499 			set_page_dirty(page);
500 			put_page(page);
501 		}
502 		kfree(ibmr->sg);
503 
504 		ibmr->sg = NULL;
505 		ibmr->sg_len = 0;
506 	}
507 }
508 
509 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
510 {
511 	unsigned int pinned = ibmr->sg_len;
512 
513 	__rds_ib_teardown_mr(ibmr);
514 	if (pinned) {
515 		struct rds_ib_device *rds_ibdev = ibmr->device;
516 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
517 
518 		atomic_sub(pinned, &pool->free_pinned);
519 	}
520 }
521 
522 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
523 {
524 	unsigned int item_count;
525 
526 	item_count = atomic_read(&pool->item_count);
527 	if (free_all)
528 		return item_count;
529 
530 	return 0;
531 }
532 
533 /*
534  * given an xlist of mrs, put them all into the list_head for more processing
535  */
536 static void xlist_append_to_list(struct xlist_head *xlist, struct list_head *list)
537 {
538 	struct rds_ib_mr *ibmr;
539 	struct xlist_head splice;
540 	struct xlist_head *cur;
541 	struct xlist_head *next;
542 
543 	splice.next = NULL;
544 	xlist_splice(xlist, &splice);
545 	cur = splice.next;
546 	while (cur) {
547 		next = cur->next;
548 		ibmr = list_entry(cur, struct rds_ib_mr, xlist);
549 		list_add_tail(&ibmr->unmap_list, list);
550 		cur = next;
551 	}
552 }
553 
554 /*
555  * this takes a list head of mrs and turns it into an xlist of clusters.
556  * each cluster has an xlist of MR_CLUSTER_SIZE mrs that are ready for
557  * reuse.
558  */
559 static void list_append_to_xlist(struct rds_ib_mr_pool *pool,
560 				struct list_head *list, struct xlist_head *xlist,
561 				struct xlist_head **tail_ret)
562 {
563 	struct rds_ib_mr *ibmr;
564 	struct xlist_head *cur_mr = xlist;
565 	struct xlist_head *tail_mr = NULL;
566 
567 	list_for_each_entry(ibmr, list, unmap_list) {
568 		tail_mr = &ibmr->xlist;
569 		tail_mr->next = NULL;
570 		cur_mr->next = tail_mr;
571 		cur_mr = tail_mr;
572 	}
573 	*tail_ret = tail_mr;
574 }
575 
576 /*
577  * Flush our pool of MRs.
578  * At a minimum, all currently unused MRs are unmapped.
579  * If the number of MRs allocated exceeds the limit, we also try
580  * to free as many MRs as needed to get back to this limit.
581  */
582 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
583 			        int free_all, struct rds_ib_mr **ibmr_ret)
584 {
585 	struct rds_ib_mr *ibmr, *next;
586 	struct xlist_head clean_xlist;
587 	struct xlist_head *clean_tail;
588 	LIST_HEAD(unmap_list);
589 	LIST_HEAD(fmr_list);
590 	unsigned long unpinned = 0;
591 	unsigned int nfreed = 0, ncleaned = 0, free_goal;
592 	int ret = 0;
593 
594 	rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
595 
596 	if (ibmr_ret) {
597 		DEFINE_WAIT(wait);
598 		while(!mutex_trylock(&pool->flush_lock)) {
599 			ibmr = rds_ib_reuse_fmr(pool);
600 			if (ibmr) {
601 				*ibmr_ret = ibmr;
602 				finish_wait(&pool->flush_wait, &wait);
603 				goto out_nolock;
604 			}
605 
606 			prepare_to_wait(&pool->flush_wait, &wait,
607 					TASK_UNINTERRUPTIBLE);
608 			if (xlist_empty(&pool->clean_list))
609 				schedule();
610 
611 			ibmr = rds_ib_reuse_fmr(pool);
612 			if (ibmr) {
613 				*ibmr_ret = ibmr;
614 				finish_wait(&pool->flush_wait, &wait);
615 				goto out_nolock;
616 			}
617 		}
618 		finish_wait(&pool->flush_wait, &wait);
619 	} else
620 		mutex_lock(&pool->flush_lock);
621 
622 	if (ibmr_ret) {
623 		ibmr = rds_ib_reuse_fmr(pool);
624 		if (ibmr) {
625 			*ibmr_ret = ibmr;
626 			goto out;
627 		}
628 	}
629 
630 	/* Get the list of all MRs to be dropped. Ordering matters -
631 	 * we want to put drop_list ahead of free_list.
632 	 */
633 	xlist_append_to_list(&pool->drop_list, &unmap_list);
634 	xlist_append_to_list(&pool->free_list, &unmap_list);
635 	if (free_all)
636 		xlist_append_to_list(&pool->clean_list, &unmap_list);
637 
638 	free_goal = rds_ib_flush_goal(pool, free_all);
639 
640 	if (list_empty(&unmap_list))
641 		goto out;
642 
643 	/* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
644 	list_for_each_entry(ibmr, &unmap_list, unmap_list)
645 		list_add(&ibmr->fmr->list, &fmr_list);
646 
647 	ret = ib_unmap_fmr(&fmr_list);
648 	if (ret)
649 		printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
650 
651 	/* Now we can destroy the DMA mapping and unpin any pages */
652 	list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
653 		unpinned += ibmr->sg_len;
654 		__rds_ib_teardown_mr(ibmr);
655 		if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
656 			rds_ib_stats_inc(s_ib_rdma_mr_free);
657 			list_del(&ibmr->unmap_list);
658 			ib_dealloc_fmr(ibmr->fmr);
659 			kfree(ibmr);
660 			nfreed++;
661 		}
662 		ncleaned++;
663 	}
664 
665 	if (!list_empty(&unmap_list)) {
666 		/* we have to make sure that none of the things we're about
667 		 * to put on the clean list would race with other cpus trying
668 		 * to pull items off.  The xlist would explode if we managed to
669 		 * remove something from the clean list and then add it back again
670 		 * while another CPU was spinning on that same item in xlist_del_head.
671 		 *
672 		 * This is pretty unlikely, but just in case  wait for an xlist grace period
673 		 * here before adding anything back into the clean list.
674 		 */
675 		wait_clean_list_grace();
676 
677 		list_append_to_xlist(pool, &unmap_list, &clean_xlist, &clean_tail);
678 		if (ibmr_ret)
679 			refill_local(pool, &clean_xlist, ibmr_ret);
680 
681 		/* refill_local may have emptied our list */
682 		if (!xlist_empty(&clean_xlist))
683 			xlist_add(clean_xlist.next, clean_tail, &pool->clean_list);
684 
685 	}
686 
687 	atomic_sub(unpinned, &pool->free_pinned);
688 	atomic_sub(ncleaned, &pool->dirty_count);
689 	atomic_sub(nfreed, &pool->item_count);
690 
691 out:
692 	mutex_unlock(&pool->flush_lock);
693 	if (waitqueue_active(&pool->flush_wait))
694 		wake_up(&pool->flush_wait);
695 out_nolock:
696 	return ret;
697 }
698 
699 int rds_ib_fmr_init(void)
700 {
701 	rds_ib_fmr_wq = create_workqueue("rds_fmr_flushd");
702 	if (!rds_ib_fmr_wq)
703 		return -ENOMEM;
704 	return 0;
705 }
706 
707 /*
708  * By the time this is called all the IB devices should have been torn down and
709  * had their pools freed.  As each pool is freed its work struct is waited on,
710  * so the pool flushing work queue should be idle by the time we get here.
711  */
712 void rds_ib_fmr_exit(void)
713 {
714 	destroy_workqueue(rds_ib_fmr_wq);
715 }
716 
717 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
718 {
719 	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
720 
721 	rds_ib_flush_mr_pool(pool, 0, NULL);
722 }
723 
724 void rds_ib_free_mr(void *trans_private, int invalidate)
725 {
726 	struct rds_ib_mr *ibmr = trans_private;
727 	struct rds_ib_device *rds_ibdev = ibmr->device;
728 	struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
729 
730 	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
731 
732 	/* Return it to the pool's free list */
733 	if (ibmr->remap_count >= pool->fmr_attr.max_maps)
734 		xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->drop_list);
735 	else
736 		xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->free_list);
737 
738 	atomic_add(ibmr->sg_len, &pool->free_pinned);
739 	atomic_inc(&pool->dirty_count);
740 
741 	/* If we've pinned too many pages, request a flush */
742 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
743 	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
744 		queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
745 
746 	if (invalidate) {
747 		if (likely(!in_interrupt())) {
748 			rds_ib_flush_mr_pool(pool, 0, NULL);
749 		} else {
750 			/* We get here if the user created a MR marked
751 			 * as use_once and invalidate at the same time. */
752 			queue_delayed_work(rds_ib_fmr_wq,
753 					   &pool->flush_worker, 10);
754 		}
755 	}
756 
757 	rds_ib_dev_put(rds_ibdev);
758 }
759 
760 void rds_ib_flush_mrs(void)
761 {
762 	struct rds_ib_device *rds_ibdev;
763 
764 	down_read(&rds_ib_devices_lock);
765 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
766 		struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
767 
768 		if (pool)
769 			rds_ib_flush_mr_pool(pool, 0, NULL);
770 	}
771 	up_read(&rds_ib_devices_lock);
772 }
773 
774 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
775 		    struct rds_sock *rs, u32 *key_ret)
776 {
777 	struct rds_ib_device *rds_ibdev;
778 	struct rds_ib_mr *ibmr = NULL;
779 	int ret;
780 
781 	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
782 	if (!rds_ibdev) {
783 		ret = -ENODEV;
784 		goto out;
785 	}
786 
787 	if (!rds_ibdev->mr_pool) {
788 		ret = -ENODEV;
789 		goto out;
790 	}
791 
792 	ibmr = rds_ib_alloc_fmr(rds_ibdev);
793 	if (IS_ERR(ibmr))
794 		return ibmr;
795 
796 	ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
797 	if (ret == 0)
798 		*key_ret = ibmr->fmr->rkey;
799 	else
800 		printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
801 
802 	ibmr->device = rds_ibdev;
803 	rds_ibdev = NULL;
804 
805  out:
806 	if (ret) {
807 		if (ibmr)
808 			rds_ib_free_mr(ibmr, 0);
809 		ibmr = ERR_PTR(ret);
810 	}
811 	if (rds_ibdev)
812 		rds_ib_dev_put(rds_ibdev);
813 	return ibmr;
814 }
815 
816