1 /* 2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/dmapool.h> 34 #include <linux/kernel.h> 35 #include <linux/in.h> 36 #include <linux/slab.h> 37 #include <linux/vmalloc.h> 38 #include <linux/ratelimit.h> 39 #include <net/addrconf.h> 40 #include <rdma/ib_cm.h> 41 42 #include "rds_single_path.h" 43 #include "rds.h" 44 #include "ib.h" 45 #include "ib_mr.h" 46 47 /* 48 * Set the selected protocol version 49 */ 50 static void rds_ib_set_protocol(struct rds_connection *conn, unsigned int version) 51 { 52 conn->c_version = version; 53 } 54 55 /* 56 * Set up flow control 57 */ 58 static void rds_ib_set_flow_control(struct rds_connection *conn, u32 credits) 59 { 60 struct rds_ib_connection *ic = conn->c_transport_data; 61 62 if (rds_ib_sysctl_flow_control && credits != 0) { 63 /* We're doing flow control */ 64 ic->i_flowctl = 1; 65 rds_ib_send_add_credits(conn, credits); 66 } else { 67 ic->i_flowctl = 0; 68 } 69 } 70 71 /* 72 * Tune RNR behavior. Without flow control, we use a rather 73 * low timeout, but not the absolute minimum - this should 74 * be tunable. 75 * 76 * We already set the RNR retry count to 7 (which is the 77 * smallest infinite number :-) above. 78 * If flow control is off, we want to change this back to 0 79 * so that we learn quickly when our credit accounting is 80 * buggy. 81 * 82 * Caller passes in a qp_attr pointer - don't waste stack spacv 83 * by allocation this twice. 84 */ 85 static void 86 rds_ib_tune_rnr(struct rds_ib_connection *ic, struct ib_qp_attr *attr) 87 { 88 int ret; 89 90 attr->min_rnr_timer = IB_RNR_TIMER_000_32; 91 ret = ib_modify_qp(ic->i_cm_id->qp, attr, IB_QP_MIN_RNR_TIMER); 92 if (ret) 93 printk(KERN_NOTICE "ib_modify_qp(IB_QP_MIN_RNR_TIMER): err=%d\n", -ret); 94 } 95 96 /* 97 * Connection established. 98 * We get here for both outgoing and incoming connection. 99 */ 100 void rds_ib_cm_connect_complete(struct rds_connection *conn, struct rdma_cm_event *event) 101 { 102 struct rds_ib_connection *ic = conn->c_transport_data; 103 const union rds_ib_conn_priv *dp = NULL; 104 struct ib_qp_attr qp_attr; 105 __be64 ack_seq = 0; 106 __be32 credit = 0; 107 u8 major = 0; 108 u8 minor = 0; 109 int err; 110 111 dp = event->param.conn.private_data; 112 if (conn->c_isv6) { 113 if (event->param.conn.private_data_len >= 114 sizeof(struct rds6_ib_connect_private)) { 115 major = dp->ricp_v6.dp_protocol_major; 116 minor = dp->ricp_v6.dp_protocol_minor; 117 credit = dp->ricp_v6.dp_credit; 118 /* dp structure start is not guaranteed to be 8 bytes 119 * aligned. Since dp_ack_seq is 64-bit extended load 120 * operations can be used so go through get_unaligned 121 * to avoid unaligned errors. 122 */ 123 ack_seq = get_unaligned(&dp->ricp_v6.dp_ack_seq); 124 } 125 } else if (event->param.conn.private_data_len >= 126 sizeof(struct rds_ib_connect_private)) { 127 major = dp->ricp_v4.dp_protocol_major; 128 minor = dp->ricp_v4.dp_protocol_minor; 129 credit = dp->ricp_v4.dp_credit; 130 ack_seq = get_unaligned(&dp->ricp_v4.dp_ack_seq); 131 } 132 133 /* make sure it isn't empty data */ 134 if (major) { 135 rds_ib_set_protocol(conn, RDS_PROTOCOL(major, minor)); 136 rds_ib_set_flow_control(conn, be32_to_cpu(credit)); 137 } 138 139 if (conn->c_version < RDS_PROTOCOL_VERSION) { 140 if (conn->c_version != RDS_PROTOCOL_COMPAT_VERSION) { 141 pr_notice("RDS/IB: Connection <%pI6c,%pI6c> version %u.%u no longer supported\n", 142 &conn->c_laddr, &conn->c_faddr, 143 RDS_PROTOCOL_MAJOR(conn->c_version), 144 RDS_PROTOCOL_MINOR(conn->c_version)); 145 rds_conn_destroy(conn); 146 return; 147 } 148 } 149 150 pr_notice("RDS/IB: %s conn connected <%pI6c,%pI6c,%d> version %u.%u%s\n", 151 ic->i_active_side ? "Active" : "Passive", 152 &conn->c_laddr, &conn->c_faddr, conn->c_tos, 153 RDS_PROTOCOL_MAJOR(conn->c_version), 154 RDS_PROTOCOL_MINOR(conn->c_version), 155 ic->i_flowctl ? ", flow control" : ""); 156 157 /* receive sl from the peer */ 158 ic->i_sl = ic->i_cm_id->route.path_rec->sl; 159 160 atomic_set(&ic->i_cq_quiesce, 0); 161 162 /* Init rings and fill recv. this needs to wait until protocol 163 * negotiation is complete, since ring layout is different 164 * from 3.1 to 4.1. 165 */ 166 rds_ib_send_init_ring(ic); 167 rds_ib_recv_init_ring(ic); 168 /* Post receive buffers - as a side effect, this will update 169 * the posted credit count. */ 170 rds_ib_recv_refill(conn, 1, GFP_KERNEL); 171 172 /* Tune RNR behavior */ 173 rds_ib_tune_rnr(ic, &qp_attr); 174 175 qp_attr.qp_state = IB_QPS_RTS; 176 err = ib_modify_qp(ic->i_cm_id->qp, &qp_attr, IB_QP_STATE); 177 if (err) 178 printk(KERN_NOTICE "ib_modify_qp(IB_QP_STATE, RTS): err=%d\n", err); 179 180 /* update ib_device with this local ipaddr */ 181 err = rds_ib_update_ipaddr(ic->rds_ibdev, &conn->c_laddr); 182 if (err) 183 printk(KERN_ERR "rds_ib_update_ipaddr failed (%d)\n", 184 err); 185 186 /* If the peer gave us the last packet it saw, process this as if 187 * we had received a regular ACK. */ 188 if (dp) { 189 if (ack_seq) 190 rds_send_drop_acked(conn, be64_to_cpu(ack_seq), 191 NULL); 192 } 193 194 conn->c_proposed_version = conn->c_version; 195 rds_connect_complete(conn); 196 } 197 198 static void rds_ib_cm_fill_conn_param(struct rds_connection *conn, 199 struct rdma_conn_param *conn_param, 200 union rds_ib_conn_priv *dp, 201 u32 protocol_version, 202 u32 max_responder_resources, 203 u32 max_initiator_depth, 204 bool isv6) 205 { 206 struct rds_ib_connection *ic = conn->c_transport_data; 207 struct rds_ib_device *rds_ibdev = ic->rds_ibdev; 208 209 memset(conn_param, 0, sizeof(struct rdma_conn_param)); 210 211 conn_param->responder_resources = 212 min_t(u32, rds_ibdev->max_responder_resources, max_responder_resources); 213 conn_param->initiator_depth = 214 min_t(u32, rds_ibdev->max_initiator_depth, max_initiator_depth); 215 conn_param->retry_count = min_t(unsigned int, rds_ib_retry_count, 7); 216 conn_param->rnr_retry_count = 7; 217 218 if (dp) { 219 memset(dp, 0, sizeof(*dp)); 220 if (isv6) { 221 dp->ricp_v6.dp_saddr = conn->c_laddr; 222 dp->ricp_v6.dp_daddr = conn->c_faddr; 223 dp->ricp_v6.dp_protocol_major = 224 RDS_PROTOCOL_MAJOR(protocol_version); 225 dp->ricp_v6.dp_protocol_minor = 226 RDS_PROTOCOL_MINOR(protocol_version); 227 dp->ricp_v6.dp_protocol_minor_mask = 228 cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); 229 dp->ricp_v6.dp_ack_seq = 230 cpu_to_be64(rds_ib_piggyb_ack(ic)); 231 dp->ricp_v6.dp_cmn.ricpc_dp_toss = conn->c_tos; 232 233 conn_param->private_data = &dp->ricp_v6; 234 conn_param->private_data_len = sizeof(dp->ricp_v6); 235 } else { 236 dp->ricp_v4.dp_saddr = conn->c_laddr.s6_addr32[3]; 237 dp->ricp_v4.dp_daddr = conn->c_faddr.s6_addr32[3]; 238 dp->ricp_v4.dp_protocol_major = 239 RDS_PROTOCOL_MAJOR(protocol_version); 240 dp->ricp_v4.dp_protocol_minor = 241 RDS_PROTOCOL_MINOR(protocol_version); 242 dp->ricp_v4.dp_protocol_minor_mask = 243 cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); 244 dp->ricp_v4.dp_ack_seq = 245 cpu_to_be64(rds_ib_piggyb_ack(ic)); 246 dp->ricp_v4.dp_cmn.ricpc_dp_toss = conn->c_tos; 247 248 conn_param->private_data = &dp->ricp_v4; 249 conn_param->private_data_len = sizeof(dp->ricp_v4); 250 } 251 252 /* Advertise flow control */ 253 if (ic->i_flowctl) { 254 unsigned int credits; 255 256 credits = IB_GET_POST_CREDITS 257 (atomic_read(&ic->i_credits)); 258 if (isv6) 259 dp->ricp_v6.dp_credit = cpu_to_be32(credits); 260 else 261 dp->ricp_v4.dp_credit = cpu_to_be32(credits); 262 atomic_sub(IB_SET_POST_CREDITS(credits), 263 &ic->i_credits); 264 } 265 } 266 } 267 268 static void rds_ib_cq_event_handler(struct ib_event *event, void *data) 269 { 270 rdsdebug("event %u (%s) data %p\n", 271 event->event, ib_event_msg(event->event), data); 272 } 273 274 /* Plucking the oldest entry from the ring can be done concurrently with 275 * the thread refilling the ring. Each ring operation is protected by 276 * spinlocks and the transient state of refilling doesn't change the 277 * recording of which entry is oldest. 278 * 279 * This relies on IB only calling one cq comp_handler for each cq so that 280 * there will only be one caller of rds_recv_incoming() per RDS connection. 281 */ 282 static void rds_ib_cq_comp_handler_recv(struct ib_cq *cq, void *context) 283 { 284 struct rds_connection *conn = context; 285 struct rds_ib_connection *ic = conn->c_transport_data; 286 287 rdsdebug("conn %p cq %p\n", conn, cq); 288 289 rds_ib_stats_inc(s_ib_evt_handler_call); 290 291 tasklet_schedule(&ic->i_recv_tasklet); 292 } 293 294 static void poll_scq(struct rds_ib_connection *ic, struct ib_cq *cq, 295 struct ib_wc *wcs) 296 { 297 int nr, i; 298 struct ib_wc *wc; 299 300 while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { 301 for (i = 0; i < nr; i++) { 302 wc = wcs + i; 303 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", 304 (unsigned long long)wc->wr_id, wc->status, 305 wc->byte_len, be32_to_cpu(wc->ex.imm_data)); 306 307 if (wc->wr_id <= ic->i_send_ring.w_nr || 308 wc->wr_id == RDS_IB_ACK_WR_ID) 309 rds_ib_send_cqe_handler(ic, wc); 310 else 311 rds_ib_mr_cqe_handler(ic, wc); 312 313 } 314 } 315 } 316 317 static void rds_ib_tasklet_fn_send(unsigned long data) 318 { 319 struct rds_ib_connection *ic = (struct rds_ib_connection *)data; 320 struct rds_connection *conn = ic->conn; 321 322 rds_ib_stats_inc(s_ib_tasklet_call); 323 324 /* if cq has been already reaped, ignore incoming cq event */ 325 if (atomic_read(&ic->i_cq_quiesce)) 326 return; 327 328 poll_scq(ic, ic->i_send_cq, ic->i_send_wc); 329 ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); 330 poll_scq(ic, ic->i_send_cq, ic->i_send_wc); 331 332 if (rds_conn_up(conn) && 333 (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags) || 334 test_bit(0, &conn->c_map_queued))) 335 rds_send_xmit(&ic->conn->c_path[0]); 336 } 337 338 static void poll_rcq(struct rds_ib_connection *ic, struct ib_cq *cq, 339 struct ib_wc *wcs, 340 struct rds_ib_ack_state *ack_state) 341 { 342 int nr, i; 343 struct ib_wc *wc; 344 345 while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { 346 for (i = 0; i < nr; i++) { 347 wc = wcs + i; 348 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", 349 (unsigned long long)wc->wr_id, wc->status, 350 wc->byte_len, be32_to_cpu(wc->ex.imm_data)); 351 352 rds_ib_recv_cqe_handler(ic, wc, ack_state); 353 } 354 } 355 } 356 357 static void rds_ib_tasklet_fn_recv(unsigned long data) 358 { 359 struct rds_ib_connection *ic = (struct rds_ib_connection *)data; 360 struct rds_connection *conn = ic->conn; 361 struct rds_ib_device *rds_ibdev = ic->rds_ibdev; 362 struct rds_ib_ack_state state; 363 364 if (!rds_ibdev) 365 rds_conn_drop(conn); 366 367 rds_ib_stats_inc(s_ib_tasklet_call); 368 369 /* if cq has been already reaped, ignore incoming cq event */ 370 if (atomic_read(&ic->i_cq_quiesce)) 371 return; 372 373 memset(&state, 0, sizeof(state)); 374 poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); 375 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); 376 poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); 377 378 if (state.ack_next_valid) 379 rds_ib_set_ack(ic, state.ack_next, state.ack_required); 380 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { 381 rds_send_drop_acked(conn, state.ack_recv, NULL); 382 ic->i_ack_recv = state.ack_recv; 383 } 384 385 if (rds_conn_up(conn)) 386 rds_ib_attempt_ack(ic); 387 } 388 389 static void rds_ib_qp_event_handler(struct ib_event *event, void *data) 390 { 391 struct rds_connection *conn = data; 392 struct rds_ib_connection *ic = conn->c_transport_data; 393 394 rdsdebug("conn %p ic %p event %u (%s)\n", conn, ic, event->event, 395 ib_event_msg(event->event)); 396 397 switch (event->event) { 398 case IB_EVENT_COMM_EST: 399 rdma_notify(ic->i_cm_id, IB_EVENT_COMM_EST); 400 break; 401 default: 402 rdsdebug("Fatal QP Event %u (%s) - connection %pI6c->%pI6c, reconnecting\n", 403 event->event, ib_event_msg(event->event), 404 &conn->c_laddr, &conn->c_faddr); 405 rds_conn_drop(conn); 406 break; 407 } 408 } 409 410 static void rds_ib_cq_comp_handler_send(struct ib_cq *cq, void *context) 411 { 412 struct rds_connection *conn = context; 413 struct rds_ib_connection *ic = conn->c_transport_data; 414 415 rdsdebug("conn %p cq %p\n", conn, cq); 416 417 rds_ib_stats_inc(s_ib_evt_handler_call); 418 419 tasklet_schedule(&ic->i_send_tasklet); 420 } 421 422 static inline int ibdev_get_unused_vector(struct rds_ib_device *rds_ibdev) 423 { 424 int min = rds_ibdev->vector_load[rds_ibdev->dev->num_comp_vectors - 1]; 425 int index = rds_ibdev->dev->num_comp_vectors - 1; 426 int i; 427 428 for (i = rds_ibdev->dev->num_comp_vectors - 1; i >= 0; i--) { 429 if (rds_ibdev->vector_load[i] < min) { 430 index = i; 431 min = rds_ibdev->vector_load[i]; 432 } 433 } 434 435 rds_ibdev->vector_load[index]++; 436 return index; 437 } 438 439 static inline void ibdev_put_vector(struct rds_ib_device *rds_ibdev, int index) 440 { 441 rds_ibdev->vector_load[index]--; 442 } 443 444 /* Allocate DMA coherent memory to be used to store struct rds_header for 445 * sending/receiving packets. The pointers to the DMA memory and the 446 * associated DMA addresses are stored in two arrays. 447 * 448 * @ibdev: the IB device 449 * @pool: the DMA memory pool 450 * @dma_addrs: pointer to the array for storing DMA addresses 451 * @num_hdrs: number of headers to allocate 452 * 453 * It returns the pointer to the array storing the DMA memory pointers. On 454 * error, NULL pointer is returned. 455 */ 456 struct rds_header **rds_dma_hdrs_alloc(struct ib_device *ibdev, 457 struct dma_pool *pool, 458 dma_addr_t **dma_addrs, u32 num_hdrs) 459 { 460 struct rds_header **hdrs; 461 dma_addr_t *hdr_daddrs; 462 u32 i; 463 464 hdrs = kvmalloc_node(sizeof(*hdrs) * num_hdrs, GFP_KERNEL, 465 ibdev_to_node(ibdev)); 466 if (!hdrs) 467 return NULL; 468 469 hdr_daddrs = kvmalloc_node(sizeof(*hdr_daddrs) * num_hdrs, GFP_KERNEL, 470 ibdev_to_node(ibdev)); 471 if (!hdr_daddrs) { 472 kvfree(hdrs); 473 return NULL; 474 } 475 476 for (i = 0; i < num_hdrs; i++) { 477 hdrs[i] = dma_pool_zalloc(pool, GFP_KERNEL, &hdr_daddrs[i]); 478 if (!hdrs[i]) { 479 rds_dma_hdrs_free(pool, hdrs, hdr_daddrs, i); 480 return NULL; 481 } 482 } 483 484 *dma_addrs = hdr_daddrs; 485 return hdrs; 486 } 487 488 /* Free the DMA memory used to store struct rds_header. 489 * 490 * @pool: the DMA memory pool 491 * @hdrs: pointer to the array storing DMA memory pointers 492 * @dma_addrs: pointer to the array storing DMA addresses 493 * @num_hdars: number of headers to free. 494 */ 495 void rds_dma_hdrs_free(struct dma_pool *pool, struct rds_header **hdrs, 496 dma_addr_t *dma_addrs, u32 num_hdrs) 497 { 498 u32 i; 499 500 for (i = 0; i < num_hdrs; i++) 501 dma_pool_free(pool, hdrs[i], dma_addrs[i]); 502 kvfree(hdrs); 503 kvfree(dma_addrs); 504 } 505 506 /* 507 * This needs to be very careful to not leave IS_ERR pointers around for 508 * cleanup to trip over. 509 */ 510 static int rds_ib_setup_qp(struct rds_connection *conn) 511 { 512 struct rds_ib_connection *ic = conn->c_transport_data; 513 struct ib_device *dev = ic->i_cm_id->device; 514 struct ib_qp_init_attr attr; 515 struct ib_cq_init_attr cq_attr = {}; 516 struct rds_ib_device *rds_ibdev; 517 unsigned long max_wrs; 518 int ret, fr_queue_space; 519 struct dma_pool *pool; 520 521 /* 522 * It's normal to see a null device if an incoming connection races 523 * with device removal, so we don't print a warning. 524 */ 525 rds_ibdev = rds_ib_get_client_data(dev); 526 if (!rds_ibdev) 527 return -EOPNOTSUPP; 528 529 /* The fr_queue_space is currently set to 512, to add extra space on 530 * completion queue and send queue. This extra space is used for FRWR 531 * registration and invalidation work requests 532 */ 533 fr_queue_space = RDS_IB_DEFAULT_FR_WR; 534 535 /* add the conn now so that connection establishment has the dev */ 536 rds_ib_add_conn(rds_ibdev, conn); 537 538 max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_send_wr + 1 ? 539 rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_send_wr; 540 if (ic->i_send_ring.w_nr != max_wrs) 541 rds_ib_ring_resize(&ic->i_send_ring, max_wrs); 542 543 max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_recv_wr + 1 ? 544 rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_recv_wr; 545 if (ic->i_recv_ring.w_nr != max_wrs) 546 rds_ib_ring_resize(&ic->i_recv_ring, max_wrs); 547 548 /* Protection domain and memory range */ 549 ic->i_pd = rds_ibdev->pd; 550 551 ic->i_scq_vector = ibdev_get_unused_vector(rds_ibdev); 552 cq_attr.cqe = ic->i_send_ring.w_nr + fr_queue_space + 1; 553 cq_attr.comp_vector = ic->i_scq_vector; 554 ic->i_send_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_send, 555 rds_ib_cq_event_handler, conn, 556 &cq_attr); 557 if (IS_ERR(ic->i_send_cq)) { 558 ret = PTR_ERR(ic->i_send_cq); 559 ic->i_send_cq = NULL; 560 ibdev_put_vector(rds_ibdev, ic->i_scq_vector); 561 rdsdebug("ib_create_cq send failed: %d\n", ret); 562 goto rds_ibdev_out; 563 } 564 565 ic->i_rcq_vector = ibdev_get_unused_vector(rds_ibdev); 566 cq_attr.cqe = ic->i_recv_ring.w_nr; 567 cq_attr.comp_vector = ic->i_rcq_vector; 568 ic->i_recv_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_recv, 569 rds_ib_cq_event_handler, conn, 570 &cq_attr); 571 if (IS_ERR(ic->i_recv_cq)) { 572 ret = PTR_ERR(ic->i_recv_cq); 573 ic->i_recv_cq = NULL; 574 ibdev_put_vector(rds_ibdev, ic->i_rcq_vector); 575 rdsdebug("ib_create_cq recv failed: %d\n", ret); 576 goto send_cq_out; 577 } 578 579 ret = ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); 580 if (ret) { 581 rdsdebug("ib_req_notify_cq send failed: %d\n", ret); 582 goto recv_cq_out; 583 } 584 585 ret = ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); 586 if (ret) { 587 rdsdebug("ib_req_notify_cq recv failed: %d\n", ret); 588 goto recv_cq_out; 589 } 590 591 /* XXX negotiate max send/recv with remote? */ 592 memset(&attr, 0, sizeof(attr)); 593 attr.event_handler = rds_ib_qp_event_handler; 594 attr.qp_context = conn; 595 /* + 1 to allow for the single ack message */ 596 attr.cap.max_send_wr = ic->i_send_ring.w_nr + fr_queue_space + 1; 597 attr.cap.max_recv_wr = ic->i_recv_ring.w_nr + 1; 598 attr.cap.max_send_sge = rds_ibdev->max_sge; 599 attr.cap.max_recv_sge = RDS_IB_RECV_SGE; 600 attr.sq_sig_type = IB_SIGNAL_REQ_WR; 601 attr.qp_type = IB_QPT_RC; 602 attr.send_cq = ic->i_send_cq; 603 attr.recv_cq = ic->i_recv_cq; 604 605 /* 606 * XXX this can fail if max_*_wr is too large? Are we supposed 607 * to back off until we get a value that the hardware can support? 608 */ 609 ret = rdma_create_qp(ic->i_cm_id, ic->i_pd, &attr); 610 if (ret) { 611 rdsdebug("rdma_create_qp failed: %d\n", ret); 612 goto recv_cq_out; 613 } 614 615 pool = rds_ibdev->rid_hdrs_pool; 616 ic->i_send_hdrs = rds_dma_hdrs_alloc(dev, pool, &ic->i_send_hdrs_dma, 617 ic->i_send_ring.w_nr); 618 if (!ic->i_send_hdrs) { 619 ret = -ENOMEM; 620 rdsdebug("DMA send hdrs alloc failed\n"); 621 goto qp_out; 622 } 623 624 ic->i_recv_hdrs = rds_dma_hdrs_alloc(dev, pool, &ic->i_recv_hdrs_dma, 625 ic->i_recv_ring.w_nr); 626 if (!ic->i_recv_hdrs) { 627 ret = -ENOMEM; 628 rdsdebug("DMA recv hdrs alloc failed\n"); 629 goto send_hdrs_dma_out; 630 } 631 632 ic->i_ack = dma_pool_zalloc(pool, GFP_KERNEL, 633 &ic->i_ack_dma); 634 if (!ic->i_ack) { 635 ret = -ENOMEM; 636 rdsdebug("DMA ack header alloc failed\n"); 637 goto recv_hdrs_dma_out; 638 } 639 640 ic->i_sends = vzalloc_node(array_size(sizeof(struct rds_ib_send_work), 641 ic->i_send_ring.w_nr), 642 ibdev_to_node(dev)); 643 if (!ic->i_sends) { 644 ret = -ENOMEM; 645 rdsdebug("send allocation failed\n"); 646 goto ack_dma_out; 647 } 648 649 ic->i_recvs = vzalloc_node(array_size(sizeof(struct rds_ib_recv_work), 650 ic->i_recv_ring.w_nr), 651 ibdev_to_node(dev)); 652 if (!ic->i_recvs) { 653 ret = -ENOMEM; 654 rdsdebug("recv allocation failed\n"); 655 goto sends_out; 656 } 657 658 rds_ib_recv_init_ack(ic); 659 660 rdsdebug("conn %p pd %p cq %p %p\n", conn, ic->i_pd, 661 ic->i_send_cq, ic->i_recv_cq); 662 663 goto out; 664 665 sends_out: 666 vfree(ic->i_sends); 667 668 ack_dma_out: 669 dma_pool_free(pool, ic->i_ack, ic->i_ack_dma); 670 ic->i_ack = NULL; 671 672 recv_hdrs_dma_out: 673 rds_dma_hdrs_free(pool, ic->i_recv_hdrs, ic->i_recv_hdrs_dma, 674 ic->i_recv_ring.w_nr); 675 ic->i_recv_hdrs = NULL; 676 ic->i_recv_hdrs_dma = NULL; 677 678 send_hdrs_dma_out: 679 rds_dma_hdrs_free(pool, ic->i_send_hdrs, ic->i_send_hdrs_dma, 680 ic->i_send_ring.w_nr); 681 ic->i_send_hdrs = NULL; 682 ic->i_send_hdrs_dma = NULL; 683 684 qp_out: 685 rdma_destroy_qp(ic->i_cm_id); 686 recv_cq_out: 687 ib_destroy_cq(ic->i_recv_cq); 688 ic->i_recv_cq = NULL; 689 send_cq_out: 690 ib_destroy_cq(ic->i_send_cq); 691 ic->i_send_cq = NULL; 692 rds_ibdev_out: 693 rds_ib_remove_conn(rds_ibdev, conn); 694 out: 695 rds_ib_dev_put(rds_ibdev); 696 697 return ret; 698 } 699 700 static u32 rds_ib_protocol_compatible(struct rdma_cm_event *event, bool isv6) 701 { 702 const union rds_ib_conn_priv *dp = event->param.conn.private_data; 703 u8 data_len, major, minor; 704 u32 version = 0; 705 __be16 mask; 706 u16 common; 707 708 /* 709 * rdma_cm private data is odd - when there is any private data in the 710 * request, we will be given a pretty large buffer without telling us the 711 * original size. The only way to tell the difference is by looking at 712 * the contents, which are initialized to zero. 713 * If the protocol version fields aren't set, this is a connection attempt 714 * from an older version. This could be 3.0 or 2.0 - we can't tell. 715 * We really should have changed this for OFED 1.3 :-( 716 */ 717 718 /* Be paranoid. RDS always has privdata */ 719 if (!event->param.conn.private_data_len) { 720 printk(KERN_NOTICE "RDS incoming connection has no private data, " 721 "rejecting\n"); 722 return 0; 723 } 724 725 if (isv6) { 726 data_len = sizeof(struct rds6_ib_connect_private); 727 major = dp->ricp_v6.dp_protocol_major; 728 minor = dp->ricp_v6.dp_protocol_minor; 729 mask = dp->ricp_v6.dp_protocol_minor_mask; 730 } else { 731 data_len = sizeof(struct rds_ib_connect_private); 732 major = dp->ricp_v4.dp_protocol_major; 733 minor = dp->ricp_v4.dp_protocol_minor; 734 mask = dp->ricp_v4.dp_protocol_minor_mask; 735 } 736 737 /* Even if len is crap *now* I still want to check it. -ASG */ 738 if (event->param.conn.private_data_len < data_len || major == 0) 739 return RDS_PROTOCOL_4_0; 740 741 common = be16_to_cpu(mask) & RDS_IB_SUPPORTED_PROTOCOLS; 742 if (major == 4 && common) { 743 version = RDS_PROTOCOL_4_0; 744 while ((common >>= 1) != 0) 745 version++; 746 } else if (RDS_PROTOCOL_COMPAT_VERSION == 747 RDS_PROTOCOL(major, minor)) { 748 version = RDS_PROTOCOL_COMPAT_VERSION; 749 } else { 750 if (isv6) 751 printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI6c using incompatible protocol version %u.%u\n", 752 &dp->ricp_v6.dp_saddr, major, minor); 753 else 754 printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI4 using incompatible protocol version %u.%u\n", 755 &dp->ricp_v4.dp_saddr, major, minor); 756 } 757 return version; 758 } 759 760 #if IS_ENABLED(CONFIG_IPV6) 761 /* Given an IPv6 address, find the net_device which hosts that address and 762 * return its index. This is used by the rds_ib_cm_handle_connect() code to 763 * find the interface index of where an incoming request comes from when 764 * the request is using a link local address. 765 * 766 * Note one problem in this search. It is possible that two interfaces have 767 * the same link local address. Unfortunately, this cannot be solved unless 768 * the underlying layer gives us the interface which an incoming RDMA connect 769 * request comes from. 770 */ 771 static u32 __rds_find_ifindex(struct net *net, const struct in6_addr *addr) 772 { 773 struct net_device *dev; 774 int idx = 0; 775 776 rcu_read_lock(); 777 for_each_netdev_rcu(net, dev) { 778 if (ipv6_chk_addr(net, addr, dev, 1)) { 779 idx = dev->ifindex; 780 break; 781 } 782 } 783 rcu_read_unlock(); 784 785 return idx; 786 } 787 #endif 788 789 int rds_ib_cm_handle_connect(struct rdma_cm_id *cm_id, 790 struct rdma_cm_event *event, bool isv6) 791 { 792 __be64 lguid = cm_id->route.path_rec->sgid.global.interface_id; 793 __be64 fguid = cm_id->route.path_rec->dgid.global.interface_id; 794 const struct rds_ib_conn_priv_cmn *dp_cmn; 795 struct rds_connection *conn = NULL; 796 struct rds_ib_connection *ic = NULL; 797 struct rdma_conn_param conn_param; 798 const union rds_ib_conn_priv *dp; 799 union rds_ib_conn_priv dp_rep; 800 struct in6_addr s_mapped_addr; 801 struct in6_addr d_mapped_addr; 802 const struct in6_addr *saddr6; 803 const struct in6_addr *daddr6; 804 int destroy = 1; 805 u32 ifindex = 0; 806 u32 version; 807 int err = 1; 808 809 /* Check whether the remote protocol version matches ours. */ 810 version = rds_ib_protocol_compatible(event, isv6); 811 if (!version) { 812 err = RDS_RDMA_REJ_INCOMPAT; 813 goto out; 814 } 815 816 dp = event->param.conn.private_data; 817 if (isv6) { 818 #if IS_ENABLED(CONFIG_IPV6) 819 dp_cmn = &dp->ricp_v6.dp_cmn; 820 saddr6 = &dp->ricp_v6.dp_saddr; 821 daddr6 = &dp->ricp_v6.dp_daddr; 822 /* If either address is link local, need to find the 823 * interface index in order to create a proper RDS 824 * connection. 825 */ 826 if (ipv6_addr_type(daddr6) & IPV6_ADDR_LINKLOCAL) { 827 /* Using init_net for now .. */ 828 ifindex = __rds_find_ifindex(&init_net, daddr6); 829 /* No index found... Need to bail out. */ 830 if (ifindex == 0) { 831 err = -EOPNOTSUPP; 832 goto out; 833 } 834 } else if (ipv6_addr_type(saddr6) & IPV6_ADDR_LINKLOCAL) { 835 /* Use our address to find the correct index. */ 836 ifindex = __rds_find_ifindex(&init_net, daddr6); 837 /* No index found... Need to bail out. */ 838 if (ifindex == 0) { 839 err = -EOPNOTSUPP; 840 goto out; 841 } 842 } 843 #else 844 err = -EOPNOTSUPP; 845 goto out; 846 #endif 847 } else { 848 dp_cmn = &dp->ricp_v4.dp_cmn; 849 ipv6_addr_set_v4mapped(dp->ricp_v4.dp_saddr, &s_mapped_addr); 850 ipv6_addr_set_v4mapped(dp->ricp_v4.dp_daddr, &d_mapped_addr); 851 saddr6 = &s_mapped_addr; 852 daddr6 = &d_mapped_addr; 853 } 854 855 rdsdebug("saddr %pI6c daddr %pI6c RDSv%u.%u lguid 0x%llx fguid 0x%llx, tos:%d\n", 856 saddr6, daddr6, RDS_PROTOCOL_MAJOR(version), 857 RDS_PROTOCOL_MINOR(version), 858 (unsigned long long)be64_to_cpu(lguid), 859 (unsigned long long)be64_to_cpu(fguid), dp_cmn->ricpc_dp_toss); 860 861 /* RDS/IB is not currently netns aware, thus init_net */ 862 conn = rds_conn_create(&init_net, daddr6, saddr6, 863 &rds_ib_transport, dp_cmn->ricpc_dp_toss, 864 GFP_KERNEL, ifindex); 865 if (IS_ERR(conn)) { 866 rdsdebug("rds_conn_create failed (%ld)\n", PTR_ERR(conn)); 867 conn = NULL; 868 goto out; 869 } 870 871 /* 872 * The connection request may occur while the 873 * previous connection exist, e.g. in case of failover. 874 * But as connections may be initiated simultaneously 875 * by both hosts, we have a random backoff mechanism - 876 * see the comment above rds_queue_reconnect() 877 */ 878 mutex_lock(&conn->c_cm_lock); 879 if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) { 880 if (rds_conn_state(conn) == RDS_CONN_UP) { 881 rdsdebug("incoming connect while connecting\n"); 882 rds_conn_drop(conn); 883 rds_ib_stats_inc(s_ib_listen_closed_stale); 884 } else 885 if (rds_conn_state(conn) == RDS_CONN_CONNECTING) { 886 /* Wait and see - our connect may still be succeeding */ 887 rds_ib_stats_inc(s_ib_connect_raced); 888 } 889 goto out; 890 } 891 892 ic = conn->c_transport_data; 893 894 rds_ib_set_protocol(conn, version); 895 rds_ib_set_flow_control(conn, be32_to_cpu(dp_cmn->ricpc_credit)); 896 897 /* If the peer gave us the last packet it saw, process this as if 898 * we had received a regular ACK. */ 899 if (dp_cmn->ricpc_ack_seq) 900 rds_send_drop_acked(conn, be64_to_cpu(dp_cmn->ricpc_ack_seq), 901 NULL); 902 903 BUG_ON(cm_id->context); 904 BUG_ON(ic->i_cm_id); 905 906 ic->i_cm_id = cm_id; 907 cm_id->context = conn; 908 909 /* We got halfway through setting up the ib_connection, if we 910 * fail now, we have to take the long route out of this mess. */ 911 destroy = 0; 912 913 err = rds_ib_setup_qp(conn); 914 if (err) { 915 rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", err); 916 goto out; 917 } 918 919 rds_ib_cm_fill_conn_param(conn, &conn_param, &dp_rep, version, 920 event->param.conn.responder_resources, 921 event->param.conn.initiator_depth, isv6); 922 923 /* rdma_accept() calls rdma_reject() internally if it fails */ 924 if (rdma_accept(cm_id, &conn_param)) 925 rds_ib_conn_error(conn, "rdma_accept failed\n"); 926 927 out: 928 if (conn) 929 mutex_unlock(&conn->c_cm_lock); 930 if (err) 931 rdma_reject(cm_id, &err, sizeof(int), 932 IB_CM_REJ_CONSUMER_DEFINED); 933 return destroy; 934 } 935 936 937 int rds_ib_cm_initiate_connect(struct rdma_cm_id *cm_id, bool isv6) 938 { 939 struct rds_connection *conn = cm_id->context; 940 struct rds_ib_connection *ic = conn->c_transport_data; 941 struct rdma_conn_param conn_param; 942 union rds_ib_conn_priv dp; 943 int ret; 944 945 /* If the peer doesn't do protocol negotiation, we must 946 * default to RDSv3.0 */ 947 rds_ib_set_protocol(conn, RDS_PROTOCOL_4_1); 948 ic->i_flowctl = rds_ib_sysctl_flow_control; /* advertise flow control */ 949 950 ret = rds_ib_setup_qp(conn); 951 if (ret) { 952 rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", ret); 953 goto out; 954 } 955 956 rds_ib_cm_fill_conn_param(conn, &conn_param, &dp, 957 conn->c_proposed_version, 958 UINT_MAX, UINT_MAX, isv6); 959 ret = rdma_connect(cm_id, &conn_param); 960 if (ret) 961 rds_ib_conn_error(conn, "rdma_connect failed (%d)\n", ret); 962 963 out: 964 /* Beware - returning non-zero tells the rdma_cm to destroy 965 * the cm_id. We should certainly not do it as long as we still 966 * "own" the cm_id. */ 967 if (ret) { 968 if (ic->i_cm_id == cm_id) 969 ret = 0; 970 } 971 ic->i_active_side = true; 972 return ret; 973 } 974 975 int rds_ib_conn_path_connect(struct rds_conn_path *cp) 976 { 977 struct rds_connection *conn = cp->cp_conn; 978 struct sockaddr_storage src, dest; 979 rdma_cm_event_handler handler; 980 struct rds_ib_connection *ic; 981 int ret; 982 983 ic = conn->c_transport_data; 984 985 /* XXX I wonder what affect the port space has */ 986 /* delegate cm event handler to rdma_transport */ 987 #if IS_ENABLED(CONFIG_IPV6) 988 if (conn->c_isv6) 989 handler = rds6_rdma_cm_event_handler; 990 else 991 #endif 992 handler = rds_rdma_cm_event_handler; 993 ic->i_cm_id = rdma_create_id(&init_net, handler, conn, 994 RDMA_PS_TCP, IB_QPT_RC); 995 if (IS_ERR(ic->i_cm_id)) { 996 ret = PTR_ERR(ic->i_cm_id); 997 ic->i_cm_id = NULL; 998 rdsdebug("rdma_create_id() failed: %d\n", ret); 999 goto out; 1000 } 1001 1002 rdsdebug("created cm id %p for conn %p\n", ic->i_cm_id, conn); 1003 1004 if (ipv6_addr_v4mapped(&conn->c_faddr)) { 1005 struct sockaddr_in *sin; 1006 1007 sin = (struct sockaddr_in *)&src; 1008 sin->sin_family = AF_INET; 1009 sin->sin_addr.s_addr = conn->c_laddr.s6_addr32[3]; 1010 sin->sin_port = 0; 1011 1012 sin = (struct sockaddr_in *)&dest; 1013 sin->sin_family = AF_INET; 1014 sin->sin_addr.s_addr = conn->c_faddr.s6_addr32[3]; 1015 sin->sin_port = htons(RDS_PORT); 1016 } else { 1017 struct sockaddr_in6 *sin6; 1018 1019 sin6 = (struct sockaddr_in6 *)&src; 1020 sin6->sin6_family = AF_INET6; 1021 sin6->sin6_addr = conn->c_laddr; 1022 sin6->sin6_port = 0; 1023 sin6->sin6_scope_id = conn->c_dev_if; 1024 1025 sin6 = (struct sockaddr_in6 *)&dest; 1026 sin6->sin6_family = AF_INET6; 1027 sin6->sin6_addr = conn->c_faddr; 1028 sin6->sin6_port = htons(RDS_CM_PORT); 1029 sin6->sin6_scope_id = conn->c_dev_if; 1030 } 1031 1032 ret = rdma_resolve_addr(ic->i_cm_id, (struct sockaddr *)&src, 1033 (struct sockaddr *)&dest, 1034 RDS_RDMA_RESOLVE_TIMEOUT_MS); 1035 if (ret) { 1036 rdsdebug("addr resolve failed for cm id %p: %d\n", ic->i_cm_id, 1037 ret); 1038 rdma_destroy_id(ic->i_cm_id); 1039 ic->i_cm_id = NULL; 1040 } 1041 1042 out: 1043 return ret; 1044 } 1045 1046 /* 1047 * This is so careful about only cleaning up resources that were built up 1048 * so that it can be called at any point during startup. In fact it 1049 * can be called multiple times for a given connection. 1050 */ 1051 void rds_ib_conn_path_shutdown(struct rds_conn_path *cp) 1052 { 1053 struct rds_connection *conn = cp->cp_conn; 1054 struct rds_ib_connection *ic = conn->c_transport_data; 1055 int err = 0; 1056 1057 rdsdebug("cm %p pd %p cq %p %p qp %p\n", ic->i_cm_id, 1058 ic->i_pd, ic->i_send_cq, ic->i_recv_cq, 1059 ic->i_cm_id ? ic->i_cm_id->qp : NULL); 1060 1061 if (ic->i_cm_id) { 1062 rdsdebug("disconnecting cm %p\n", ic->i_cm_id); 1063 err = rdma_disconnect(ic->i_cm_id); 1064 if (err) { 1065 /* Actually this may happen quite frequently, when 1066 * an outgoing connect raced with an incoming connect. 1067 */ 1068 rdsdebug("failed to disconnect, cm: %p err %d\n", 1069 ic->i_cm_id, err); 1070 } 1071 1072 /* kick off "flush_worker" for all pools in order to reap 1073 * all FRMR registrations that are still marked "FRMR_IS_INUSE" 1074 */ 1075 rds_ib_flush_mrs(); 1076 1077 /* 1078 * We want to wait for tx and rx completion to finish 1079 * before we tear down the connection, but we have to be 1080 * careful not to get stuck waiting on a send ring that 1081 * only has unsignaled sends in it. We've shutdown new 1082 * sends before getting here so by waiting for signaled 1083 * sends to complete we're ensured that there will be no 1084 * more tx processing. 1085 */ 1086 wait_event(rds_ib_ring_empty_wait, 1087 rds_ib_ring_empty(&ic->i_recv_ring) && 1088 (atomic_read(&ic->i_signaled_sends) == 0) && 1089 (atomic_read(&ic->i_fastreg_inuse_count) == 0) && 1090 (atomic_read(&ic->i_fastreg_wrs) == RDS_IB_DEFAULT_FR_WR)); 1091 tasklet_kill(&ic->i_send_tasklet); 1092 tasklet_kill(&ic->i_recv_tasklet); 1093 1094 atomic_set(&ic->i_cq_quiesce, 1); 1095 1096 /* first destroy the ib state that generates callbacks */ 1097 if (ic->i_cm_id->qp) 1098 rdma_destroy_qp(ic->i_cm_id); 1099 if (ic->i_send_cq) { 1100 if (ic->rds_ibdev) 1101 ibdev_put_vector(ic->rds_ibdev, ic->i_scq_vector); 1102 ib_destroy_cq(ic->i_send_cq); 1103 } 1104 1105 if (ic->i_recv_cq) { 1106 if (ic->rds_ibdev) 1107 ibdev_put_vector(ic->rds_ibdev, ic->i_rcq_vector); 1108 ib_destroy_cq(ic->i_recv_cq); 1109 } 1110 1111 if (ic->rds_ibdev) { 1112 struct dma_pool *pool; 1113 1114 pool = ic->rds_ibdev->rid_hdrs_pool; 1115 1116 /* then free the resources that ib callbacks use */ 1117 if (ic->i_send_hdrs) { 1118 rds_dma_hdrs_free(pool, ic->i_send_hdrs, 1119 ic->i_send_hdrs_dma, 1120 ic->i_send_ring.w_nr); 1121 ic->i_send_hdrs = NULL; 1122 ic->i_send_hdrs_dma = NULL; 1123 } 1124 1125 if (ic->i_recv_hdrs) { 1126 rds_dma_hdrs_free(pool, ic->i_recv_hdrs, 1127 ic->i_recv_hdrs_dma, 1128 ic->i_recv_ring.w_nr); 1129 ic->i_recv_hdrs = NULL; 1130 ic->i_recv_hdrs_dma = NULL; 1131 } 1132 1133 if (ic->i_ack) { 1134 dma_pool_free(pool, ic->i_ack, ic->i_ack_dma); 1135 ic->i_ack = NULL; 1136 } 1137 } else { 1138 WARN_ON(ic->i_send_hdrs); 1139 WARN_ON(ic->i_send_hdrs_dma); 1140 WARN_ON(ic->i_recv_hdrs); 1141 WARN_ON(ic->i_recv_hdrs_dma); 1142 WARN_ON(ic->i_ack); 1143 } 1144 1145 if (ic->i_sends) 1146 rds_ib_send_clear_ring(ic); 1147 if (ic->i_recvs) 1148 rds_ib_recv_clear_ring(ic); 1149 1150 rdma_destroy_id(ic->i_cm_id); 1151 1152 /* 1153 * Move connection back to the nodev list. 1154 */ 1155 if (ic->rds_ibdev) 1156 rds_ib_remove_conn(ic->rds_ibdev, conn); 1157 1158 ic->i_cm_id = NULL; 1159 ic->i_pd = NULL; 1160 ic->i_send_cq = NULL; 1161 ic->i_recv_cq = NULL; 1162 } 1163 BUG_ON(ic->rds_ibdev); 1164 1165 /* Clear pending transmit */ 1166 if (ic->i_data_op) { 1167 struct rds_message *rm; 1168 1169 rm = container_of(ic->i_data_op, struct rds_message, data); 1170 rds_message_put(rm); 1171 ic->i_data_op = NULL; 1172 } 1173 1174 /* Clear the ACK state */ 1175 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 1176 #ifdef KERNEL_HAS_ATOMIC64 1177 atomic64_set(&ic->i_ack_next, 0); 1178 #else 1179 ic->i_ack_next = 0; 1180 #endif 1181 ic->i_ack_recv = 0; 1182 1183 /* Clear flow control state */ 1184 ic->i_flowctl = 0; 1185 atomic_set(&ic->i_credits, 0); 1186 1187 /* Re-init rings, but retain sizes. */ 1188 rds_ib_ring_init(&ic->i_send_ring, ic->i_send_ring.w_nr); 1189 rds_ib_ring_init(&ic->i_recv_ring, ic->i_recv_ring.w_nr); 1190 1191 if (ic->i_ibinc) { 1192 rds_inc_put(&ic->i_ibinc->ii_inc); 1193 ic->i_ibinc = NULL; 1194 } 1195 1196 vfree(ic->i_sends); 1197 ic->i_sends = NULL; 1198 vfree(ic->i_recvs); 1199 ic->i_recvs = NULL; 1200 ic->i_active_side = false; 1201 } 1202 1203 int rds_ib_conn_alloc(struct rds_connection *conn, gfp_t gfp) 1204 { 1205 struct rds_ib_connection *ic; 1206 unsigned long flags; 1207 int ret; 1208 1209 /* XXX too lazy? */ 1210 ic = kzalloc(sizeof(struct rds_ib_connection), gfp); 1211 if (!ic) 1212 return -ENOMEM; 1213 1214 ret = rds_ib_recv_alloc_caches(ic, gfp); 1215 if (ret) { 1216 kfree(ic); 1217 return ret; 1218 } 1219 1220 INIT_LIST_HEAD(&ic->ib_node); 1221 tasklet_init(&ic->i_send_tasklet, rds_ib_tasklet_fn_send, 1222 (unsigned long)ic); 1223 tasklet_init(&ic->i_recv_tasklet, rds_ib_tasklet_fn_recv, 1224 (unsigned long)ic); 1225 mutex_init(&ic->i_recv_mutex); 1226 #ifndef KERNEL_HAS_ATOMIC64 1227 spin_lock_init(&ic->i_ack_lock); 1228 #endif 1229 atomic_set(&ic->i_signaled_sends, 0); 1230 atomic_set(&ic->i_fastreg_wrs, RDS_IB_DEFAULT_FR_WR); 1231 1232 /* 1233 * rds_ib_conn_shutdown() waits for these to be emptied so they 1234 * must be initialized before it can be called. 1235 */ 1236 rds_ib_ring_init(&ic->i_send_ring, 0); 1237 rds_ib_ring_init(&ic->i_recv_ring, 0); 1238 1239 ic->conn = conn; 1240 conn->c_transport_data = ic; 1241 1242 spin_lock_irqsave(&ib_nodev_conns_lock, flags); 1243 list_add_tail(&ic->ib_node, &ib_nodev_conns); 1244 spin_unlock_irqrestore(&ib_nodev_conns_lock, flags); 1245 1246 1247 rdsdebug("conn %p conn ic %p\n", conn, conn->c_transport_data); 1248 return 0; 1249 } 1250 1251 /* 1252 * Free a connection. Connection must be shut down and not set for reconnect. 1253 */ 1254 void rds_ib_conn_free(void *arg) 1255 { 1256 struct rds_ib_connection *ic = arg; 1257 spinlock_t *lock_ptr; 1258 1259 rdsdebug("ic %p\n", ic); 1260 1261 /* 1262 * Conn is either on a dev's list or on the nodev list. 1263 * A race with shutdown() or connect() would cause problems 1264 * (since rds_ibdev would change) but that should never happen. 1265 */ 1266 lock_ptr = ic->rds_ibdev ? &ic->rds_ibdev->spinlock : &ib_nodev_conns_lock; 1267 1268 spin_lock_irq(lock_ptr); 1269 list_del(&ic->ib_node); 1270 spin_unlock_irq(lock_ptr); 1271 1272 rds_ib_recv_free_caches(ic); 1273 1274 kfree(ic); 1275 } 1276 1277 1278 /* 1279 * An error occurred on the connection 1280 */ 1281 void 1282 __rds_ib_conn_error(struct rds_connection *conn, const char *fmt, ...) 1283 { 1284 va_list ap; 1285 1286 rds_conn_drop(conn); 1287 1288 va_start(ap, fmt); 1289 vprintk(fmt, ap); 1290 va_end(ap); 1291 } 1292