1 /* 2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/in.h> 35 #include <linux/slab.h> 36 #include <linux/vmalloc.h> 37 #include <linux/ratelimit.h> 38 #include <net/addrconf.h> 39 #include <rdma/ib_cm.h> 40 41 #include "rds_single_path.h" 42 #include "rds.h" 43 #include "ib.h" 44 #include "ib_mr.h" 45 46 /* 47 * Set the selected protocol version 48 */ 49 static void rds_ib_set_protocol(struct rds_connection *conn, unsigned int version) 50 { 51 conn->c_version = version; 52 } 53 54 /* 55 * Set up flow control 56 */ 57 static void rds_ib_set_flow_control(struct rds_connection *conn, u32 credits) 58 { 59 struct rds_ib_connection *ic = conn->c_transport_data; 60 61 if (rds_ib_sysctl_flow_control && credits != 0) { 62 /* We're doing flow control */ 63 ic->i_flowctl = 1; 64 rds_ib_send_add_credits(conn, credits); 65 } else { 66 ic->i_flowctl = 0; 67 } 68 } 69 70 /* 71 * Connection established. 72 * We get here for both outgoing and incoming connection. 73 */ 74 void rds_ib_cm_connect_complete(struct rds_connection *conn, struct rdma_cm_event *event) 75 { 76 struct rds_ib_connection *ic = conn->c_transport_data; 77 const union rds_ib_conn_priv *dp = NULL; 78 __be64 ack_seq = 0; 79 __be32 credit = 0; 80 u8 major = 0; 81 u8 minor = 0; 82 int err; 83 84 dp = event->param.conn.private_data; 85 if (conn->c_isv6) { 86 if (event->param.conn.private_data_len >= 87 sizeof(struct rds6_ib_connect_private)) { 88 major = dp->ricp_v6.dp_protocol_major; 89 minor = dp->ricp_v6.dp_protocol_minor; 90 credit = dp->ricp_v6.dp_credit; 91 /* dp structure start is not guaranteed to be 8 bytes 92 * aligned. Since dp_ack_seq is 64-bit extended load 93 * operations can be used so go through get_unaligned 94 * to avoid unaligned errors. 95 */ 96 ack_seq = get_unaligned(&dp->ricp_v6.dp_ack_seq); 97 } 98 } else if (event->param.conn.private_data_len >= 99 sizeof(struct rds_ib_connect_private)) { 100 major = dp->ricp_v4.dp_protocol_major; 101 minor = dp->ricp_v4.dp_protocol_minor; 102 credit = dp->ricp_v4.dp_credit; 103 ack_seq = get_unaligned(&dp->ricp_v4.dp_ack_seq); 104 } 105 106 /* make sure it isn't empty data */ 107 if (major) { 108 rds_ib_set_protocol(conn, RDS_PROTOCOL(major, minor)); 109 rds_ib_set_flow_control(conn, be32_to_cpu(credit)); 110 } 111 112 if (conn->c_version < RDS_PROTOCOL_VERSION) { 113 if (conn->c_version != RDS_PROTOCOL_COMPAT_VERSION) { 114 pr_notice("RDS/IB: Connection <%pI6c,%pI6c> version %u.%u no longer supported\n", 115 &conn->c_laddr, &conn->c_faddr, 116 RDS_PROTOCOL_MAJOR(conn->c_version), 117 RDS_PROTOCOL_MINOR(conn->c_version)); 118 rds_conn_destroy(conn); 119 return; 120 } 121 } 122 123 pr_notice("RDS/IB: %s conn connected <%pI6c,%pI6c,%d> version %u.%u%s\n", 124 ic->i_active_side ? "Active" : "Passive", 125 &conn->c_laddr, &conn->c_faddr, conn->c_tos, 126 RDS_PROTOCOL_MAJOR(conn->c_version), 127 RDS_PROTOCOL_MINOR(conn->c_version), 128 ic->i_flowctl ? ", flow control" : ""); 129 130 /* receive sl from the peer */ 131 ic->i_sl = ic->i_cm_id->route.path_rec->sl; 132 133 atomic_set(&ic->i_cq_quiesce, 0); 134 135 /* Init rings and fill recv. this needs to wait until protocol 136 * negotiation is complete, since ring layout is different 137 * from 3.1 to 4.1. 138 */ 139 rds_ib_send_init_ring(ic); 140 rds_ib_recv_init_ring(ic); 141 /* Post receive buffers - as a side effect, this will update 142 * the posted credit count. */ 143 rds_ib_recv_refill(conn, 1, GFP_KERNEL); 144 145 /* update ib_device with this local ipaddr */ 146 err = rds_ib_update_ipaddr(ic->rds_ibdev, &conn->c_laddr); 147 if (err) 148 printk(KERN_ERR "rds_ib_update_ipaddr failed (%d)\n", 149 err); 150 151 /* If the peer gave us the last packet it saw, process this as if 152 * we had received a regular ACK. */ 153 if (dp) { 154 if (ack_seq) 155 rds_send_drop_acked(conn, be64_to_cpu(ack_seq), 156 NULL); 157 } 158 159 conn->c_proposed_version = conn->c_version; 160 rds_connect_complete(conn); 161 } 162 163 static void rds_ib_cm_fill_conn_param(struct rds_connection *conn, 164 struct rdma_conn_param *conn_param, 165 union rds_ib_conn_priv *dp, 166 u32 protocol_version, 167 u32 max_responder_resources, 168 u32 max_initiator_depth, 169 bool isv6) 170 { 171 struct rds_ib_connection *ic = conn->c_transport_data; 172 struct rds_ib_device *rds_ibdev = ic->rds_ibdev; 173 174 memset(conn_param, 0, sizeof(struct rdma_conn_param)); 175 176 conn_param->responder_resources = 177 min_t(u32, rds_ibdev->max_responder_resources, max_responder_resources); 178 conn_param->initiator_depth = 179 min_t(u32, rds_ibdev->max_initiator_depth, max_initiator_depth); 180 conn_param->retry_count = min_t(unsigned int, rds_ib_retry_count, 7); 181 conn_param->rnr_retry_count = 7; 182 183 if (dp) { 184 memset(dp, 0, sizeof(*dp)); 185 if (isv6) { 186 dp->ricp_v6.dp_saddr = conn->c_laddr; 187 dp->ricp_v6.dp_daddr = conn->c_faddr; 188 dp->ricp_v6.dp_protocol_major = 189 RDS_PROTOCOL_MAJOR(protocol_version); 190 dp->ricp_v6.dp_protocol_minor = 191 RDS_PROTOCOL_MINOR(protocol_version); 192 dp->ricp_v6.dp_protocol_minor_mask = 193 cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); 194 dp->ricp_v6.dp_ack_seq = 195 cpu_to_be64(rds_ib_piggyb_ack(ic)); 196 dp->ricp_v6.dp_cmn.ricpc_dp_toss = conn->c_tos; 197 198 conn_param->private_data = &dp->ricp_v6; 199 conn_param->private_data_len = sizeof(dp->ricp_v6); 200 } else { 201 dp->ricp_v4.dp_saddr = conn->c_laddr.s6_addr32[3]; 202 dp->ricp_v4.dp_daddr = conn->c_faddr.s6_addr32[3]; 203 dp->ricp_v4.dp_protocol_major = 204 RDS_PROTOCOL_MAJOR(protocol_version); 205 dp->ricp_v4.dp_protocol_minor = 206 RDS_PROTOCOL_MINOR(protocol_version); 207 dp->ricp_v4.dp_protocol_minor_mask = 208 cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); 209 dp->ricp_v4.dp_ack_seq = 210 cpu_to_be64(rds_ib_piggyb_ack(ic)); 211 dp->ricp_v4.dp_cmn.ricpc_dp_toss = conn->c_tos; 212 213 conn_param->private_data = &dp->ricp_v4; 214 conn_param->private_data_len = sizeof(dp->ricp_v4); 215 } 216 217 /* Advertise flow control */ 218 if (ic->i_flowctl) { 219 unsigned int credits; 220 221 credits = IB_GET_POST_CREDITS 222 (atomic_read(&ic->i_credits)); 223 if (isv6) 224 dp->ricp_v6.dp_credit = cpu_to_be32(credits); 225 else 226 dp->ricp_v4.dp_credit = cpu_to_be32(credits); 227 atomic_sub(IB_SET_POST_CREDITS(credits), 228 &ic->i_credits); 229 } 230 } 231 } 232 233 static void rds_ib_cq_event_handler(struct ib_event *event, void *data) 234 { 235 rdsdebug("event %u (%s) data %p\n", 236 event->event, ib_event_msg(event->event), data); 237 } 238 239 /* Plucking the oldest entry from the ring can be done concurrently with 240 * the thread refilling the ring. Each ring operation is protected by 241 * spinlocks and the transient state of refilling doesn't change the 242 * recording of which entry is oldest. 243 * 244 * This relies on IB only calling one cq comp_handler for each cq so that 245 * there will only be one caller of rds_recv_incoming() per RDS connection. 246 */ 247 static void rds_ib_cq_comp_handler_recv(struct ib_cq *cq, void *context) 248 { 249 struct rds_connection *conn = context; 250 struct rds_ib_connection *ic = conn->c_transport_data; 251 252 rdsdebug("conn %p cq %p\n", conn, cq); 253 254 rds_ib_stats_inc(s_ib_evt_handler_call); 255 256 tasklet_schedule(&ic->i_recv_tasklet); 257 } 258 259 static void poll_scq(struct rds_ib_connection *ic, struct ib_cq *cq, 260 struct ib_wc *wcs) 261 { 262 int nr, i; 263 struct ib_wc *wc; 264 265 while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { 266 for (i = 0; i < nr; i++) { 267 wc = wcs + i; 268 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", 269 (unsigned long long)wc->wr_id, wc->status, 270 wc->byte_len, be32_to_cpu(wc->ex.imm_data)); 271 272 if (wc->wr_id <= ic->i_send_ring.w_nr || 273 wc->wr_id == RDS_IB_ACK_WR_ID) 274 rds_ib_send_cqe_handler(ic, wc); 275 else 276 rds_ib_mr_cqe_handler(ic, wc); 277 278 } 279 } 280 } 281 282 static void rds_ib_tasklet_fn_send(unsigned long data) 283 { 284 struct rds_ib_connection *ic = (struct rds_ib_connection *)data; 285 struct rds_connection *conn = ic->conn; 286 287 rds_ib_stats_inc(s_ib_tasklet_call); 288 289 /* if cq has been already reaped, ignore incoming cq event */ 290 if (atomic_read(&ic->i_cq_quiesce)) 291 return; 292 293 poll_scq(ic, ic->i_send_cq, ic->i_send_wc); 294 ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); 295 poll_scq(ic, ic->i_send_cq, ic->i_send_wc); 296 297 if (rds_conn_up(conn) && 298 (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags) || 299 test_bit(0, &conn->c_map_queued))) 300 rds_send_xmit(&ic->conn->c_path[0]); 301 } 302 303 static void poll_rcq(struct rds_ib_connection *ic, struct ib_cq *cq, 304 struct ib_wc *wcs, 305 struct rds_ib_ack_state *ack_state) 306 { 307 int nr, i; 308 struct ib_wc *wc; 309 310 while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { 311 for (i = 0; i < nr; i++) { 312 wc = wcs + i; 313 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", 314 (unsigned long long)wc->wr_id, wc->status, 315 wc->byte_len, be32_to_cpu(wc->ex.imm_data)); 316 317 rds_ib_recv_cqe_handler(ic, wc, ack_state); 318 } 319 } 320 } 321 322 static void rds_ib_tasklet_fn_recv(unsigned long data) 323 { 324 struct rds_ib_connection *ic = (struct rds_ib_connection *)data; 325 struct rds_connection *conn = ic->conn; 326 struct rds_ib_device *rds_ibdev = ic->rds_ibdev; 327 struct rds_ib_ack_state state; 328 329 if (!rds_ibdev) 330 rds_conn_drop(conn); 331 332 rds_ib_stats_inc(s_ib_tasklet_call); 333 334 /* if cq has been already reaped, ignore incoming cq event */ 335 if (atomic_read(&ic->i_cq_quiesce)) 336 return; 337 338 memset(&state, 0, sizeof(state)); 339 poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); 340 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); 341 poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); 342 343 if (state.ack_next_valid) 344 rds_ib_set_ack(ic, state.ack_next, state.ack_required); 345 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { 346 rds_send_drop_acked(conn, state.ack_recv, NULL); 347 ic->i_ack_recv = state.ack_recv; 348 } 349 350 if (rds_conn_up(conn)) 351 rds_ib_attempt_ack(ic); 352 } 353 354 static void rds_ib_qp_event_handler(struct ib_event *event, void *data) 355 { 356 struct rds_connection *conn = data; 357 struct rds_ib_connection *ic = conn->c_transport_data; 358 359 rdsdebug("conn %p ic %p event %u (%s)\n", conn, ic, event->event, 360 ib_event_msg(event->event)); 361 362 switch (event->event) { 363 case IB_EVENT_COMM_EST: 364 rdma_notify(ic->i_cm_id, IB_EVENT_COMM_EST); 365 break; 366 default: 367 rdsdebug("Fatal QP Event %u (%s) - connection %pI6c->%pI6c, reconnecting\n", 368 event->event, ib_event_msg(event->event), 369 &conn->c_laddr, &conn->c_faddr); 370 rds_conn_drop(conn); 371 break; 372 } 373 } 374 375 static void rds_ib_cq_comp_handler_send(struct ib_cq *cq, void *context) 376 { 377 struct rds_connection *conn = context; 378 struct rds_ib_connection *ic = conn->c_transport_data; 379 380 rdsdebug("conn %p cq %p\n", conn, cq); 381 382 rds_ib_stats_inc(s_ib_evt_handler_call); 383 384 tasklet_schedule(&ic->i_send_tasklet); 385 } 386 387 static inline int ibdev_get_unused_vector(struct rds_ib_device *rds_ibdev) 388 { 389 int min = rds_ibdev->vector_load[rds_ibdev->dev->num_comp_vectors - 1]; 390 int index = rds_ibdev->dev->num_comp_vectors - 1; 391 int i; 392 393 for (i = rds_ibdev->dev->num_comp_vectors - 1; i >= 0; i--) { 394 if (rds_ibdev->vector_load[i] < min) { 395 index = i; 396 min = rds_ibdev->vector_load[i]; 397 } 398 } 399 400 rds_ibdev->vector_load[index]++; 401 return index; 402 } 403 404 static inline void ibdev_put_vector(struct rds_ib_device *rds_ibdev, int index) 405 { 406 rds_ibdev->vector_load[index]--; 407 } 408 409 static void rds_dma_hdr_free(struct ib_device *dev, struct rds_header *hdr, 410 dma_addr_t dma_addr, enum dma_data_direction dir) 411 { 412 ib_dma_unmap_single(dev, dma_addr, sizeof(*hdr), dir); 413 kfree(hdr); 414 } 415 416 static struct rds_header *rds_dma_hdr_alloc(struct ib_device *dev, 417 dma_addr_t *dma_addr, enum dma_data_direction dir) 418 { 419 struct rds_header *hdr; 420 421 hdr = kzalloc_node(sizeof(*hdr), GFP_KERNEL, ibdev_to_node(dev)); 422 if (!hdr) 423 return NULL; 424 425 *dma_addr = ib_dma_map_single(dev, hdr, sizeof(*hdr), 426 DMA_BIDIRECTIONAL); 427 if (ib_dma_mapping_error(dev, *dma_addr)) { 428 kfree(hdr); 429 return NULL; 430 } 431 432 return hdr; 433 } 434 435 /* Free the DMA memory used to store struct rds_header. 436 * 437 * @dev: the RDS IB device 438 * @hdrs: pointer to the array storing DMA memory pointers 439 * @dma_addrs: pointer to the array storing DMA addresses 440 * @num_hdars: number of headers to free. 441 */ 442 static void rds_dma_hdrs_free(struct rds_ib_device *dev, 443 struct rds_header **hdrs, dma_addr_t *dma_addrs, u32 num_hdrs, 444 enum dma_data_direction dir) 445 { 446 u32 i; 447 448 for (i = 0; i < num_hdrs; i++) 449 rds_dma_hdr_free(dev->dev, hdrs[i], dma_addrs[i], dir); 450 kvfree(hdrs); 451 kvfree(dma_addrs); 452 } 453 454 455 /* Allocate DMA coherent memory to be used to store struct rds_header for 456 * sending/receiving packets. The pointers to the DMA memory and the 457 * associated DMA addresses are stored in two arrays. 458 * 459 * @dev: the RDS IB device 460 * @dma_addrs: pointer to the array for storing DMA addresses 461 * @num_hdrs: number of headers to allocate 462 * 463 * It returns the pointer to the array storing the DMA memory pointers. On 464 * error, NULL pointer is returned. 465 */ 466 static struct rds_header **rds_dma_hdrs_alloc(struct rds_ib_device *dev, 467 dma_addr_t **dma_addrs, u32 num_hdrs, 468 enum dma_data_direction dir) 469 { 470 struct rds_header **hdrs; 471 dma_addr_t *hdr_daddrs; 472 u32 i; 473 474 hdrs = kvmalloc_node(sizeof(*hdrs) * num_hdrs, GFP_KERNEL, 475 ibdev_to_node(dev->dev)); 476 if (!hdrs) 477 return NULL; 478 479 hdr_daddrs = kvmalloc_node(sizeof(*hdr_daddrs) * num_hdrs, GFP_KERNEL, 480 ibdev_to_node(dev->dev)); 481 if (!hdr_daddrs) { 482 kvfree(hdrs); 483 return NULL; 484 } 485 486 for (i = 0; i < num_hdrs; i++) { 487 hdrs[i] = rds_dma_hdr_alloc(dev->dev, &hdr_daddrs[i], dir); 488 if (!hdrs[i]) { 489 rds_dma_hdrs_free(dev, hdrs, hdr_daddrs, i, dir); 490 return NULL; 491 } 492 } 493 494 *dma_addrs = hdr_daddrs; 495 return hdrs; 496 } 497 498 /* 499 * This needs to be very careful to not leave IS_ERR pointers around for 500 * cleanup to trip over. 501 */ 502 static int rds_ib_setup_qp(struct rds_connection *conn) 503 { 504 struct rds_ib_connection *ic = conn->c_transport_data; 505 struct ib_device *dev = ic->i_cm_id->device; 506 struct ib_qp_init_attr attr; 507 struct ib_cq_init_attr cq_attr = {}; 508 struct rds_ib_device *rds_ibdev; 509 unsigned long max_wrs; 510 int ret, fr_queue_space; 511 512 /* 513 * It's normal to see a null device if an incoming connection races 514 * with device removal, so we don't print a warning. 515 */ 516 rds_ibdev = rds_ib_get_client_data(dev); 517 if (!rds_ibdev) 518 return -EOPNOTSUPP; 519 520 /* The fr_queue_space is currently set to 512, to add extra space on 521 * completion queue and send queue. This extra space is used for FRWR 522 * registration and invalidation work requests 523 */ 524 fr_queue_space = RDS_IB_DEFAULT_FR_WR; 525 526 /* add the conn now so that connection establishment has the dev */ 527 rds_ib_add_conn(rds_ibdev, conn); 528 529 max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_send_wr + 1 ? 530 rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_send_wr; 531 if (ic->i_send_ring.w_nr != max_wrs) 532 rds_ib_ring_resize(&ic->i_send_ring, max_wrs); 533 534 max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_recv_wr + 1 ? 535 rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_recv_wr; 536 if (ic->i_recv_ring.w_nr != max_wrs) 537 rds_ib_ring_resize(&ic->i_recv_ring, max_wrs); 538 539 /* Protection domain and memory range */ 540 ic->i_pd = rds_ibdev->pd; 541 542 ic->i_scq_vector = ibdev_get_unused_vector(rds_ibdev); 543 cq_attr.cqe = ic->i_send_ring.w_nr + fr_queue_space + 1; 544 cq_attr.comp_vector = ic->i_scq_vector; 545 ic->i_send_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_send, 546 rds_ib_cq_event_handler, conn, 547 &cq_attr); 548 if (IS_ERR(ic->i_send_cq)) { 549 ret = PTR_ERR(ic->i_send_cq); 550 ic->i_send_cq = NULL; 551 ibdev_put_vector(rds_ibdev, ic->i_scq_vector); 552 rdsdebug("ib_create_cq send failed: %d\n", ret); 553 goto rds_ibdev_out; 554 } 555 556 ic->i_rcq_vector = ibdev_get_unused_vector(rds_ibdev); 557 cq_attr.cqe = ic->i_recv_ring.w_nr; 558 cq_attr.comp_vector = ic->i_rcq_vector; 559 ic->i_recv_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_recv, 560 rds_ib_cq_event_handler, conn, 561 &cq_attr); 562 if (IS_ERR(ic->i_recv_cq)) { 563 ret = PTR_ERR(ic->i_recv_cq); 564 ic->i_recv_cq = NULL; 565 ibdev_put_vector(rds_ibdev, ic->i_rcq_vector); 566 rdsdebug("ib_create_cq recv failed: %d\n", ret); 567 goto send_cq_out; 568 } 569 570 ret = ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); 571 if (ret) { 572 rdsdebug("ib_req_notify_cq send failed: %d\n", ret); 573 goto recv_cq_out; 574 } 575 576 ret = ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); 577 if (ret) { 578 rdsdebug("ib_req_notify_cq recv failed: %d\n", ret); 579 goto recv_cq_out; 580 } 581 582 /* XXX negotiate max send/recv with remote? */ 583 memset(&attr, 0, sizeof(attr)); 584 attr.event_handler = rds_ib_qp_event_handler; 585 attr.qp_context = conn; 586 /* + 1 to allow for the single ack message */ 587 attr.cap.max_send_wr = ic->i_send_ring.w_nr + fr_queue_space + 1; 588 attr.cap.max_recv_wr = ic->i_recv_ring.w_nr + 1; 589 attr.cap.max_send_sge = rds_ibdev->max_sge; 590 attr.cap.max_recv_sge = RDS_IB_RECV_SGE; 591 attr.sq_sig_type = IB_SIGNAL_REQ_WR; 592 attr.qp_type = IB_QPT_RC; 593 attr.send_cq = ic->i_send_cq; 594 attr.recv_cq = ic->i_recv_cq; 595 596 /* 597 * XXX this can fail if max_*_wr is too large? Are we supposed 598 * to back off until we get a value that the hardware can support? 599 */ 600 ret = rdma_create_qp(ic->i_cm_id, ic->i_pd, &attr); 601 if (ret) { 602 rdsdebug("rdma_create_qp failed: %d\n", ret); 603 goto recv_cq_out; 604 } 605 606 ic->i_send_hdrs = rds_dma_hdrs_alloc(rds_ibdev, &ic->i_send_hdrs_dma, 607 ic->i_send_ring.w_nr, 608 DMA_TO_DEVICE); 609 if (!ic->i_send_hdrs) { 610 ret = -ENOMEM; 611 rdsdebug("DMA send hdrs alloc failed\n"); 612 goto qp_out; 613 } 614 615 ic->i_recv_hdrs = rds_dma_hdrs_alloc(rds_ibdev, &ic->i_recv_hdrs_dma, 616 ic->i_recv_ring.w_nr, 617 DMA_FROM_DEVICE); 618 if (!ic->i_recv_hdrs) { 619 ret = -ENOMEM; 620 rdsdebug("DMA recv hdrs alloc failed\n"); 621 goto send_hdrs_dma_out; 622 } 623 624 ic->i_ack = rds_dma_hdr_alloc(rds_ibdev->dev, &ic->i_ack_dma, 625 DMA_TO_DEVICE); 626 if (!ic->i_ack) { 627 ret = -ENOMEM; 628 rdsdebug("DMA ack header alloc failed\n"); 629 goto recv_hdrs_dma_out; 630 } 631 632 ic->i_sends = vzalloc_node(array_size(sizeof(struct rds_ib_send_work), 633 ic->i_send_ring.w_nr), 634 ibdev_to_node(dev)); 635 if (!ic->i_sends) { 636 ret = -ENOMEM; 637 rdsdebug("send allocation failed\n"); 638 goto ack_dma_out; 639 } 640 641 ic->i_recvs = vzalloc_node(array_size(sizeof(struct rds_ib_recv_work), 642 ic->i_recv_ring.w_nr), 643 ibdev_to_node(dev)); 644 if (!ic->i_recvs) { 645 ret = -ENOMEM; 646 rdsdebug("recv allocation failed\n"); 647 goto sends_out; 648 } 649 650 rds_ib_recv_init_ack(ic); 651 652 rdsdebug("conn %p pd %p cq %p %p\n", conn, ic->i_pd, 653 ic->i_send_cq, ic->i_recv_cq); 654 655 goto out; 656 657 sends_out: 658 vfree(ic->i_sends); 659 660 ack_dma_out: 661 rds_dma_hdr_free(rds_ibdev->dev, ic->i_ack, ic->i_ack_dma, 662 DMA_TO_DEVICE); 663 ic->i_ack = NULL; 664 665 recv_hdrs_dma_out: 666 rds_dma_hdrs_free(rds_ibdev, ic->i_recv_hdrs, ic->i_recv_hdrs_dma, 667 ic->i_recv_ring.w_nr, DMA_FROM_DEVICE); 668 ic->i_recv_hdrs = NULL; 669 ic->i_recv_hdrs_dma = NULL; 670 671 send_hdrs_dma_out: 672 rds_dma_hdrs_free(rds_ibdev, ic->i_send_hdrs, ic->i_send_hdrs_dma, 673 ic->i_send_ring.w_nr, DMA_TO_DEVICE); 674 ic->i_send_hdrs = NULL; 675 ic->i_send_hdrs_dma = NULL; 676 677 qp_out: 678 rdma_destroy_qp(ic->i_cm_id); 679 recv_cq_out: 680 ib_destroy_cq(ic->i_recv_cq); 681 ic->i_recv_cq = NULL; 682 send_cq_out: 683 ib_destroy_cq(ic->i_send_cq); 684 ic->i_send_cq = NULL; 685 rds_ibdev_out: 686 rds_ib_remove_conn(rds_ibdev, conn); 687 out: 688 rds_ib_dev_put(rds_ibdev); 689 690 return ret; 691 } 692 693 static u32 rds_ib_protocol_compatible(struct rdma_cm_event *event, bool isv6) 694 { 695 const union rds_ib_conn_priv *dp = event->param.conn.private_data; 696 u8 data_len, major, minor; 697 u32 version = 0; 698 __be16 mask; 699 u16 common; 700 701 /* 702 * rdma_cm private data is odd - when there is any private data in the 703 * request, we will be given a pretty large buffer without telling us the 704 * original size. The only way to tell the difference is by looking at 705 * the contents, which are initialized to zero. 706 * If the protocol version fields aren't set, this is a connection attempt 707 * from an older version. This could be 3.0 or 2.0 - we can't tell. 708 * We really should have changed this for OFED 1.3 :-( 709 */ 710 711 /* Be paranoid. RDS always has privdata */ 712 if (!event->param.conn.private_data_len) { 713 printk(KERN_NOTICE "RDS incoming connection has no private data, " 714 "rejecting\n"); 715 return 0; 716 } 717 718 if (isv6) { 719 data_len = sizeof(struct rds6_ib_connect_private); 720 major = dp->ricp_v6.dp_protocol_major; 721 minor = dp->ricp_v6.dp_protocol_minor; 722 mask = dp->ricp_v6.dp_protocol_minor_mask; 723 } else { 724 data_len = sizeof(struct rds_ib_connect_private); 725 major = dp->ricp_v4.dp_protocol_major; 726 minor = dp->ricp_v4.dp_protocol_minor; 727 mask = dp->ricp_v4.dp_protocol_minor_mask; 728 } 729 730 /* Even if len is crap *now* I still want to check it. -ASG */ 731 if (event->param.conn.private_data_len < data_len || major == 0) 732 return RDS_PROTOCOL_4_0; 733 734 common = be16_to_cpu(mask) & RDS_IB_SUPPORTED_PROTOCOLS; 735 if (major == 4 && common) { 736 version = RDS_PROTOCOL_4_0; 737 while ((common >>= 1) != 0) 738 version++; 739 } else if (RDS_PROTOCOL_COMPAT_VERSION == 740 RDS_PROTOCOL(major, minor)) { 741 version = RDS_PROTOCOL_COMPAT_VERSION; 742 } else { 743 if (isv6) 744 printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI6c using incompatible protocol version %u.%u\n", 745 &dp->ricp_v6.dp_saddr, major, minor); 746 else 747 printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI4 using incompatible protocol version %u.%u\n", 748 &dp->ricp_v4.dp_saddr, major, minor); 749 } 750 return version; 751 } 752 753 #if IS_ENABLED(CONFIG_IPV6) 754 /* Given an IPv6 address, find the net_device which hosts that address and 755 * return its index. This is used by the rds_ib_cm_handle_connect() code to 756 * find the interface index of where an incoming request comes from when 757 * the request is using a link local address. 758 * 759 * Note one problem in this search. It is possible that two interfaces have 760 * the same link local address. Unfortunately, this cannot be solved unless 761 * the underlying layer gives us the interface which an incoming RDMA connect 762 * request comes from. 763 */ 764 static u32 __rds_find_ifindex(struct net *net, const struct in6_addr *addr) 765 { 766 struct net_device *dev; 767 int idx = 0; 768 769 rcu_read_lock(); 770 for_each_netdev_rcu(net, dev) { 771 if (ipv6_chk_addr(net, addr, dev, 1)) { 772 idx = dev->ifindex; 773 break; 774 } 775 } 776 rcu_read_unlock(); 777 778 return idx; 779 } 780 #endif 781 782 int rds_ib_cm_handle_connect(struct rdma_cm_id *cm_id, 783 struct rdma_cm_event *event, bool isv6) 784 { 785 __be64 lguid = cm_id->route.path_rec->sgid.global.interface_id; 786 __be64 fguid = cm_id->route.path_rec->dgid.global.interface_id; 787 const struct rds_ib_conn_priv_cmn *dp_cmn; 788 struct rds_connection *conn = NULL; 789 struct rds_ib_connection *ic = NULL; 790 struct rdma_conn_param conn_param; 791 const union rds_ib_conn_priv *dp; 792 union rds_ib_conn_priv dp_rep; 793 struct in6_addr s_mapped_addr; 794 struct in6_addr d_mapped_addr; 795 const struct in6_addr *saddr6; 796 const struct in6_addr *daddr6; 797 int destroy = 1; 798 u32 ifindex = 0; 799 u32 version; 800 int err = 1; 801 802 /* Check whether the remote protocol version matches ours. */ 803 version = rds_ib_protocol_compatible(event, isv6); 804 if (!version) { 805 err = RDS_RDMA_REJ_INCOMPAT; 806 goto out; 807 } 808 809 dp = event->param.conn.private_data; 810 if (isv6) { 811 #if IS_ENABLED(CONFIG_IPV6) 812 dp_cmn = &dp->ricp_v6.dp_cmn; 813 saddr6 = &dp->ricp_v6.dp_saddr; 814 daddr6 = &dp->ricp_v6.dp_daddr; 815 /* If either address is link local, need to find the 816 * interface index in order to create a proper RDS 817 * connection. 818 */ 819 if (ipv6_addr_type(daddr6) & IPV6_ADDR_LINKLOCAL) { 820 /* Using init_net for now .. */ 821 ifindex = __rds_find_ifindex(&init_net, daddr6); 822 /* No index found... Need to bail out. */ 823 if (ifindex == 0) { 824 err = -EOPNOTSUPP; 825 goto out; 826 } 827 } else if (ipv6_addr_type(saddr6) & IPV6_ADDR_LINKLOCAL) { 828 /* Use our address to find the correct index. */ 829 ifindex = __rds_find_ifindex(&init_net, daddr6); 830 /* No index found... Need to bail out. */ 831 if (ifindex == 0) { 832 err = -EOPNOTSUPP; 833 goto out; 834 } 835 } 836 #else 837 err = -EOPNOTSUPP; 838 goto out; 839 #endif 840 } else { 841 dp_cmn = &dp->ricp_v4.dp_cmn; 842 ipv6_addr_set_v4mapped(dp->ricp_v4.dp_saddr, &s_mapped_addr); 843 ipv6_addr_set_v4mapped(dp->ricp_v4.dp_daddr, &d_mapped_addr); 844 saddr6 = &s_mapped_addr; 845 daddr6 = &d_mapped_addr; 846 } 847 848 rdsdebug("saddr %pI6c daddr %pI6c RDSv%u.%u lguid 0x%llx fguid 0x%llx, tos:%d\n", 849 saddr6, daddr6, RDS_PROTOCOL_MAJOR(version), 850 RDS_PROTOCOL_MINOR(version), 851 (unsigned long long)be64_to_cpu(lguid), 852 (unsigned long long)be64_to_cpu(fguid), dp_cmn->ricpc_dp_toss); 853 854 /* RDS/IB is not currently netns aware, thus init_net */ 855 conn = rds_conn_create(&init_net, daddr6, saddr6, 856 &rds_ib_transport, dp_cmn->ricpc_dp_toss, 857 GFP_KERNEL, ifindex); 858 if (IS_ERR(conn)) { 859 rdsdebug("rds_conn_create failed (%ld)\n", PTR_ERR(conn)); 860 conn = NULL; 861 goto out; 862 } 863 864 /* 865 * The connection request may occur while the 866 * previous connection exist, e.g. in case of failover. 867 * But as connections may be initiated simultaneously 868 * by both hosts, we have a random backoff mechanism - 869 * see the comment above rds_queue_reconnect() 870 */ 871 mutex_lock(&conn->c_cm_lock); 872 if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) { 873 if (rds_conn_state(conn) == RDS_CONN_UP) { 874 rdsdebug("incoming connect while connecting\n"); 875 rds_conn_drop(conn); 876 rds_ib_stats_inc(s_ib_listen_closed_stale); 877 } else 878 if (rds_conn_state(conn) == RDS_CONN_CONNECTING) { 879 /* Wait and see - our connect may still be succeeding */ 880 rds_ib_stats_inc(s_ib_connect_raced); 881 } 882 goto out; 883 } 884 885 ic = conn->c_transport_data; 886 887 rds_ib_set_protocol(conn, version); 888 rds_ib_set_flow_control(conn, be32_to_cpu(dp_cmn->ricpc_credit)); 889 890 /* If the peer gave us the last packet it saw, process this as if 891 * we had received a regular ACK. */ 892 if (dp_cmn->ricpc_ack_seq) 893 rds_send_drop_acked(conn, be64_to_cpu(dp_cmn->ricpc_ack_seq), 894 NULL); 895 896 BUG_ON(cm_id->context); 897 BUG_ON(ic->i_cm_id); 898 899 ic->i_cm_id = cm_id; 900 cm_id->context = conn; 901 902 /* We got halfway through setting up the ib_connection, if we 903 * fail now, we have to take the long route out of this mess. */ 904 destroy = 0; 905 906 err = rds_ib_setup_qp(conn); 907 if (err) { 908 rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", err); 909 goto out; 910 } 911 912 rds_ib_cm_fill_conn_param(conn, &conn_param, &dp_rep, version, 913 event->param.conn.responder_resources, 914 event->param.conn.initiator_depth, isv6); 915 916 rdma_set_min_rnr_timer(cm_id, IB_RNR_TIMER_000_32); 917 /* rdma_accept() calls rdma_reject() internally if it fails */ 918 if (rdma_accept(cm_id, &conn_param)) 919 rds_ib_conn_error(conn, "rdma_accept failed\n"); 920 921 out: 922 if (conn) 923 mutex_unlock(&conn->c_cm_lock); 924 if (err) 925 rdma_reject(cm_id, &err, sizeof(int), 926 IB_CM_REJ_CONSUMER_DEFINED); 927 return destroy; 928 } 929 930 931 int rds_ib_cm_initiate_connect(struct rdma_cm_id *cm_id, bool isv6) 932 { 933 struct rds_connection *conn = cm_id->context; 934 struct rds_ib_connection *ic = conn->c_transport_data; 935 struct rdma_conn_param conn_param; 936 union rds_ib_conn_priv dp; 937 int ret; 938 939 /* If the peer doesn't do protocol negotiation, we must 940 * default to RDSv3.0 */ 941 rds_ib_set_protocol(conn, RDS_PROTOCOL_4_1); 942 ic->i_flowctl = rds_ib_sysctl_flow_control; /* advertise flow control */ 943 944 ret = rds_ib_setup_qp(conn); 945 if (ret) { 946 rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", ret); 947 goto out; 948 } 949 950 rds_ib_cm_fill_conn_param(conn, &conn_param, &dp, 951 conn->c_proposed_version, 952 UINT_MAX, UINT_MAX, isv6); 953 ret = rdma_connect_locked(cm_id, &conn_param); 954 if (ret) 955 rds_ib_conn_error(conn, "rdma_connect_locked failed (%d)\n", 956 ret); 957 958 out: 959 /* Beware - returning non-zero tells the rdma_cm to destroy 960 * the cm_id. We should certainly not do it as long as we still 961 * "own" the cm_id. */ 962 if (ret) { 963 if (ic->i_cm_id == cm_id) 964 ret = 0; 965 } 966 ic->i_active_side = true; 967 return ret; 968 } 969 970 int rds_ib_conn_path_connect(struct rds_conn_path *cp) 971 { 972 struct rds_connection *conn = cp->cp_conn; 973 struct sockaddr_storage src, dest; 974 rdma_cm_event_handler handler; 975 struct rds_ib_connection *ic; 976 int ret; 977 978 ic = conn->c_transport_data; 979 980 /* XXX I wonder what affect the port space has */ 981 /* delegate cm event handler to rdma_transport */ 982 #if IS_ENABLED(CONFIG_IPV6) 983 if (conn->c_isv6) 984 handler = rds6_rdma_cm_event_handler; 985 else 986 #endif 987 handler = rds_rdma_cm_event_handler; 988 ic->i_cm_id = rdma_create_id(&init_net, handler, conn, 989 RDMA_PS_TCP, IB_QPT_RC); 990 if (IS_ERR(ic->i_cm_id)) { 991 ret = PTR_ERR(ic->i_cm_id); 992 ic->i_cm_id = NULL; 993 rdsdebug("rdma_create_id() failed: %d\n", ret); 994 goto out; 995 } 996 997 rdsdebug("created cm id %p for conn %p\n", ic->i_cm_id, conn); 998 999 if (ipv6_addr_v4mapped(&conn->c_faddr)) { 1000 struct sockaddr_in *sin; 1001 1002 sin = (struct sockaddr_in *)&src; 1003 sin->sin_family = AF_INET; 1004 sin->sin_addr.s_addr = conn->c_laddr.s6_addr32[3]; 1005 sin->sin_port = 0; 1006 1007 sin = (struct sockaddr_in *)&dest; 1008 sin->sin_family = AF_INET; 1009 sin->sin_addr.s_addr = conn->c_faddr.s6_addr32[3]; 1010 sin->sin_port = htons(RDS_PORT); 1011 } else { 1012 struct sockaddr_in6 *sin6; 1013 1014 sin6 = (struct sockaddr_in6 *)&src; 1015 sin6->sin6_family = AF_INET6; 1016 sin6->sin6_addr = conn->c_laddr; 1017 sin6->sin6_port = 0; 1018 sin6->sin6_scope_id = conn->c_dev_if; 1019 1020 sin6 = (struct sockaddr_in6 *)&dest; 1021 sin6->sin6_family = AF_INET6; 1022 sin6->sin6_addr = conn->c_faddr; 1023 sin6->sin6_port = htons(RDS_CM_PORT); 1024 sin6->sin6_scope_id = conn->c_dev_if; 1025 } 1026 1027 ret = rdma_resolve_addr(ic->i_cm_id, (struct sockaddr *)&src, 1028 (struct sockaddr *)&dest, 1029 RDS_RDMA_RESOLVE_TIMEOUT_MS); 1030 if (ret) { 1031 rdsdebug("addr resolve failed for cm id %p: %d\n", ic->i_cm_id, 1032 ret); 1033 rdma_destroy_id(ic->i_cm_id); 1034 ic->i_cm_id = NULL; 1035 } 1036 1037 out: 1038 return ret; 1039 } 1040 1041 /* 1042 * This is so careful about only cleaning up resources that were built up 1043 * so that it can be called at any point during startup. In fact it 1044 * can be called multiple times for a given connection. 1045 */ 1046 void rds_ib_conn_path_shutdown(struct rds_conn_path *cp) 1047 { 1048 struct rds_connection *conn = cp->cp_conn; 1049 struct rds_ib_connection *ic = conn->c_transport_data; 1050 int err = 0; 1051 1052 rdsdebug("cm %p pd %p cq %p %p qp %p\n", ic->i_cm_id, 1053 ic->i_pd, ic->i_send_cq, ic->i_recv_cq, 1054 ic->i_cm_id ? ic->i_cm_id->qp : NULL); 1055 1056 if (ic->i_cm_id) { 1057 rdsdebug("disconnecting cm %p\n", ic->i_cm_id); 1058 err = rdma_disconnect(ic->i_cm_id); 1059 if (err) { 1060 /* Actually this may happen quite frequently, when 1061 * an outgoing connect raced with an incoming connect. 1062 */ 1063 rdsdebug("failed to disconnect, cm: %p err %d\n", 1064 ic->i_cm_id, err); 1065 } 1066 1067 /* kick off "flush_worker" for all pools in order to reap 1068 * all FRMR registrations that are still marked "FRMR_IS_INUSE" 1069 */ 1070 rds_ib_flush_mrs(); 1071 1072 /* 1073 * We want to wait for tx and rx completion to finish 1074 * before we tear down the connection, but we have to be 1075 * careful not to get stuck waiting on a send ring that 1076 * only has unsignaled sends in it. We've shutdown new 1077 * sends before getting here so by waiting for signaled 1078 * sends to complete we're ensured that there will be no 1079 * more tx processing. 1080 */ 1081 wait_event(rds_ib_ring_empty_wait, 1082 rds_ib_ring_empty(&ic->i_recv_ring) && 1083 (atomic_read(&ic->i_signaled_sends) == 0) && 1084 (atomic_read(&ic->i_fastreg_inuse_count) == 0) && 1085 (atomic_read(&ic->i_fastreg_wrs) == RDS_IB_DEFAULT_FR_WR)); 1086 tasklet_kill(&ic->i_send_tasklet); 1087 tasklet_kill(&ic->i_recv_tasklet); 1088 1089 atomic_set(&ic->i_cq_quiesce, 1); 1090 1091 /* first destroy the ib state that generates callbacks */ 1092 if (ic->i_cm_id->qp) 1093 rdma_destroy_qp(ic->i_cm_id); 1094 if (ic->i_send_cq) { 1095 if (ic->rds_ibdev) 1096 ibdev_put_vector(ic->rds_ibdev, ic->i_scq_vector); 1097 ib_destroy_cq(ic->i_send_cq); 1098 } 1099 1100 if (ic->i_recv_cq) { 1101 if (ic->rds_ibdev) 1102 ibdev_put_vector(ic->rds_ibdev, ic->i_rcq_vector); 1103 ib_destroy_cq(ic->i_recv_cq); 1104 } 1105 1106 if (ic->rds_ibdev) { 1107 /* then free the resources that ib callbacks use */ 1108 if (ic->i_send_hdrs) { 1109 rds_dma_hdrs_free(ic->rds_ibdev, 1110 ic->i_send_hdrs, 1111 ic->i_send_hdrs_dma, 1112 ic->i_send_ring.w_nr, 1113 DMA_TO_DEVICE); 1114 ic->i_send_hdrs = NULL; 1115 ic->i_send_hdrs_dma = NULL; 1116 } 1117 1118 if (ic->i_recv_hdrs) { 1119 rds_dma_hdrs_free(ic->rds_ibdev, 1120 ic->i_recv_hdrs, 1121 ic->i_recv_hdrs_dma, 1122 ic->i_recv_ring.w_nr, 1123 DMA_FROM_DEVICE); 1124 ic->i_recv_hdrs = NULL; 1125 ic->i_recv_hdrs_dma = NULL; 1126 } 1127 1128 if (ic->i_ack) { 1129 rds_dma_hdr_free(ic->rds_ibdev->dev, ic->i_ack, 1130 ic->i_ack_dma, DMA_TO_DEVICE); 1131 ic->i_ack = NULL; 1132 } 1133 } else { 1134 WARN_ON(ic->i_send_hdrs); 1135 WARN_ON(ic->i_send_hdrs_dma); 1136 WARN_ON(ic->i_recv_hdrs); 1137 WARN_ON(ic->i_recv_hdrs_dma); 1138 WARN_ON(ic->i_ack); 1139 } 1140 1141 if (ic->i_sends) 1142 rds_ib_send_clear_ring(ic); 1143 if (ic->i_recvs) 1144 rds_ib_recv_clear_ring(ic); 1145 1146 rdma_destroy_id(ic->i_cm_id); 1147 1148 /* 1149 * Move connection back to the nodev list. 1150 */ 1151 if (ic->rds_ibdev) 1152 rds_ib_remove_conn(ic->rds_ibdev, conn); 1153 1154 ic->i_cm_id = NULL; 1155 ic->i_pd = NULL; 1156 ic->i_send_cq = NULL; 1157 ic->i_recv_cq = NULL; 1158 } 1159 BUG_ON(ic->rds_ibdev); 1160 1161 /* Clear pending transmit */ 1162 if (ic->i_data_op) { 1163 struct rds_message *rm; 1164 1165 rm = container_of(ic->i_data_op, struct rds_message, data); 1166 rds_message_put(rm); 1167 ic->i_data_op = NULL; 1168 } 1169 1170 /* Clear the ACK state */ 1171 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); 1172 #ifdef KERNEL_HAS_ATOMIC64 1173 atomic64_set(&ic->i_ack_next, 0); 1174 #else 1175 ic->i_ack_next = 0; 1176 #endif 1177 ic->i_ack_recv = 0; 1178 1179 /* Clear flow control state */ 1180 ic->i_flowctl = 0; 1181 atomic_set(&ic->i_credits, 0); 1182 1183 /* Re-init rings, but retain sizes. */ 1184 rds_ib_ring_init(&ic->i_send_ring, ic->i_send_ring.w_nr); 1185 rds_ib_ring_init(&ic->i_recv_ring, ic->i_recv_ring.w_nr); 1186 1187 if (ic->i_ibinc) { 1188 rds_inc_put(&ic->i_ibinc->ii_inc); 1189 ic->i_ibinc = NULL; 1190 } 1191 1192 vfree(ic->i_sends); 1193 ic->i_sends = NULL; 1194 vfree(ic->i_recvs); 1195 ic->i_recvs = NULL; 1196 ic->i_active_side = false; 1197 } 1198 1199 int rds_ib_conn_alloc(struct rds_connection *conn, gfp_t gfp) 1200 { 1201 struct rds_ib_connection *ic; 1202 unsigned long flags; 1203 int ret; 1204 1205 /* XXX too lazy? */ 1206 ic = kzalloc(sizeof(struct rds_ib_connection), gfp); 1207 if (!ic) 1208 return -ENOMEM; 1209 1210 ret = rds_ib_recv_alloc_caches(ic, gfp); 1211 if (ret) { 1212 kfree(ic); 1213 return ret; 1214 } 1215 1216 INIT_LIST_HEAD(&ic->ib_node); 1217 tasklet_init(&ic->i_send_tasklet, rds_ib_tasklet_fn_send, 1218 (unsigned long)ic); 1219 tasklet_init(&ic->i_recv_tasklet, rds_ib_tasklet_fn_recv, 1220 (unsigned long)ic); 1221 mutex_init(&ic->i_recv_mutex); 1222 #ifndef KERNEL_HAS_ATOMIC64 1223 spin_lock_init(&ic->i_ack_lock); 1224 #endif 1225 atomic_set(&ic->i_signaled_sends, 0); 1226 atomic_set(&ic->i_fastreg_wrs, RDS_IB_DEFAULT_FR_WR); 1227 1228 /* 1229 * rds_ib_conn_shutdown() waits for these to be emptied so they 1230 * must be initialized before it can be called. 1231 */ 1232 rds_ib_ring_init(&ic->i_send_ring, 0); 1233 rds_ib_ring_init(&ic->i_recv_ring, 0); 1234 1235 ic->conn = conn; 1236 conn->c_transport_data = ic; 1237 1238 spin_lock_irqsave(&ib_nodev_conns_lock, flags); 1239 list_add_tail(&ic->ib_node, &ib_nodev_conns); 1240 spin_unlock_irqrestore(&ib_nodev_conns_lock, flags); 1241 1242 1243 rdsdebug("conn %p conn ic %p\n", conn, conn->c_transport_data); 1244 return 0; 1245 } 1246 1247 /* 1248 * Free a connection. Connection must be shut down and not set for reconnect. 1249 */ 1250 void rds_ib_conn_free(void *arg) 1251 { 1252 struct rds_ib_connection *ic = arg; 1253 spinlock_t *lock_ptr; 1254 1255 rdsdebug("ic %p\n", ic); 1256 1257 /* 1258 * Conn is either on a dev's list or on the nodev list. 1259 * A race with shutdown() or connect() would cause problems 1260 * (since rds_ibdev would change) but that should never happen. 1261 */ 1262 lock_ptr = ic->rds_ibdev ? &ic->rds_ibdev->spinlock : &ib_nodev_conns_lock; 1263 1264 spin_lock_irq(lock_ptr); 1265 list_del(&ic->ib_node); 1266 spin_unlock_irq(lock_ptr); 1267 1268 rds_ib_recv_free_caches(ic); 1269 1270 kfree(ic); 1271 } 1272 1273 1274 /* 1275 * An error occurred on the connection 1276 */ 1277 void 1278 __rds_ib_conn_error(struct rds_connection *conn, const char *fmt, ...) 1279 { 1280 va_list ap; 1281 1282 rds_conn_drop(conn); 1283 1284 va_start(ap, fmt); 1285 vprintk(fmt, ap); 1286 va_end(ap); 1287 } 1288