1 /* 2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/dmapool.h> 34 #include <linux/kernel.h> 35 #include <linux/in.h> 36 #include <linux/if.h> 37 #include <linux/netdevice.h> 38 #include <linux/inetdevice.h> 39 #include <linux/if_arp.h> 40 #include <linux/delay.h> 41 #include <linux/slab.h> 42 #include <linux/module.h> 43 #include <net/addrconf.h> 44 45 #include "rds_single_path.h" 46 #include "rds.h" 47 #include "ib.h" 48 #include "ib_mr.h" 49 50 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE; 51 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE; 52 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT; 53 static atomic_t rds_ib_unloading; 54 55 module_param(rds_ib_mr_1m_pool_size, int, 0444); 56 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA"); 57 module_param(rds_ib_mr_8k_pool_size, int, 0444); 58 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA"); 59 module_param(rds_ib_retry_count, int, 0444); 60 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error"); 61 62 /* 63 * we have a clumsy combination of RCU and a rwsem protecting this list 64 * because it is used both in the get_mr fast path and while blocking in 65 * the FMR flushing path. 66 */ 67 DECLARE_RWSEM(rds_ib_devices_lock); 68 struct list_head rds_ib_devices; 69 70 /* NOTE: if also grabbing ibdev lock, grab this first */ 71 DEFINE_SPINLOCK(ib_nodev_conns_lock); 72 LIST_HEAD(ib_nodev_conns); 73 74 static void rds_ib_nodev_connect(void) 75 { 76 struct rds_ib_connection *ic; 77 78 spin_lock(&ib_nodev_conns_lock); 79 list_for_each_entry(ic, &ib_nodev_conns, ib_node) 80 rds_conn_connect_if_down(ic->conn); 81 spin_unlock(&ib_nodev_conns_lock); 82 } 83 84 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev) 85 { 86 struct rds_ib_connection *ic; 87 unsigned long flags; 88 89 spin_lock_irqsave(&rds_ibdev->spinlock, flags); 90 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node) 91 rds_conn_path_drop(&ic->conn->c_path[0], true); 92 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags); 93 } 94 95 /* 96 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references 97 * from interrupt context so we push freing off into a work struct in krdsd. 98 */ 99 static void rds_ib_dev_free(struct work_struct *work) 100 { 101 struct rds_ib_ipaddr *i_ipaddr, *i_next; 102 struct rds_ib_device *rds_ibdev = container_of(work, 103 struct rds_ib_device, free_work); 104 105 if (rds_ibdev->mr_8k_pool) 106 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool); 107 if (rds_ibdev->mr_1m_pool) 108 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool); 109 if (rds_ibdev->pd) 110 ib_dealloc_pd(rds_ibdev->pd); 111 dma_pool_destroy(rds_ibdev->rid_hdrs_pool); 112 113 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) { 114 list_del(&i_ipaddr->list); 115 kfree(i_ipaddr); 116 } 117 118 kfree(rds_ibdev->vector_load); 119 120 kfree(rds_ibdev); 121 } 122 123 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev) 124 { 125 BUG_ON(refcount_read(&rds_ibdev->refcount) == 0); 126 if (refcount_dec_and_test(&rds_ibdev->refcount)) 127 queue_work(rds_wq, &rds_ibdev->free_work); 128 } 129 130 static void rds_ib_add_one(struct ib_device *device) 131 { 132 struct rds_ib_device *rds_ibdev; 133 bool has_fr, has_fmr; 134 135 /* Only handle IB (no iWARP) devices */ 136 if (device->node_type != RDMA_NODE_IB_CA) 137 return; 138 139 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL, 140 ibdev_to_node(device)); 141 if (!rds_ibdev) 142 return; 143 144 spin_lock_init(&rds_ibdev->spinlock); 145 refcount_set(&rds_ibdev->refcount, 1); 146 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free); 147 148 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list); 149 INIT_LIST_HEAD(&rds_ibdev->conn_list); 150 151 rds_ibdev->max_wrs = device->attrs.max_qp_wr; 152 rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE); 153 154 has_fr = (device->attrs.device_cap_flags & 155 IB_DEVICE_MEM_MGT_EXTENSIONS); 156 has_fmr = (device->ops.alloc_fmr && device->ops.dealloc_fmr && 157 device->ops.map_phys_fmr && device->ops.unmap_fmr); 158 rds_ibdev->use_fastreg = (has_fr && !has_fmr); 159 160 rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32; 161 rds_ibdev->max_1m_mrs = device->attrs.max_mr ? 162 min_t(unsigned int, (device->attrs.max_mr / 2), 163 rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size; 164 165 rds_ibdev->max_8k_mrs = device->attrs.max_mr ? 166 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE), 167 rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size; 168 169 rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom; 170 rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom; 171 172 rds_ibdev->vector_load = kcalloc(device->num_comp_vectors, 173 sizeof(int), 174 GFP_KERNEL); 175 if (!rds_ibdev->vector_load) { 176 pr_err("RDS/IB: %s failed to allocate vector memory\n", 177 __func__); 178 goto put_dev; 179 } 180 181 rds_ibdev->dev = device; 182 rds_ibdev->pd = ib_alloc_pd(device, 0); 183 if (IS_ERR(rds_ibdev->pd)) { 184 rds_ibdev->pd = NULL; 185 goto put_dev; 186 } 187 rds_ibdev->rid_hdrs_pool = dma_pool_create(device->name, 188 device->dma_device, 189 sizeof(struct rds_header), 190 L1_CACHE_BYTES, 0); 191 if (!rds_ibdev->rid_hdrs_pool) 192 goto put_dev; 193 194 rds_ibdev->mr_1m_pool = 195 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL); 196 if (IS_ERR(rds_ibdev->mr_1m_pool)) { 197 rds_ibdev->mr_1m_pool = NULL; 198 goto put_dev; 199 } 200 201 rds_ibdev->mr_8k_pool = 202 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL); 203 if (IS_ERR(rds_ibdev->mr_8k_pool)) { 204 rds_ibdev->mr_8k_pool = NULL; 205 goto put_dev; 206 } 207 208 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n", 209 device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge, 210 rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs, 211 rds_ibdev->max_8k_mrs); 212 213 pr_info("RDS/IB: %s: %s supported and preferred\n", 214 device->name, 215 rds_ibdev->use_fastreg ? "FRMR" : "FMR"); 216 217 down_write(&rds_ib_devices_lock); 218 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices); 219 up_write(&rds_ib_devices_lock); 220 refcount_inc(&rds_ibdev->refcount); 221 222 ib_set_client_data(device, &rds_ib_client, rds_ibdev); 223 refcount_inc(&rds_ibdev->refcount); 224 225 rds_ib_nodev_connect(); 226 227 put_dev: 228 rds_ib_dev_put(rds_ibdev); 229 } 230 231 /* 232 * New connections use this to find the device to associate with the 233 * connection. It's not in the fast path so we're not concerned about the 234 * performance of the IB call. (As of this writing, it uses an interrupt 235 * blocking spinlock to serialize walking a per-device list of all registered 236 * clients.) 237 * 238 * RCU is used to handle incoming connections racing with device teardown. 239 * Rather than use a lock to serialize removal from the client_data and 240 * getting a new reference, we use an RCU grace period. The destruction 241 * path removes the device from client_data and then waits for all RCU 242 * readers to finish. 243 * 244 * A new connection can get NULL from this if its arriving on a 245 * device that is in the process of being removed. 246 */ 247 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device) 248 { 249 struct rds_ib_device *rds_ibdev; 250 251 rcu_read_lock(); 252 rds_ibdev = ib_get_client_data(device, &rds_ib_client); 253 if (rds_ibdev) 254 refcount_inc(&rds_ibdev->refcount); 255 rcu_read_unlock(); 256 return rds_ibdev; 257 } 258 259 /* 260 * The IB stack is letting us know that a device is going away. This can 261 * happen if the underlying HCA driver is removed or if PCI hotplug is removing 262 * the pci function, for example. 263 * 264 * This can be called at any time and can be racing with any other RDS path. 265 */ 266 static void rds_ib_remove_one(struct ib_device *device, void *client_data) 267 { 268 struct rds_ib_device *rds_ibdev = client_data; 269 270 if (!rds_ibdev) 271 return; 272 273 rds_ib_dev_shutdown(rds_ibdev); 274 275 /* stop connection attempts from getting a reference to this device. */ 276 ib_set_client_data(device, &rds_ib_client, NULL); 277 278 down_write(&rds_ib_devices_lock); 279 list_del_rcu(&rds_ibdev->list); 280 up_write(&rds_ib_devices_lock); 281 282 /* 283 * This synchronize rcu is waiting for readers of both the ib 284 * client data and the devices list to finish before we drop 285 * both of those references. 286 */ 287 synchronize_rcu(); 288 rds_ib_dev_put(rds_ibdev); 289 rds_ib_dev_put(rds_ibdev); 290 } 291 292 struct ib_client rds_ib_client = { 293 .name = "rds_ib", 294 .add = rds_ib_add_one, 295 .remove = rds_ib_remove_one 296 }; 297 298 static int rds_ib_conn_info_visitor(struct rds_connection *conn, 299 void *buffer) 300 { 301 struct rds_info_rdma_connection *iinfo = buffer; 302 struct rds_ib_connection *ic = conn->c_transport_data; 303 304 /* We will only ever look at IB transports */ 305 if (conn->c_trans != &rds_ib_transport) 306 return 0; 307 if (conn->c_isv6) 308 return 0; 309 310 iinfo->src_addr = conn->c_laddr.s6_addr32[3]; 311 iinfo->dst_addr = conn->c_faddr.s6_addr32[3]; 312 if (ic) { 313 iinfo->tos = conn->c_tos; 314 iinfo->sl = ic->i_sl; 315 } 316 317 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid)); 318 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid)); 319 if (rds_conn_state(conn) == RDS_CONN_UP) { 320 struct rds_ib_device *rds_ibdev; 321 322 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid, 323 (union ib_gid *)&iinfo->dst_gid); 324 325 rds_ibdev = ic->rds_ibdev; 326 iinfo->max_send_wr = ic->i_send_ring.w_nr; 327 iinfo->max_recv_wr = ic->i_recv_ring.w_nr; 328 iinfo->max_send_sge = rds_ibdev->max_sge; 329 rds_ib_get_mr_info(rds_ibdev, iinfo); 330 iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs); 331 } 332 return 1; 333 } 334 335 #if IS_ENABLED(CONFIG_IPV6) 336 /* IPv6 version of rds_ib_conn_info_visitor(). */ 337 static int rds6_ib_conn_info_visitor(struct rds_connection *conn, 338 void *buffer) 339 { 340 struct rds6_info_rdma_connection *iinfo6 = buffer; 341 struct rds_ib_connection *ic = conn->c_transport_data; 342 343 /* We will only ever look at IB transports */ 344 if (conn->c_trans != &rds_ib_transport) 345 return 0; 346 347 iinfo6->src_addr = conn->c_laddr; 348 iinfo6->dst_addr = conn->c_faddr; 349 if (ic) { 350 iinfo6->tos = conn->c_tos; 351 iinfo6->sl = ic->i_sl; 352 } 353 354 memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid)); 355 memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid)); 356 357 if (rds_conn_state(conn) == RDS_CONN_UP) { 358 struct rds_ib_device *rds_ibdev; 359 360 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid, 361 (union ib_gid *)&iinfo6->dst_gid); 362 rds_ibdev = ic->rds_ibdev; 363 iinfo6->max_send_wr = ic->i_send_ring.w_nr; 364 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr; 365 iinfo6->max_send_sge = rds_ibdev->max_sge; 366 rds6_ib_get_mr_info(rds_ibdev, iinfo6); 367 iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs); 368 } 369 return 1; 370 } 371 #endif 372 373 static void rds_ib_ic_info(struct socket *sock, unsigned int len, 374 struct rds_info_iterator *iter, 375 struct rds_info_lengths *lens) 376 { 377 u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8]; 378 379 rds_for_each_conn_info(sock, len, iter, lens, 380 rds_ib_conn_info_visitor, 381 buffer, 382 sizeof(struct rds_info_rdma_connection)); 383 } 384 385 #if IS_ENABLED(CONFIG_IPV6) 386 /* IPv6 version of rds_ib_ic_info(). */ 387 static void rds6_ib_ic_info(struct socket *sock, unsigned int len, 388 struct rds_info_iterator *iter, 389 struct rds_info_lengths *lens) 390 { 391 u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8]; 392 393 rds_for_each_conn_info(sock, len, iter, lens, 394 rds6_ib_conn_info_visitor, 395 buffer, 396 sizeof(struct rds6_info_rdma_connection)); 397 } 398 #endif 399 400 /* 401 * Early RDS/IB was built to only bind to an address if there is an IPoIB 402 * device with that address set. 403 * 404 * If it were me, I'd advocate for something more flexible. Sending and 405 * receiving should be device-agnostic. Transports would try and maintain 406 * connections between peers who have messages queued. Userspace would be 407 * allowed to influence which paths have priority. We could call userspace 408 * asserting this policy "routing". 409 */ 410 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr, 411 __u32 scope_id) 412 { 413 int ret; 414 struct rdma_cm_id *cm_id; 415 #if IS_ENABLED(CONFIG_IPV6) 416 struct sockaddr_in6 sin6; 417 #endif 418 struct sockaddr_in sin; 419 struct sockaddr *sa; 420 bool isv4; 421 422 isv4 = ipv6_addr_v4mapped(addr); 423 /* Create a CMA ID and try to bind it. This catches both 424 * IB and iWARP capable NICs. 425 */ 426 cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler, 427 NULL, RDMA_PS_TCP, IB_QPT_RC); 428 if (IS_ERR(cm_id)) 429 return PTR_ERR(cm_id); 430 431 if (isv4) { 432 memset(&sin, 0, sizeof(sin)); 433 sin.sin_family = AF_INET; 434 sin.sin_addr.s_addr = addr->s6_addr32[3]; 435 sa = (struct sockaddr *)&sin; 436 } else { 437 #if IS_ENABLED(CONFIG_IPV6) 438 memset(&sin6, 0, sizeof(sin6)); 439 sin6.sin6_family = AF_INET6; 440 sin6.sin6_addr = *addr; 441 sin6.sin6_scope_id = scope_id; 442 sa = (struct sockaddr *)&sin6; 443 444 /* XXX Do a special IPv6 link local address check here. The 445 * reason is that rdma_bind_addr() always succeeds with IPv6 446 * link local address regardless it is indeed configured in a 447 * system. 448 */ 449 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) { 450 struct net_device *dev; 451 452 if (scope_id == 0) { 453 ret = -EADDRNOTAVAIL; 454 goto out; 455 } 456 457 /* Use init_net for now as RDS is not network 458 * name space aware. 459 */ 460 dev = dev_get_by_index(&init_net, scope_id); 461 if (!dev) { 462 ret = -EADDRNOTAVAIL; 463 goto out; 464 } 465 if (!ipv6_chk_addr(&init_net, addr, dev, 1)) { 466 dev_put(dev); 467 ret = -EADDRNOTAVAIL; 468 goto out; 469 } 470 dev_put(dev); 471 } 472 #else 473 ret = -EADDRNOTAVAIL; 474 goto out; 475 #endif 476 } 477 478 /* rdma_bind_addr will only succeed for IB & iWARP devices */ 479 ret = rdma_bind_addr(cm_id, sa); 480 /* due to this, we will claim to support iWARP devices unless we 481 check node_type. */ 482 if (ret || !cm_id->device || 483 cm_id->device->node_type != RDMA_NODE_IB_CA) 484 ret = -EADDRNOTAVAIL; 485 486 rdsdebug("addr %pI6c%%%u ret %d node type %d\n", 487 addr, scope_id, ret, 488 cm_id->device ? cm_id->device->node_type : -1); 489 490 out: 491 rdma_destroy_id(cm_id); 492 493 return ret; 494 } 495 496 static void rds_ib_unregister_client(void) 497 { 498 ib_unregister_client(&rds_ib_client); 499 /* wait for rds_ib_dev_free() to complete */ 500 flush_workqueue(rds_wq); 501 } 502 503 static void rds_ib_set_unloading(void) 504 { 505 atomic_set(&rds_ib_unloading, 1); 506 } 507 508 static bool rds_ib_is_unloading(struct rds_connection *conn) 509 { 510 struct rds_conn_path *cp = &conn->c_path[0]; 511 512 return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) || 513 atomic_read(&rds_ib_unloading) != 0); 514 } 515 516 void rds_ib_exit(void) 517 { 518 rds_ib_set_unloading(); 519 synchronize_rcu(); 520 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 521 #if IS_ENABLED(CONFIG_IPV6) 522 rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); 523 #endif 524 rds_ib_unregister_client(); 525 rds_ib_destroy_nodev_conns(); 526 rds_ib_sysctl_exit(); 527 rds_ib_recv_exit(); 528 rds_trans_unregister(&rds_ib_transport); 529 rds_ib_mr_exit(); 530 } 531 532 static u8 rds_ib_get_tos_map(u8 tos) 533 { 534 /* 1:1 user to transport map for RDMA transport. 535 * In future, if custom map is desired, hook can export 536 * user configurable map. 537 */ 538 return tos; 539 } 540 541 struct rds_transport rds_ib_transport = { 542 .laddr_check = rds_ib_laddr_check, 543 .xmit_path_complete = rds_ib_xmit_path_complete, 544 .xmit = rds_ib_xmit, 545 .xmit_rdma = rds_ib_xmit_rdma, 546 .xmit_atomic = rds_ib_xmit_atomic, 547 .recv_path = rds_ib_recv_path, 548 .conn_alloc = rds_ib_conn_alloc, 549 .conn_free = rds_ib_conn_free, 550 .conn_path_connect = rds_ib_conn_path_connect, 551 .conn_path_shutdown = rds_ib_conn_path_shutdown, 552 .inc_copy_to_user = rds_ib_inc_copy_to_user, 553 .inc_free = rds_ib_inc_free, 554 .cm_initiate_connect = rds_ib_cm_initiate_connect, 555 .cm_handle_connect = rds_ib_cm_handle_connect, 556 .cm_connect_complete = rds_ib_cm_connect_complete, 557 .stats_info_copy = rds_ib_stats_info_copy, 558 .exit = rds_ib_exit, 559 .get_mr = rds_ib_get_mr, 560 .sync_mr = rds_ib_sync_mr, 561 .free_mr = rds_ib_free_mr, 562 .flush_mrs = rds_ib_flush_mrs, 563 .get_tos_map = rds_ib_get_tos_map, 564 .t_owner = THIS_MODULE, 565 .t_name = "infiniband", 566 .t_unloading = rds_ib_is_unloading, 567 .t_type = RDS_TRANS_IB 568 }; 569 570 int rds_ib_init(void) 571 { 572 int ret; 573 574 INIT_LIST_HEAD(&rds_ib_devices); 575 576 ret = rds_ib_mr_init(); 577 if (ret) 578 goto out; 579 580 ret = ib_register_client(&rds_ib_client); 581 if (ret) 582 goto out_mr_exit; 583 584 ret = rds_ib_sysctl_init(); 585 if (ret) 586 goto out_ibreg; 587 588 ret = rds_ib_recv_init(); 589 if (ret) 590 goto out_sysctl; 591 592 rds_trans_register(&rds_ib_transport); 593 594 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 595 #if IS_ENABLED(CONFIG_IPV6) 596 rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); 597 #endif 598 599 goto out; 600 601 out_sysctl: 602 rds_ib_sysctl_exit(); 603 out_ibreg: 604 rds_ib_unregister_client(); 605 out_mr_exit: 606 rds_ib_mr_exit(); 607 out: 608 return ret; 609 } 610 611 MODULE_LICENSE("GPL"); 612