xref: /openbmc/linux/net/rds/ib.c (revision eb3fcf00)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/if.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 
43 #include "rds.h"
44 #include "ib.h"
45 
46 static unsigned int fmr_pool_size = RDS_FMR_POOL_SIZE;
47 unsigned int fmr_message_size = RDS_FMR_SIZE + 1; /* +1 allows for unaligned MRs */
48 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
49 
50 module_param(fmr_pool_size, int, 0444);
51 MODULE_PARM_DESC(fmr_pool_size, " Max number of fmr per HCA");
52 module_param(fmr_message_size, int, 0444);
53 MODULE_PARM_DESC(fmr_message_size, " Max size of a RDMA transfer");
54 module_param(rds_ib_retry_count, int, 0444);
55 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
56 
57 /*
58  * we have a clumsy combination of RCU and a rwsem protecting this list
59  * because it is used both in the get_mr fast path and while blocking in
60  * the FMR flushing path.
61  */
62 DECLARE_RWSEM(rds_ib_devices_lock);
63 struct list_head rds_ib_devices;
64 
65 /* NOTE: if also grabbing ibdev lock, grab this first */
66 DEFINE_SPINLOCK(ib_nodev_conns_lock);
67 LIST_HEAD(ib_nodev_conns);
68 
69 static void rds_ib_nodev_connect(void)
70 {
71 	struct rds_ib_connection *ic;
72 
73 	spin_lock(&ib_nodev_conns_lock);
74 	list_for_each_entry(ic, &ib_nodev_conns, ib_node)
75 		rds_conn_connect_if_down(ic->conn);
76 	spin_unlock(&ib_nodev_conns_lock);
77 }
78 
79 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
80 {
81 	struct rds_ib_connection *ic;
82 	unsigned long flags;
83 
84 	spin_lock_irqsave(&rds_ibdev->spinlock, flags);
85 	list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
86 		rds_conn_drop(ic->conn);
87 	spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
88 }
89 
90 /*
91  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
92  * from interrupt context so we push freing off into a work struct in krdsd.
93  */
94 static void rds_ib_dev_free(struct work_struct *work)
95 {
96 	struct rds_ib_ipaddr *i_ipaddr, *i_next;
97 	struct rds_ib_device *rds_ibdev = container_of(work,
98 					struct rds_ib_device, free_work);
99 
100 	if (rds_ibdev->mr_pool)
101 		rds_ib_destroy_mr_pool(rds_ibdev->mr_pool);
102 	if (rds_ibdev->pd)
103 		ib_dealloc_pd(rds_ibdev->pd);
104 
105 	list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
106 		list_del(&i_ipaddr->list);
107 		kfree(i_ipaddr);
108 	}
109 
110 	kfree(rds_ibdev);
111 }
112 
113 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
114 {
115 	BUG_ON(atomic_read(&rds_ibdev->refcount) <= 0);
116 	if (atomic_dec_and_test(&rds_ibdev->refcount))
117 		queue_work(rds_wq, &rds_ibdev->free_work);
118 }
119 
120 static void rds_ib_add_one(struct ib_device *device)
121 {
122 	struct rds_ib_device *rds_ibdev;
123 	struct ib_device_attr *dev_attr;
124 
125 	/* Only handle IB (no iWARP) devices */
126 	if (device->node_type != RDMA_NODE_IB_CA)
127 		return;
128 
129 	dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
130 	if (!dev_attr)
131 		return;
132 
133 	if (ib_query_device(device, dev_attr)) {
134 		rdsdebug("Query device failed for %s\n", device->name);
135 		goto free_attr;
136 	}
137 
138 	rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
139 				 ibdev_to_node(device));
140 	if (!rds_ibdev)
141 		goto free_attr;
142 
143 	spin_lock_init(&rds_ibdev->spinlock);
144 	atomic_set(&rds_ibdev->refcount, 1);
145 	INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
146 
147 	rds_ibdev->max_wrs = dev_attr->max_qp_wr;
148 	rds_ibdev->max_sge = min(dev_attr->max_sge, RDS_IB_MAX_SGE);
149 
150 	rds_ibdev->fmr_max_remaps = dev_attr->max_map_per_fmr?: 32;
151 	rds_ibdev->max_fmrs = dev_attr->max_fmr ?
152 			min_t(unsigned int, dev_attr->max_fmr, fmr_pool_size) :
153 			fmr_pool_size;
154 
155 	rds_ibdev->max_initiator_depth = dev_attr->max_qp_init_rd_atom;
156 	rds_ibdev->max_responder_resources = dev_attr->max_qp_rd_atom;
157 
158 	rds_ibdev->dev = device;
159 	rds_ibdev->pd = ib_alloc_pd(device);
160 	if (IS_ERR(rds_ibdev->pd)) {
161 		rds_ibdev->pd = NULL;
162 		goto put_dev;
163 	}
164 
165 	rds_ibdev->mr_pool = rds_ib_create_mr_pool(rds_ibdev);
166 	if (IS_ERR(rds_ibdev->mr_pool)) {
167 		rds_ibdev->mr_pool = NULL;
168 		goto put_dev;
169 	}
170 
171 	INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
172 	INIT_LIST_HEAD(&rds_ibdev->conn_list);
173 
174 	down_write(&rds_ib_devices_lock);
175 	list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
176 	up_write(&rds_ib_devices_lock);
177 	atomic_inc(&rds_ibdev->refcount);
178 
179 	ib_set_client_data(device, &rds_ib_client, rds_ibdev);
180 	atomic_inc(&rds_ibdev->refcount);
181 
182 	rds_ib_nodev_connect();
183 
184 put_dev:
185 	rds_ib_dev_put(rds_ibdev);
186 free_attr:
187 	kfree(dev_attr);
188 }
189 
190 /*
191  * New connections use this to find the device to associate with the
192  * connection.  It's not in the fast path so we're not concerned about the
193  * performance of the IB call.  (As of this writing, it uses an interrupt
194  * blocking spinlock to serialize walking a per-device list of all registered
195  * clients.)
196  *
197  * RCU is used to handle incoming connections racing with device teardown.
198  * Rather than use a lock to serialize removal from the client_data and
199  * getting a new reference, we use an RCU grace period.  The destruction
200  * path removes the device from client_data and then waits for all RCU
201  * readers to finish.
202  *
203  * A new connection can get NULL from this if its arriving on a
204  * device that is in the process of being removed.
205  */
206 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
207 {
208 	struct rds_ib_device *rds_ibdev;
209 
210 	rcu_read_lock();
211 	rds_ibdev = ib_get_client_data(device, &rds_ib_client);
212 	if (rds_ibdev)
213 		atomic_inc(&rds_ibdev->refcount);
214 	rcu_read_unlock();
215 	return rds_ibdev;
216 }
217 
218 /*
219  * The IB stack is letting us know that a device is going away.  This can
220  * happen if the underlying HCA driver is removed or if PCI hotplug is removing
221  * the pci function, for example.
222  *
223  * This can be called at any time and can be racing with any other RDS path.
224  */
225 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
226 {
227 	struct rds_ib_device *rds_ibdev = client_data;
228 
229 	if (!rds_ibdev)
230 		return;
231 
232 	rds_ib_dev_shutdown(rds_ibdev);
233 
234 	/* stop connection attempts from getting a reference to this device. */
235 	ib_set_client_data(device, &rds_ib_client, NULL);
236 
237 	down_write(&rds_ib_devices_lock);
238 	list_del_rcu(&rds_ibdev->list);
239 	up_write(&rds_ib_devices_lock);
240 
241 	/*
242 	 * This synchronize rcu is waiting for readers of both the ib
243 	 * client data and the devices list to finish before we drop
244 	 * both of those references.
245 	 */
246 	synchronize_rcu();
247 	rds_ib_dev_put(rds_ibdev);
248 	rds_ib_dev_put(rds_ibdev);
249 }
250 
251 struct ib_client rds_ib_client = {
252 	.name   = "rds_ib",
253 	.add    = rds_ib_add_one,
254 	.remove = rds_ib_remove_one
255 };
256 
257 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
258 				    void *buffer)
259 {
260 	struct rds_info_rdma_connection *iinfo = buffer;
261 	struct rds_ib_connection *ic;
262 
263 	/* We will only ever look at IB transports */
264 	if (conn->c_trans != &rds_ib_transport)
265 		return 0;
266 
267 	iinfo->src_addr = conn->c_laddr;
268 	iinfo->dst_addr = conn->c_faddr;
269 
270 	memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
271 	memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
272 	if (rds_conn_state(conn) == RDS_CONN_UP) {
273 		struct rds_ib_device *rds_ibdev;
274 		struct rdma_dev_addr *dev_addr;
275 
276 		ic = conn->c_transport_data;
277 		dev_addr = &ic->i_cm_id->route.addr.dev_addr;
278 
279 		rdma_addr_get_sgid(dev_addr, (union ib_gid *) &iinfo->src_gid);
280 		rdma_addr_get_dgid(dev_addr, (union ib_gid *) &iinfo->dst_gid);
281 
282 		rds_ibdev = ic->rds_ibdev;
283 		iinfo->max_send_wr = ic->i_send_ring.w_nr;
284 		iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
285 		iinfo->max_send_sge = rds_ibdev->max_sge;
286 		rds_ib_get_mr_info(rds_ibdev, iinfo);
287 	}
288 	return 1;
289 }
290 
291 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
292 			   struct rds_info_iterator *iter,
293 			   struct rds_info_lengths *lens)
294 {
295 	rds_for_each_conn_info(sock, len, iter, lens,
296 				rds_ib_conn_info_visitor,
297 				sizeof(struct rds_info_rdma_connection));
298 }
299 
300 
301 /*
302  * Early RDS/IB was built to only bind to an address if there is an IPoIB
303  * device with that address set.
304  *
305  * If it were me, I'd advocate for something more flexible.  Sending and
306  * receiving should be device-agnostic.  Transports would try and maintain
307  * connections between peers who have messages queued.  Userspace would be
308  * allowed to influence which paths have priority.  We could call userspace
309  * asserting this policy "routing".
310  */
311 static int rds_ib_laddr_check(struct net *net, __be32 addr)
312 {
313 	int ret;
314 	struct rdma_cm_id *cm_id;
315 	struct sockaddr_in sin;
316 
317 	/* Create a CMA ID and try to bind it. This catches both
318 	 * IB and iWARP capable NICs.
319 	 */
320 	cm_id = rdma_create_id(NULL, NULL, RDMA_PS_TCP, IB_QPT_RC);
321 	if (IS_ERR(cm_id))
322 		return PTR_ERR(cm_id);
323 
324 	memset(&sin, 0, sizeof(sin));
325 	sin.sin_family = AF_INET;
326 	sin.sin_addr.s_addr = addr;
327 
328 	/* rdma_bind_addr will only succeed for IB & iWARP devices */
329 	ret = rdma_bind_addr(cm_id, (struct sockaddr *)&sin);
330 	/* due to this, we will claim to support iWARP devices unless we
331 	   check node_type. */
332 	if (ret || !cm_id->device ||
333 	    cm_id->device->node_type != RDMA_NODE_IB_CA)
334 		ret = -EADDRNOTAVAIL;
335 
336 	rdsdebug("addr %pI4 ret %d node type %d\n",
337 		&addr, ret,
338 		cm_id->device ? cm_id->device->node_type : -1);
339 
340 	rdma_destroy_id(cm_id);
341 
342 	return ret;
343 }
344 
345 static void rds_ib_unregister_client(void)
346 {
347 	ib_unregister_client(&rds_ib_client);
348 	/* wait for rds_ib_dev_free() to complete */
349 	flush_workqueue(rds_wq);
350 }
351 
352 void rds_ib_exit(void)
353 {
354 	rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
355 	rds_ib_unregister_client();
356 	rds_ib_destroy_nodev_conns();
357 	rds_ib_sysctl_exit();
358 	rds_ib_recv_exit();
359 	rds_trans_unregister(&rds_ib_transport);
360 	rds_ib_fmr_exit();
361 }
362 
363 struct rds_transport rds_ib_transport = {
364 	.laddr_check		= rds_ib_laddr_check,
365 	.xmit_complete		= rds_ib_xmit_complete,
366 	.xmit			= rds_ib_xmit,
367 	.xmit_rdma		= rds_ib_xmit_rdma,
368 	.xmit_atomic		= rds_ib_xmit_atomic,
369 	.recv			= rds_ib_recv,
370 	.conn_alloc		= rds_ib_conn_alloc,
371 	.conn_free		= rds_ib_conn_free,
372 	.conn_connect		= rds_ib_conn_connect,
373 	.conn_shutdown		= rds_ib_conn_shutdown,
374 	.inc_copy_to_user	= rds_ib_inc_copy_to_user,
375 	.inc_free		= rds_ib_inc_free,
376 	.cm_initiate_connect	= rds_ib_cm_initiate_connect,
377 	.cm_handle_connect	= rds_ib_cm_handle_connect,
378 	.cm_connect_complete	= rds_ib_cm_connect_complete,
379 	.stats_info_copy	= rds_ib_stats_info_copy,
380 	.exit			= rds_ib_exit,
381 	.get_mr			= rds_ib_get_mr,
382 	.sync_mr		= rds_ib_sync_mr,
383 	.free_mr		= rds_ib_free_mr,
384 	.flush_mrs		= rds_ib_flush_mrs,
385 	.t_owner		= THIS_MODULE,
386 	.t_name			= "infiniband",
387 	.t_type			= RDS_TRANS_IB
388 };
389 
390 int rds_ib_init(void)
391 {
392 	int ret;
393 
394 	INIT_LIST_HEAD(&rds_ib_devices);
395 
396 	ret = rds_ib_fmr_init();
397 	if (ret)
398 		goto out;
399 
400 	ret = ib_register_client(&rds_ib_client);
401 	if (ret)
402 		goto out_fmr_exit;
403 
404 	ret = rds_ib_sysctl_init();
405 	if (ret)
406 		goto out_ibreg;
407 
408 	ret = rds_ib_recv_init();
409 	if (ret)
410 		goto out_sysctl;
411 
412 	ret = rds_trans_register(&rds_ib_transport);
413 	if (ret)
414 		goto out_recv;
415 
416 	rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
417 
418 	goto out;
419 
420 out_recv:
421 	rds_ib_recv_exit();
422 out_sysctl:
423 	rds_ib_sysctl_exit();
424 out_ibreg:
425 	rds_ib_unregister_client();
426 out_fmr_exit:
427 	rds_ib_fmr_exit();
428 out:
429 	return ret;
430 }
431 
432 MODULE_LICENSE("GPL");
433 
434