xref: /openbmc/linux/net/rds/ib.c (revision b868a02e)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/if.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <net/addrconf.h>
43 
44 #include "rds_single_path.h"
45 #include "rds.h"
46 #include "ib.h"
47 #include "ib_mr.h"
48 
49 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
50 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
51 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
52 static atomic_t rds_ib_unloading;
53 
54 module_param(rds_ib_mr_1m_pool_size, int, 0444);
55 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
56 module_param(rds_ib_mr_8k_pool_size, int, 0444);
57 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
58 module_param(rds_ib_retry_count, int, 0444);
59 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
60 
61 /*
62  * we have a clumsy combination of RCU and a rwsem protecting this list
63  * because it is used both in the get_mr fast path and while blocking in
64  * the FMR flushing path.
65  */
66 DECLARE_RWSEM(rds_ib_devices_lock);
67 struct list_head rds_ib_devices;
68 
69 /* NOTE: if also grabbing ibdev lock, grab this first */
70 DEFINE_SPINLOCK(ib_nodev_conns_lock);
71 LIST_HEAD(ib_nodev_conns);
72 
73 static void rds_ib_nodev_connect(void)
74 {
75 	struct rds_ib_connection *ic;
76 
77 	spin_lock(&ib_nodev_conns_lock);
78 	list_for_each_entry(ic, &ib_nodev_conns, ib_node)
79 		rds_conn_connect_if_down(ic->conn);
80 	spin_unlock(&ib_nodev_conns_lock);
81 }
82 
83 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
84 {
85 	struct rds_ib_connection *ic;
86 	unsigned long flags;
87 
88 	spin_lock_irqsave(&rds_ibdev->spinlock, flags);
89 	list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
90 		rds_conn_path_drop(&ic->conn->c_path[0], true);
91 	spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
92 }
93 
94 /*
95  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
96  * from interrupt context so we push freing off into a work struct in krdsd.
97  */
98 static void rds_ib_dev_free(struct work_struct *work)
99 {
100 	struct rds_ib_ipaddr *i_ipaddr, *i_next;
101 	struct rds_ib_device *rds_ibdev = container_of(work,
102 					struct rds_ib_device, free_work);
103 
104 	if (rds_ibdev->mr_8k_pool)
105 		rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
106 	if (rds_ibdev->mr_1m_pool)
107 		rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
108 	if (rds_ibdev->pd)
109 		ib_dealloc_pd(rds_ibdev->pd);
110 
111 	list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
112 		list_del(&i_ipaddr->list);
113 		kfree(i_ipaddr);
114 	}
115 
116 	kfree(rds_ibdev->vector_load);
117 
118 	kfree(rds_ibdev);
119 }
120 
121 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
122 {
123 	BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
124 	if (refcount_dec_and_test(&rds_ibdev->refcount))
125 		queue_work(rds_wq, &rds_ibdev->free_work);
126 }
127 
128 static int rds_ib_add_one(struct ib_device *device)
129 {
130 	struct rds_ib_device *rds_ibdev;
131 	int ret;
132 
133 	/* Only handle IB (no iWARP) devices */
134 	if (device->node_type != RDMA_NODE_IB_CA)
135 		return -EOPNOTSUPP;
136 
137 	/* Device must support FRWR */
138 	if (!(device->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
139 		return -EOPNOTSUPP;
140 
141 	rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
142 				 ibdev_to_node(device));
143 	if (!rds_ibdev)
144 		return -ENOMEM;
145 
146 	spin_lock_init(&rds_ibdev->spinlock);
147 	refcount_set(&rds_ibdev->refcount, 1);
148 	INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
149 
150 	INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
151 	INIT_LIST_HEAD(&rds_ibdev->conn_list);
152 
153 	rds_ibdev->max_wrs = device->attrs.max_qp_wr;
154 	rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE);
155 
156 	rds_ibdev->odp_capable =
157 		!!(device->attrs.kernel_cap_flags &
158 		   IBK_ON_DEMAND_PAGING) &&
159 		!!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
160 		   IB_ODP_SUPPORT_WRITE) &&
161 		!!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
162 		   IB_ODP_SUPPORT_READ);
163 
164 	rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
165 		min_t(unsigned int, (device->attrs.max_mr / 2),
166 		      rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
167 
168 	rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
169 		min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
170 		      rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
171 
172 	rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
173 	rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
174 
175 	rds_ibdev->vector_load = kcalloc(device->num_comp_vectors,
176 					 sizeof(int),
177 					 GFP_KERNEL);
178 	if (!rds_ibdev->vector_load) {
179 		pr_err("RDS/IB: %s failed to allocate vector memory\n",
180 			__func__);
181 		ret = -ENOMEM;
182 		goto put_dev;
183 	}
184 
185 	rds_ibdev->dev = device;
186 	rds_ibdev->pd = ib_alloc_pd(device, 0);
187 	if (IS_ERR(rds_ibdev->pd)) {
188 		ret = PTR_ERR(rds_ibdev->pd);
189 		rds_ibdev->pd = NULL;
190 		goto put_dev;
191 	}
192 
193 	rds_ibdev->mr_1m_pool =
194 		rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
195 	if (IS_ERR(rds_ibdev->mr_1m_pool)) {
196 		ret = PTR_ERR(rds_ibdev->mr_1m_pool);
197 		rds_ibdev->mr_1m_pool = NULL;
198 		goto put_dev;
199 	}
200 
201 	rds_ibdev->mr_8k_pool =
202 		rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
203 	if (IS_ERR(rds_ibdev->mr_8k_pool)) {
204 		ret = PTR_ERR(rds_ibdev->mr_8k_pool);
205 		rds_ibdev->mr_8k_pool = NULL;
206 		goto put_dev;
207 	}
208 
209 	rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
210 		 device->attrs.max_mr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
211 		 rds_ibdev->max_1m_mrs, rds_ibdev->max_8k_mrs);
212 
213 	pr_info("RDS/IB: %s: added\n", device->name);
214 
215 	down_write(&rds_ib_devices_lock);
216 	list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
217 	up_write(&rds_ib_devices_lock);
218 	refcount_inc(&rds_ibdev->refcount);
219 
220 	ib_set_client_data(device, &rds_ib_client, rds_ibdev);
221 
222 	rds_ib_nodev_connect();
223 	return 0;
224 
225 put_dev:
226 	rds_ib_dev_put(rds_ibdev);
227 	return ret;
228 }
229 
230 /*
231  * New connections use this to find the device to associate with the
232  * connection.  It's not in the fast path so we're not concerned about the
233  * performance of the IB call.  (As of this writing, it uses an interrupt
234  * blocking spinlock to serialize walking a per-device list of all registered
235  * clients.)
236  *
237  * RCU is used to handle incoming connections racing with device teardown.
238  * Rather than use a lock to serialize removal from the client_data and
239  * getting a new reference, we use an RCU grace period.  The destruction
240  * path removes the device from client_data and then waits for all RCU
241  * readers to finish.
242  *
243  * A new connection can get NULL from this if its arriving on a
244  * device that is in the process of being removed.
245  */
246 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
247 {
248 	struct rds_ib_device *rds_ibdev;
249 
250 	rcu_read_lock();
251 	rds_ibdev = ib_get_client_data(device, &rds_ib_client);
252 	if (rds_ibdev)
253 		refcount_inc(&rds_ibdev->refcount);
254 	rcu_read_unlock();
255 	return rds_ibdev;
256 }
257 
258 /*
259  * The IB stack is letting us know that a device is going away.  This can
260  * happen if the underlying HCA driver is removed or if PCI hotplug is removing
261  * the pci function, for example.
262  *
263  * This can be called at any time and can be racing with any other RDS path.
264  */
265 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
266 {
267 	struct rds_ib_device *rds_ibdev = client_data;
268 
269 	rds_ib_dev_shutdown(rds_ibdev);
270 
271 	/* stop connection attempts from getting a reference to this device. */
272 	ib_set_client_data(device, &rds_ib_client, NULL);
273 
274 	down_write(&rds_ib_devices_lock);
275 	list_del_rcu(&rds_ibdev->list);
276 	up_write(&rds_ib_devices_lock);
277 
278 	/*
279 	 * This synchronize rcu is waiting for readers of both the ib
280 	 * client data and the devices list to finish before we drop
281 	 * both of those references.
282 	 */
283 	synchronize_rcu();
284 	rds_ib_dev_put(rds_ibdev);
285 	rds_ib_dev_put(rds_ibdev);
286 }
287 
288 struct ib_client rds_ib_client = {
289 	.name   = "rds_ib",
290 	.add    = rds_ib_add_one,
291 	.remove = rds_ib_remove_one
292 };
293 
294 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
295 				    void *buffer)
296 {
297 	struct rds_info_rdma_connection *iinfo = buffer;
298 	struct rds_ib_connection *ic = conn->c_transport_data;
299 
300 	/* We will only ever look at IB transports */
301 	if (conn->c_trans != &rds_ib_transport)
302 		return 0;
303 	if (conn->c_isv6)
304 		return 0;
305 
306 	iinfo->src_addr = conn->c_laddr.s6_addr32[3];
307 	iinfo->dst_addr = conn->c_faddr.s6_addr32[3];
308 	if (ic) {
309 		iinfo->tos = conn->c_tos;
310 		iinfo->sl = ic->i_sl;
311 	}
312 
313 	memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
314 	memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
315 	if (rds_conn_state(conn) == RDS_CONN_UP) {
316 		struct rds_ib_device *rds_ibdev;
317 
318 		rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
319 			       (union ib_gid *)&iinfo->dst_gid);
320 
321 		rds_ibdev = ic->rds_ibdev;
322 		iinfo->max_send_wr = ic->i_send_ring.w_nr;
323 		iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
324 		iinfo->max_send_sge = rds_ibdev->max_sge;
325 		rds_ib_get_mr_info(rds_ibdev, iinfo);
326 		iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs);
327 	}
328 	return 1;
329 }
330 
331 #if IS_ENABLED(CONFIG_IPV6)
332 /* IPv6 version of rds_ib_conn_info_visitor(). */
333 static int rds6_ib_conn_info_visitor(struct rds_connection *conn,
334 				     void *buffer)
335 {
336 	struct rds6_info_rdma_connection *iinfo6 = buffer;
337 	struct rds_ib_connection *ic = conn->c_transport_data;
338 
339 	/* We will only ever look at IB transports */
340 	if (conn->c_trans != &rds_ib_transport)
341 		return 0;
342 
343 	iinfo6->src_addr = conn->c_laddr;
344 	iinfo6->dst_addr = conn->c_faddr;
345 	if (ic) {
346 		iinfo6->tos = conn->c_tos;
347 		iinfo6->sl = ic->i_sl;
348 	}
349 
350 	memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid));
351 	memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid));
352 
353 	if (rds_conn_state(conn) == RDS_CONN_UP) {
354 		struct rds_ib_device *rds_ibdev;
355 
356 		rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid,
357 			       (union ib_gid *)&iinfo6->dst_gid);
358 		rds_ibdev = ic->rds_ibdev;
359 		iinfo6->max_send_wr = ic->i_send_ring.w_nr;
360 		iinfo6->max_recv_wr = ic->i_recv_ring.w_nr;
361 		iinfo6->max_send_sge = rds_ibdev->max_sge;
362 		rds6_ib_get_mr_info(rds_ibdev, iinfo6);
363 		iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs);
364 	}
365 	return 1;
366 }
367 #endif
368 
369 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
370 			   struct rds_info_iterator *iter,
371 			   struct rds_info_lengths *lens)
372 {
373 	u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8];
374 
375 	rds_for_each_conn_info(sock, len, iter, lens,
376 				rds_ib_conn_info_visitor,
377 				buffer,
378 				sizeof(struct rds_info_rdma_connection));
379 }
380 
381 #if IS_ENABLED(CONFIG_IPV6)
382 /* IPv6 version of rds_ib_ic_info(). */
383 static void rds6_ib_ic_info(struct socket *sock, unsigned int len,
384 			    struct rds_info_iterator *iter,
385 			    struct rds_info_lengths *lens)
386 {
387 	u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8];
388 
389 	rds_for_each_conn_info(sock, len, iter, lens,
390 			       rds6_ib_conn_info_visitor,
391 			       buffer,
392 			       sizeof(struct rds6_info_rdma_connection));
393 }
394 #endif
395 
396 /*
397  * Early RDS/IB was built to only bind to an address if there is an IPoIB
398  * device with that address set.
399  *
400  * If it were me, I'd advocate for something more flexible.  Sending and
401  * receiving should be device-agnostic.  Transports would try and maintain
402  * connections between peers who have messages queued.  Userspace would be
403  * allowed to influence which paths have priority.  We could call userspace
404  * asserting this policy "routing".
405  */
406 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr,
407 			      __u32 scope_id)
408 {
409 	int ret;
410 	struct rdma_cm_id *cm_id;
411 #if IS_ENABLED(CONFIG_IPV6)
412 	struct sockaddr_in6 sin6;
413 #endif
414 	struct sockaddr_in sin;
415 	struct sockaddr *sa;
416 	bool isv4;
417 
418 	isv4 = ipv6_addr_v4mapped(addr);
419 	/* Create a CMA ID and try to bind it. This catches both
420 	 * IB and iWARP capable NICs.
421 	 */
422 	cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
423 			       NULL, RDMA_PS_TCP, IB_QPT_RC);
424 	if (IS_ERR(cm_id))
425 		return PTR_ERR(cm_id);
426 
427 	if (isv4) {
428 		memset(&sin, 0, sizeof(sin));
429 		sin.sin_family = AF_INET;
430 		sin.sin_addr.s_addr = addr->s6_addr32[3];
431 		sa = (struct sockaddr *)&sin;
432 	} else {
433 #if IS_ENABLED(CONFIG_IPV6)
434 		memset(&sin6, 0, sizeof(sin6));
435 		sin6.sin6_family = AF_INET6;
436 		sin6.sin6_addr = *addr;
437 		sin6.sin6_scope_id = scope_id;
438 		sa = (struct sockaddr *)&sin6;
439 
440 		/* XXX Do a special IPv6 link local address check here.  The
441 		 * reason is that rdma_bind_addr() always succeeds with IPv6
442 		 * link local address regardless it is indeed configured in a
443 		 * system.
444 		 */
445 		if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) {
446 			struct net_device *dev;
447 
448 			if (scope_id == 0) {
449 				ret = -EADDRNOTAVAIL;
450 				goto out;
451 			}
452 
453 			/* Use init_net for now as RDS is not network
454 			 * name space aware.
455 			 */
456 			dev = dev_get_by_index(&init_net, scope_id);
457 			if (!dev) {
458 				ret = -EADDRNOTAVAIL;
459 				goto out;
460 			}
461 			if (!ipv6_chk_addr(&init_net, addr, dev, 1)) {
462 				dev_put(dev);
463 				ret = -EADDRNOTAVAIL;
464 				goto out;
465 			}
466 			dev_put(dev);
467 		}
468 #else
469 		ret = -EADDRNOTAVAIL;
470 		goto out;
471 #endif
472 	}
473 
474 	/* rdma_bind_addr will only succeed for IB & iWARP devices */
475 	ret = rdma_bind_addr(cm_id, sa);
476 	/* due to this, we will claim to support iWARP devices unless we
477 	   check node_type. */
478 	if (ret || !cm_id->device ||
479 	    cm_id->device->node_type != RDMA_NODE_IB_CA)
480 		ret = -EADDRNOTAVAIL;
481 
482 	rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
483 		 addr, scope_id, ret,
484 		 cm_id->device ? cm_id->device->node_type : -1);
485 
486 out:
487 	rdma_destroy_id(cm_id);
488 
489 	return ret;
490 }
491 
492 static void rds_ib_unregister_client(void)
493 {
494 	ib_unregister_client(&rds_ib_client);
495 	/* wait for rds_ib_dev_free() to complete */
496 	flush_workqueue(rds_wq);
497 }
498 
499 static void rds_ib_set_unloading(void)
500 {
501 	atomic_set(&rds_ib_unloading, 1);
502 }
503 
504 static bool rds_ib_is_unloading(struct rds_connection *conn)
505 {
506 	struct rds_conn_path *cp = &conn->c_path[0];
507 
508 	return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
509 		atomic_read(&rds_ib_unloading) != 0);
510 }
511 
512 void rds_ib_exit(void)
513 {
514 	rds_ib_set_unloading();
515 	synchronize_rcu();
516 	rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
517 #if IS_ENABLED(CONFIG_IPV6)
518 	rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
519 #endif
520 	rds_ib_unregister_client();
521 	rds_ib_destroy_nodev_conns();
522 	rds_ib_sysctl_exit();
523 	rds_ib_recv_exit();
524 	rds_trans_unregister(&rds_ib_transport);
525 	rds_ib_mr_exit();
526 }
527 
528 static u8 rds_ib_get_tos_map(u8 tos)
529 {
530 	/* 1:1 user to transport map for RDMA transport.
531 	 * In future, if custom map is desired, hook can export
532 	 * user configurable map.
533 	 */
534 	return tos;
535 }
536 
537 struct rds_transport rds_ib_transport = {
538 	.laddr_check		= rds_ib_laddr_check,
539 	.xmit_path_complete	= rds_ib_xmit_path_complete,
540 	.xmit			= rds_ib_xmit,
541 	.xmit_rdma		= rds_ib_xmit_rdma,
542 	.xmit_atomic		= rds_ib_xmit_atomic,
543 	.recv_path		= rds_ib_recv_path,
544 	.conn_alloc		= rds_ib_conn_alloc,
545 	.conn_free		= rds_ib_conn_free,
546 	.conn_path_connect	= rds_ib_conn_path_connect,
547 	.conn_path_shutdown	= rds_ib_conn_path_shutdown,
548 	.inc_copy_to_user	= rds_ib_inc_copy_to_user,
549 	.inc_free		= rds_ib_inc_free,
550 	.cm_initiate_connect	= rds_ib_cm_initiate_connect,
551 	.cm_handle_connect	= rds_ib_cm_handle_connect,
552 	.cm_connect_complete	= rds_ib_cm_connect_complete,
553 	.stats_info_copy	= rds_ib_stats_info_copy,
554 	.exit			= rds_ib_exit,
555 	.get_mr			= rds_ib_get_mr,
556 	.sync_mr		= rds_ib_sync_mr,
557 	.free_mr		= rds_ib_free_mr,
558 	.flush_mrs		= rds_ib_flush_mrs,
559 	.get_tos_map		= rds_ib_get_tos_map,
560 	.t_owner		= THIS_MODULE,
561 	.t_name			= "infiniband",
562 	.t_unloading		= rds_ib_is_unloading,
563 	.t_type			= RDS_TRANS_IB
564 };
565 
566 int rds_ib_init(void)
567 {
568 	int ret;
569 
570 	INIT_LIST_HEAD(&rds_ib_devices);
571 
572 	ret = rds_ib_mr_init();
573 	if (ret)
574 		goto out;
575 
576 	ret = ib_register_client(&rds_ib_client);
577 	if (ret)
578 		goto out_mr_exit;
579 
580 	ret = rds_ib_sysctl_init();
581 	if (ret)
582 		goto out_ibreg;
583 
584 	ret = rds_ib_recv_init();
585 	if (ret)
586 		goto out_sysctl;
587 
588 	rds_trans_register(&rds_ib_transport);
589 
590 	rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
591 #if IS_ENABLED(CONFIG_IPV6)
592 	rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
593 #endif
594 
595 	goto out;
596 
597 out_sysctl:
598 	rds_ib_sysctl_exit();
599 out_ibreg:
600 	rds_ib_unregister_client();
601 out_mr_exit:
602 	rds_ib_mr_exit();
603 out:
604 	return ret;
605 }
606 
607 MODULE_LICENSE("GPL");
608