1 /* 2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/dmapool.h> 34 #include <linux/kernel.h> 35 #include <linux/in.h> 36 #include <linux/if.h> 37 #include <linux/netdevice.h> 38 #include <linux/inetdevice.h> 39 #include <linux/if_arp.h> 40 #include <linux/delay.h> 41 #include <linux/slab.h> 42 #include <linux/module.h> 43 #include <net/addrconf.h> 44 45 #include "rds_single_path.h" 46 #include "rds.h" 47 #include "ib.h" 48 #include "ib_mr.h" 49 50 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE; 51 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE; 52 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT; 53 static atomic_t rds_ib_unloading; 54 55 module_param(rds_ib_mr_1m_pool_size, int, 0444); 56 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA"); 57 module_param(rds_ib_mr_8k_pool_size, int, 0444); 58 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA"); 59 module_param(rds_ib_retry_count, int, 0444); 60 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error"); 61 62 /* 63 * we have a clumsy combination of RCU and a rwsem protecting this list 64 * because it is used both in the get_mr fast path and while blocking in 65 * the FMR flushing path. 66 */ 67 DECLARE_RWSEM(rds_ib_devices_lock); 68 struct list_head rds_ib_devices; 69 70 /* NOTE: if also grabbing ibdev lock, grab this first */ 71 DEFINE_SPINLOCK(ib_nodev_conns_lock); 72 LIST_HEAD(ib_nodev_conns); 73 74 static void rds_ib_nodev_connect(void) 75 { 76 struct rds_ib_connection *ic; 77 78 spin_lock(&ib_nodev_conns_lock); 79 list_for_each_entry(ic, &ib_nodev_conns, ib_node) 80 rds_conn_connect_if_down(ic->conn); 81 spin_unlock(&ib_nodev_conns_lock); 82 } 83 84 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev) 85 { 86 struct rds_ib_connection *ic; 87 unsigned long flags; 88 89 spin_lock_irqsave(&rds_ibdev->spinlock, flags); 90 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node) 91 rds_conn_path_drop(&ic->conn->c_path[0], true); 92 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags); 93 } 94 95 /* 96 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references 97 * from interrupt context so we push freing off into a work struct in krdsd. 98 */ 99 static void rds_ib_dev_free(struct work_struct *work) 100 { 101 struct rds_ib_ipaddr *i_ipaddr, *i_next; 102 struct rds_ib_device *rds_ibdev = container_of(work, 103 struct rds_ib_device, free_work); 104 105 if (rds_ibdev->mr_8k_pool) 106 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool); 107 if (rds_ibdev->mr_1m_pool) 108 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool); 109 if (rds_ibdev->pd) 110 ib_dealloc_pd(rds_ibdev->pd); 111 dma_pool_destroy(rds_ibdev->rid_hdrs_pool); 112 113 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) { 114 list_del(&i_ipaddr->list); 115 kfree(i_ipaddr); 116 } 117 118 kfree(rds_ibdev->vector_load); 119 120 kfree(rds_ibdev); 121 } 122 123 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev) 124 { 125 BUG_ON(refcount_read(&rds_ibdev->refcount) == 0); 126 if (refcount_dec_and_test(&rds_ibdev->refcount)) 127 queue_work(rds_wq, &rds_ibdev->free_work); 128 } 129 130 static int rds_ib_add_one(struct ib_device *device) 131 { 132 struct rds_ib_device *rds_ibdev; 133 int ret; 134 135 /* Only handle IB (no iWARP) devices */ 136 if (device->node_type != RDMA_NODE_IB_CA) 137 return -EOPNOTSUPP; 138 139 /* Device must support FRWR */ 140 if (!(device->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) 141 return -EOPNOTSUPP; 142 143 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL, 144 ibdev_to_node(device)); 145 if (!rds_ibdev) 146 return -ENOMEM; 147 148 spin_lock_init(&rds_ibdev->spinlock); 149 refcount_set(&rds_ibdev->refcount, 1); 150 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free); 151 152 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list); 153 INIT_LIST_HEAD(&rds_ibdev->conn_list); 154 155 rds_ibdev->max_wrs = device->attrs.max_qp_wr; 156 rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE); 157 158 rds_ibdev->odp_capable = 159 !!(device->attrs.device_cap_flags & 160 IB_DEVICE_ON_DEMAND_PAGING) && 161 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & 162 IB_ODP_SUPPORT_WRITE) && 163 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & 164 IB_ODP_SUPPORT_READ); 165 166 rds_ibdev->max_1m_mrs = device->attrs.max_mr ? 167 min_t(unsigned int, (device->attrs.max_mr / 2), 168 rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size; 169 170 rds_ibdev->max_8k_mrs = device->attrs.max_mr ? 171 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE), 172 rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size; 173 174 rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom; 175 rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom; 176 177 rds_ibdev->vector_load = kcalloc(device->num_comp_vectors, 178 sizeof(int), 179 GFP_KERNEL); 180 if (!rds_ibdev->vector_load) { 181 pr_err("RDS/IB: %s failed to allocate vector memory\n", 182 __func__); 183 ret = -ENOMEM; 184 goto put_dev; 185 } 186 187 rds_ibdev->dev = device; 188 rds_ibdev->pd = ib_alloc_pd(device, 0); 189 if (IS_ERR(rds_ibdev->pd)) { 190 ret = PTR_ERR(rds_ibdev->pd); 191 rds_ibdev->pd = NULL; 192 goto put_dev; 193 } 194 rds_ibdev->rid_hdrs_pool = dma_pool_create(device->name, 195 device->dma_device, 196 sizeof(struct rds_header), 197 L1_CACHE_BYTES, 0); 198 if (!rds_ibdev->rid_hdrs_pool) { 199 ret = -ENOMEM; 200 goto put_dev; 201 } 202 203 rds_ibdev->mr_1m_pool = 204 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL); 205 if (IS_ERR(rds_ibdev->mr_1m_pool)) { 206 ret = PTR_ERR(rds_ibdev->mr_1m_pool); 207 rds_ibdev->mr_1m_pool = NULL; 208 goto put_dev; 209 } 210 211 rds_ibdev->mr_8k_pool = 212 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL); 213 if (IS_ERR(rds_ibdev->mr_8k_pool)) { 214 ret = PTR_ERR(rds_ibdev->mr_8k_pool); 215 rds_ibdev->mr_8k_pool = NULL; 216 goto put_dev; 217 } 218 219 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, max_1m_mrs = %d, max_8k_mrs = %d\n", 220 device->attrs.max_mr, rds_ibdev->max_wrs, rds_ibdev->max_sge, 221 rds_ibdev->max_1m_mrs, rds_ibdev->max_8k_mrs); 222 223 pr_info("RDS/IB: %s: added\n", device->name); 224 225 down_write(&rds_ib_devices_lock); 226 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices); 227 up_write(&rds_ib_devices_lock); 228 refcount_inc(&rds_ibdev->refcount); 229 230 ib_set_client_data(device, &rds_ib_client, rds_ibdev); 231 232 rds_ib_nodev_connect(); 233 return 0; 234 235 put_dev: 236 rds_ib_dev_put(rds_ibdev); 237 return ret; 238 } 239 240 /* 241 * New connections use this to find the device to associate with the 242 * connection. It's not in the fast path so we're not concerned about the 243 * performance of the IB call. (As of this writing, it uses an interrupt 244 * blocking spinlock to serialize walking a per-device list of all registered 245 * clients.) 246 * 247 * RCU is used to handle incoming connections racing with device teardown. 248 * Rather than use a lock to serialize removal from the client_data and 249 * getting a new reference, we use an RCU grace period. The destruction 250 * path removes the device from client_data and then waits for all RCU 251 * readers to finish. 252 * 253 * A new connection can get NULL from this if its arriving on a 254 * device that is in the process of being removed. 255 */ 256 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device) 257 { 258 struct rds_ib_device *rds_ibdev; 259 260 rcu_read_lock(); 261 rds_ibdev = ib_get_client_data(device, &rds_ib_client); 262 if (rds_ibdev) 263 refcount_inc(&rds_ibdev->refcount); 264 rcu_read_unlock(); 265 return rds_ibdev; 266 } 267 268 /* 269 * The IB stack is letting us know that a device is going away. This can 270 * happen if the underlying HCA driver is removed or if PCI hotplug is removing 271 * the pci function, for example. 272 * 273 * This can be called at any time and can be racing with any other RDS path. 274 */ 275 static void rds_ib_remove_one(struct ib_device *device, void *client_data) 276 { 277 struct rds_ib_device *rds_ibdev = client_data; 278 279 rds_ib_dev_shutdown(rds_ibdev); 280 281 /* stop connection attempts from getting a reference to this device. */ 282 ib_set_client_data(device, &rds_ib_client, NULL); 283 284 down_write(&rds_ib_devices_lock); 285 list_del_rcu(&rds_ibdev->list); 286 up_write(&rds_ib_devices_lock); 287 288 /* 289 * This synchronize rcu is waiting for readers of both the ib 290 * client data and the devices list to finish before we drop 291 * both of those references. 292 */ 293 synchronize_rcu(); 294 rds_ib_dev_put(rds_ibdev); 295 rds_ib_dev_put(rds_ibdev); 296 } 297 298 struct ib_client rds_ib_client = { 299 .name = "rds_ib", 300 .add = rds_ib_add_one, 301 .remove = rds_ib_remove_one 302 }; 303 304 static int rds_ib_conn_info_visitor(struct rds_connection *conn, 305 void *buffer) 306 { 307 struct rds_info_rdma_connection *iinfo = buffer; 308 struct rds_ib_connection *ic = conn->c_transport_data; 309 310 /* We will only ever look at IB transports */ 311 if (conn->c_trans != &rds_ib_transport) 312 return 0; 313 if (conn->c_isv6) 314 return 0; 315 316 iinfo->src_addr = conn->c_laddr.s6_addr32[3]; 317 iinfo->dst_addr = conn->c_faddr.s6_addr32[3]; 318 if (ic) { 319 iinfo->tos = conn->c_tos; 320 iinfo->sl = ic->i_sl; 321 } 322 323 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid)); 324 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid)); 325 if (rds_conn_state(conn) == RDS_CONN_UP) { 326 struct rds_ib_device *rds_ibdev; 327 328 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid, 329 (union ib_gid *)&iinfo->dst_gid); 330 331 rds_ibdev = ic->rds_ibdev; 332 iinfo->max_send_wr = ic->i_send_ring.w_nr; 333 iinfo->max_recv_wr = ic->i_recv_ring.w_nr; 334 iinfo->max_send_sge = rds_ibdev->max_sge; 335 rds_ib_get_mr_info(rds_ibdev, iinfo); 336 iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs); 337 } 338 return 1; 339 } 340 341 #if IS_ENABLED(CONFIG_IPV6) 342 /* IPv6 version of rds_ib_conn_info_visitor(). */ 343 static int rds6_ib_conn_info_visitor(struct rds_connection *conn, 344 void *buffer) 345 { 346 struct rds6_info_rdma_connection *iinfo6 = buffer; 347 struct rds_ib_connection *ic = conn->c_transport_data; 348 349 /* We will only ever look at IB transports */ 350 if (conn->c_trans != &rds_ib_transport) 351 return 0; 352 353 iinfo6->src_addr = conn->c_laddr; 354 iinfo6->dst_addr = conn->c_faddr; 355 if (ic) { 356 iinfo6->tos = conn->c_tos; 357 iinfo6->sl = ic->i_sl; 358 } 359 360 memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid)); 361 memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid)); 362 363 if (rds_conn_state(conn) == RDS_CONN_UP) { 364 struct rds_ib_device *rds_ibdev; 365 366 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid, 367 (union ib_gid *)&iinfo6->dst_gid); 368 rds_ibdev = ic->rds_ibdev; 369 iinfo6->max_send_wr = ic->i_send_ring.w_nr; 370 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr; 371 iinfo6->max_send_sge = rds_ibdev->max_sge; 372 rds6_ib_get_mr_info(rds_ibdev, iinfo6); 373 iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs); 374 } 375 return 1; 376 } 377 #endif 378 379 static void rds_ib_ic_info(struct socket *sock, unsigned int len, 380 struct rds_info_iterator *iter, 381 struct rds_info_lengths *lens) 382 { 383 u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8]; 384 385 rds_for_each_conn_info(sock, len, iter, lens, 386 rds_ib_conn_info_visitor, 387 buffer, 388 sizeof(struct rds_info_rdma_connection)); 389 } 390 391 #if IS_ENABLED(CONFIG_IPV6) 392 /* IPv6 version of rds_ib_ic_info(). */ 393 static void rds6_ib_ic_info(struct socket *sock, unsigned int len, 394 struct rds_info_iterator *iter, 395 struct rds_info_lengths *lens) 396 { 397 u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8]; 398 399 rds_for_each_conn_info(sock, len, iter, lens, 400 rds6_ib_conn_info_visitor, 401 buffer, 402 sizeof(struct rds6_info_rdma_connection)); 403 } 404 #endif 405 406 /* 407 * Early RDS/IB was built to only bind to an address if there is an IPoIB 408 * device with that address set. 409 * 410 * If it were me, I'd advocate for something more flexible. Sending and 411 * receiving should be device-agnostic. Transports would try and maintain 412 * connections between peers who have messages queued. Userspace would be 413 * allowed to influence which paths have priority. We could call userspace 414 * asserting this policy "routing". 415 */ 416 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr, 417 __u32 scope_id) 418 { 419 int ret; 420 struct rdma_cm_id *cm_id; 421 #if IS_ENABLED(CONFIG_IPV6) 422 struct sockaddr_in6 sin6; 423 #endif 424 struct sockaddr_in sin; 425 struct sockaddr *sa; 426 bool isv4; 427 428 isv4 = ipv6_addr_v4mapped(addr); 429 /* Create a CMA ID and try to bind it. This catches both 430 * IB and iWARP capable NICs. 431 */ 432 cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler, 433 NULL, RDMA_PS_TCP, IB_QPT_RC); 434 if (IS_ERR(cm_id)) 435 return PTR_ERR(cm_id); 436 437 if (isv4) { 438 memset(&sin, 0, sizeof(sin)); 439 sin.sin_family = AF_INET; 440 sin.sin_addr.s_addr = addr->s6_addr32[3]; 441 sa = (struct sockaddr *)&sin; 442 } else { 443 #if IS_ENABLED(CONFIG_IPV6) 444 memset(&sin6, 0, sizeof(sin6)); 445 sin6.sin6_family = AF_INET6; 446 sin6.sin6_addr = *addr; 447 sin6.sin6_scope_id = scope_id; 448 sa = (struct sockaddr *)&sin6; 449 450 /* XXX Do a special IPv6 link local address check here. The 451 * reason is that rdma_bind_addr() always succeeds with IPv6 452 * link local address regardless it is indeed configured in a 453 * system. 454 */ 455 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) { 456 struct net_device *dev; 457 458 if (scope_id == 0) { 459 ret = -EADDRNOTAVAIL; 460 goto out; 461 } 462 463 /* Use init_net for now as RDS is not network 464 * name space aware. 465 */ 466 dev = dev_get_by_index(&init_net, scope_id); 467 if (!dev) { 468 ret = -EADDRNOTAVAIL; 469 goto out; 470 } 471 if (!ipv6_chk_addr(&init_net, addr, dev, 1)) { 472 dev_put(dev); 473 ret = -EADDRNOTAVAIL; 474 goto out; 475 } 476 dev_put(dev); 477 } 478 #else 479 ret = -EADDRNOTAVAIL; 480 goto out; 481 #endif 482 } 483 484 /* rdma_bind_addr will only succeed for IB & iWARP devices */ 485 ret = rdma_bind_addr(cm_id, sa); 486 /* due to this, we will claim to support iWARP devices unless we 487 check node_type. */ 488 if (ret || !cm_id->device || 489 cm_id->device->node_type != RDMA_NODE_IB_CA) 490 ret = -EADDRNOTAVAIL; 491 492 rdsdebug("addr %pI6c%%%u ret %d node type %d\n", 493 addr, scope_id, ret, 494 cm_id->device ? cm_id->device->node_type : -1); 495 496 out: 497 rdma_destroy_id(cm_id); 498 499 return ret; 500 } 501 502 static void rds_ib_unregister_client(void) 503 { 504 ib_unregister_client(&rds_ib_client); 505 /* wait for rds_ib_dev_free() to complete */ 506 flush_workqueue(rds_wq); 507 } 508 509 static void rds_ib_set_unloading(void) 510 { 511 atomic_set(&rds_ib_unloading, 1); 512 } 513 514 static bool rds_ib_is_unloading(struct rds_connection *conn) 515 { 516 struct rds_conn_path *cp = &conn->c_path[0]; 517 518 return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) || 519 atomic_read(&rds_ib_unloading) != 0); 520 } 521 522 void rds_ib_exit(void) 523 { 524 rds_ib_set_unloading(); 525 synchronize_rcu(); 526 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 527 #if IS_ENABLED(CONFIG_IPV6) 528 rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); 529 #endif 530 rds_ib_unregister_client(); 531 rds_ib_destroy_nodev_conns(); 532 rds_ib_sysctl_exit(); 533 rds_ib_recv_exit(); 534 rds_trans_unregister(&rds_ib_transport); 535 rds_ib_mr_exit(); 536 } 537 538 static u8 rds_ib_get_tos_map(u8 tos) 539 { 540 /* 1:1 user to transport map for RDMA transport. 541 * In future, if custom map is desired, hook can export 542 * user configurable map. 543 */ 544 return tos; 545 } 546 547 struct rds_transport rds_ib_transport = { 548 .laddr_check = rds_ib_laddr_check, 549 .xmit_path_complete = rds_ib_xmit_path_complete, 550 .xmit = rds_ib_xmit, 551 .xmit_rdma = rds_ib_xmit_rdma, 552 .xmit_atomic = rds_ib_xmit_atomic, 553 .recv_path = rds_ib_recv_path, 554 .conn_alloc = rds_ib_conn_alloc, 555 .conn_free = rds_ib_conn_free, 556 .conn_path_connect = rds_ib_conn_path_connect, 557 .conn_path_shutdown = rds_ib_conn_path_shutdown, 558 .inc_copy_to_user = rds_ib_inc_copy_to_user, 559 .inc_free = rds_ib_inc_free, 560 .cm_initiate_connect = rds_ib_cm_initiate_connect, 561 .cm_handle_connect = rds_ib_cm_handle_connect, 562 .cm_connect_complete = rds_ib_cm_connect_complete, 563 .stats_info_copy = rds_ib_stats_info_copy, 564 .exit = rds_ib_exit, 565 .get_mr = rds_ib_get_mr, 566 .sync_mr = rds_ib_sync_mr, 567 .free_mr = rds_ib_free_mr, 568 .flush_mrs = rds_ib_flush_mrs, 569 .get_tos_map = rds_ib_get_tos_map, 570 .t_owner = THIS_MODULE, 571 .t_name = "infiniband", 572 .t_unloading = rds_ib_is_unloading, 573 .t_type = RDS_TRANS_IB 574 }; 575 576 int rds_ib_init(void) 577 { 578 int ret; 579 580 INIT_LIST_HEAD(&rds_ib_devices); 581 582 ret = rds_ib_mr_init(); 583 if (ret) 584 goto out; 585 586 ret = ib_register_client(&rds_ib_client); 587 if (ret) 588 goto out_mr_exit; 589 590 ret = rds_ib_sysctl_init(); 591 if (ret) 592 goto out_ibreg; 593 594 ret = rds_ib_recv_init(); 595 if (ret) 596 goto out_sysctl; 597 598 rds_trans_register(&rds_ib_transport); 599 600 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 601 #if IS_ENABLED(CONFIG_IPV6) 602 rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); 603 #endif 604 605 goto out; 606 607 out_sysctl: 608 rds_ib_sysctl_exit(); 609 out_ibreg: 610 rds_ib_unregister_client(); 611 out_mr_exit: 612 rds_ib_mr_exit(); 613 out: 614 return ret; 615 } 616 617 MODULE_LICENSE("GPL"); 618