xref: /openbmc/linux/net/rds/ib.c (revision 7af6fbdd)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/dmapool.h>
34 #include <linux/kernel.h>
35 #include <linux/in.h>
36 #include <linux/if.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/if_arp.h>
40 #include <linux/delay.h>
41 #include <linux/slab.h>
42 #include <linux/module.h>
43 #include <net/addrconf.h>
44 
45 #include "rds_single_path.h"
46 #include "rds.h"
47 #include "ib.h"
48 #include "ib_mr.h"
49 
50 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
51 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
52 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
53 static atomic_t rds_ib_unloading;
54 
55 module_param(rds_ib_mr_1m_pool_size, int, 0444);
56 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
57 module_param(rds_ib_mr_8k_pool_size, int, 0444);
58 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
59 module_param(rds_ib_retry_count, int, 0444);
60 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
61 
62 /*
63  * we have a clumsy combination of RCU and a rwsem protecting this list
64  * because it is used both in the get_mr fast path and while blocking in
65  * the FMR flushing path.
66  */
67 DECLARE_RWSEM(rds_ib_devices_lock);
68 struct list_head rds_ib_devices;
69 
70 /* NOTE: if also grabbing ibdev lock, grab this first */
71 DEFINE_SPINLOCK(ib_nodev_conns_lock);
72 LIST_HEAD(ib_nodev_conns);
73 
74 static void rds_ib_nodev_connect(void)
75 {
76 	struct rds_ib_connection *ic;
77 
78 	spin_lock(&ib_nodev_conns_lock);
79 	list_for_each_entry(ic, &ib_nodev_conns, ib_node)
80 		rds_conn_connect_if_down(ic->conn);
81 	spin_unlock(&ib_nodev_conns_lock);
82 }
83 
84 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
85 {
86 	struct rds_ib_connection *ic;
87 	unsigned long flags;
88 
89 	spin_lock_irqsave(&rds_ibdev->spinlock, flags);
90 	list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
91 		rds_conn_path_drop(&ic->conn->c_path[0], true);
92 	spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
93 }
94 
95 /*
96  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
97  * from interrupt context so we push freing off into a work struct in krdsd.
98  */
99 static void rds_ib_dev_free(struct work_struct *work)
100 {
101 	struct rds_ib_ipaddr *i_ipaddr, *i_next;
102 	struct rds_ib_device *rds_ibdev = container_of(work,
103 					struct rds_ib_device, free_work);
104 
105 	if (rds_ibdev->mr_8k_pool)
106 		rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
107 	if (rds_ibdev->mr_1m_pool)
108 		rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
109 	if (rds_ibdev->pd)
110 		ib_dealloc_pd(rds_ibdev->pd);
111 	dma_pool_destroy(rds_ibdev->rid_hdrs_pool);
112 
113 	list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
114 		list_del(&i_ipaddr->list);
115 		kfree(i_ipaddr);
116 	}
117 
118 	kfree(rds_ibdev->vector_load);
119 
120 	kfree(rds_ibdev);
121 }
122 
123 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
124 {
125 	BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
126 	if (refcount_dec_and_test(&rds_ibdev->refcount))
127 		queue_work(rds_wq, &rds_ibdev->free_work);
128 }
129 
130 static int rds_ib_add_one(struct ib_device *device)
131 {
132 	struct rds_ib_device *rds_ibdev;
133 	int ret;
134 
135 	/* Only handle IB (no iWARP) devices */
136 	if (device->node_type != RDMA_NODE_IB_CA)
137 		return -EOPNOTSUPP;
138 
139 	/* Device must support FRWR */
140 	if (!(device->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
141 		return -EOPNOTSUPP;
142 
143 	rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
144 				 ibdev_to_node(device));
145 	if (!rds_ibdev)
146 		return -ENOMEM;
147 
148 	spin_lock_init(&rds_ibdev->spinlock);
149 	refcount_set(&rds_ibdev->refcount, 1);
150 	INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
151 
152 	INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
153 	INIT_LIST_HEAD(&rds_ibdev->conn_list);
154 
155 	rds_ibdev->max_wrs = device->attrs.max_qp_wr;
156 	rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE);
157 
158 	rds_ibdev->odp_capable =
159 		!!(device->attrs.device_cap_flags &
160 		   IB_DEVICE_ON_DEMAND_PAGING) &&
161 		!!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
162 		   IB_ODP_SUPPORT_WRITE) &&
163 		!!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
164 		   IB_ODP_SUPPORT_READ);
165 
166 	rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
167 		min_t(unsigned int, (device->attrs.max_mr / 2),
168 		      rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
169 
170 	rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
171 		min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
172 		      rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
173 
174 	rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
175 	rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
176 
177 	rds_ibdev->vector_load = kcalloc(device->num_comp_vectors,
178 					 sizeof(int),
179 					 GFP_KERNEL);
180 	if (!rds_ibdev->vector_load) {
181 		pr_err("RDS/IB: %s failed to allocate vector memory\n",
182 			__func__);
183 		ret = -ENOMEM;
184 		goto put_dev;
185 	}
186 
187 	rds_ibdev->dev = device;
188 	rds_ibdev->pd = ib_alloc_pd(device, 0);
189 	if (IS_ERR(rds_ibdev->pd)) {
190 		ret = PTR_ERR(rds_ibdev->pd);
191 		rds_ibdev->pd = NULL;
192 		goto put_dev;
193 	}
194 	rds_ibdev->rid_hdrs_pool = dma_pool_create(device->name,
195 						   device->dma_device,
196 						   sizeof(struct rds_header),
197 						   L1_CACHE_BYTES, 0);
198 	if (!rds_ibdev->rid_hdrs_pool) {
199 		ret = -ENOMEM;
200 		goto put_dev;
201 	}
202 
203 	rds_ibdev->mr_1m_pool =
204 		rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
205 	if (IS_ERR(rds_ibdev->mr_1m_pool)) {
206 		ret = PTR_ERR(rds_ibdev->mr_1m_pool);
207 		rds_ibdev->mr_1m_pool = NULL;
208 		goto put_dev;
209 	}
210 
211 	rds_ibdev->mr_8k_pool =
212 		rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
213 	if (IS_ERR(rds_ibdev->mr_8k_pool)) {
214 		ret = PTR_ERR(rds_ibdev->mr_8k_pool);
215 		rds_ibdev->mr_8k_pool = NULL;
216 		goto put_dev;
217 	}
218 
219 	rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
220 		 device->attrs.max_mr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
221 		 rds_ibdev->max_1m_mrs, rds_ibdev->max_8k_mrs);
222 
223 	pr_info("RDS/IB: %s: added\n", device->name);
224 
225 	down_write(&rds_ib_devices_lock);
226 	list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
227 	up_write(&rds_ib_devices_lock);
228 	refcount_inc(&rds_ibdev->refcount);
229 
230 	ib_set_client_data(device, &rds_ib_client, rds_ibdev);
231 
232 	rds_ib_nodev_connect();
233 	return 0;
234 
235 put_dev:
236 	rds_ib_dev_put(rds_ibdev);
237 	return ret;
238 }
239 
240 /*
241  * New connections use this to find the device to associate with the
242  * connection.  It's not in the fast path so we're not concerned about the
243  * performance of the IB call.  (As of this writing, it uses an interrupt
244  * blocking spinlock to serialize walking a per-device list of all registered
245  * clients.)
246  *
247  * RCU is used to handle incoming connections racing with device teardown.
248  * Rather than use a lock to serialize removal from the client_data and
249  * getting a new reference, we use an RCU grace period.  The destruction
250  * path removes the device from client_data and then waits for all RCU
251  * readers to finish.
252  *
253  * A new connection can get NULL from this if its arriving on a
254  * device that is in the process of being removed.
255  */
256 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
257 {
258 	struct rds_ib_device *rds_ibdev;
259 
260 	rcu_read_lock();
261 	rds_ibdev = ib_get_client_data(device, &rds_ib_client);
262 	if (rds_ibdev)
263 		refcount_inc(&rds_ibdev->refcount);
264 	rcu_read_unlock();
265 	return rds_ibdev;
266 }
267 
268 /*
269  * The IB stack is letting us know that a device is going away.  This can
270  * happen if the underlying HCA driver is removed or if PCI hotplug is removing
271  * the pci function, for example.
272  *
273  * This can be called at any time and can be racing with any other RDS path.
274  */
275 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
276 {
277 	struct rds_ib_device *rds_ibdev = client_data;
278 
279 	rds_ib_dev_shutdown(rds_ibdev);
280 
281 	/* stop connection attempts from getting a reference to this device. */
282 	ib_set_client_data(device, &rds_ib_client, NULL);
283 
284 	down_write(&rds_ib_devices_lock);
285 	list_del_rcu(&rds_ibdev->list);
286 	up_write(&rds_ib_devices_lock);
287 
288 	/*
289 	 * This synchronize rcu is waiting for readers of both the ib
290 	 * client data and the devices list to finish before we drop
291 	 * both of those references.
292 	 */
293 	synchronize_rcu();
294 	rds_ib_dev_put(rds_ibdev);
295 	rds_ib_dev_put(rds_ibdev);
296 }
297 
298 struct ib_client rds_ib_client = {
299 	.name   = "rds_ib",
300 	.add    = rds_ib_add_one,
301 	.remove = rds_ib_remove_one
302 };
303 
304 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
305 				    void *buffer)
306 {
307 	struct rds_info_rdma_connection *iinfo = buffer;
308 	struct rds_ib_connection *ic = conn->c_transport_data;
309 
310 	/* We will only ever look at IB transports */
311 	if (conn->c_trans != &rds_ib_transport)
312 		return 0;
313 	if (conn->c_isv6)
314 		return 0;
315 
316 	iinfo->src_addr = conn->c_laddr.s6_addr32[3];
317 	iinfo->dst_addr = conn->c_faddr.s6_addr32[3];
318 	if (ic) {
319 		iinfo->tos = conn->c_tos;
320 		iinfo->sl = ic->i_sl;
321 	}
322 
323 	memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
324 	memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
325 	if (rds_conn_state(conn) == RDS_CONN_UP) {
326 		struct rds_ib_device *rds_ibdev;
327 
328 		rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
329 			       (union ib_gid *)&iinfo->dst_gid);
330 
331 		rds_ibdev = ic->rds_ibdev;
332 		iinfo->max_send_wr = ic->i_send_ring.w_nr;
333 		iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
334 		iinfo->max_send_sge = rds_ibdev->max_sge;
335 		rds_ib_get_mr_info(rds_ibdev, iinfo);
336 		iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs);
337 	}
338 	return 1;
339 }
340 
341 #if IS_ENABLED(CONFIG_IPV6)
342 /* IPv6 version of rds_ib_conn_info_visitor(). */
343 static int rds6_ib_conn_info_visitor(struct rds_connection *conn,
344 				     void *buffer)
345 {
346 	struct rds6_info_rdma_connection *iinfo6 = buffer;
347 	struct rds_ib_connection *ic = conn->c_transport_data;
348 
349 	/* We will only ever look at IB transports */
350 	if (conn->c_trans != &rds_ib_transport)
351 		return 0;
352 
353 	iinfo6->src_addr = conn->c_laddr;
354 	iinfo6->dst_addr = conn->c_faddr;
355 	if (ic) {
356 		iinfo6->tos = conn->c_tos;
357 		iinfo6->sl = ic->i_sl;
358 	}
359 
360 	memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid));
361 	memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid));
362 
363 	if (rds_conn_state(conn) == RDS_CONN_UP) {
364 		struct rds_ib_device *rds_ibdev;
365 
366 		rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid,
367 			       (union ib_gid *)&iinfo6->dst_gid);
368 		rds_ibdev = ic->rds_ibdev;
369 		iinfo6->max_send_wr = ic->i_send_ring.w_nr;
370 		iinfo6->max_recv_wr = ic->i_recv_ring.w_nr;
371 		iinfo6->max_send_sge = rds_ibdev->max_sge;
372 		rds6_ib_get_mr_info(rds_ibdev, iinfo6);
373 		iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs);
374 	}
375 	return 1;
376 }
377 #endif
378 
379 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
380 			   struct rds_info_iterator *iter,
381 			   struct rds_info_lengths *lens)
382 {
383 	u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8];
384 
385 	rds_for_each_conn_info(sock, len, iter, lens,
386 				rds_ib_conn_info_visitor,
387 				buffer,
388 				sizeof(struct rds_info_rdma_connection));
389 }
390 
391 #if IS_ENABLED(CONFIG_IPV6)
392 /* IPv6 version of rds_ib_ic_info(). */
393 static void rds6_ib_ic_info(struct socket *sock, unsigned int len,
394 			    struct rds_info_iterator *iter,
395 			    struct rds_info_lengths *lens)
396 {
397 	u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8];
398 
399 	rds_for_each_conn_info(sock, len, iter, lens,
400 			       rds6_ib_conn_info_visitor,
401 			       buffer,
402 			       sizeof(struct rds6_info_rdma_connection));
403 }
404 #endif
405 
406 /*
407  * Early RDS/IB was built to only bind to an address if there is an IPoIB
408  * device with that address set.
409  *
410  * If it were me, I'd advocate for something more flexible.  Sending and
411  * receiving should be device-agnostic.  Transports would try and maintain
412  * connections between peers who have messages queued.  Userspace would be
413  * allowed to influence which paths have priority.  We could call userspace
414  * asserting this policy "routing".
415  */
416 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr,
417 			      __u32 scope_id)
418 {
419 	int ret;
420 	struct rdma_cm_id *cm_id;
421 #if IS_ENABLED(CONFIG_IPV6)
422 	struct sockaddr_in6 sin6;
423 #endif
424 	struct sockaddr_in sin;
425 	struct sockaddr *sa;
426 	bool isv4;
427 
428 	isv4 = ipv6_addr_v4mapped(addr);
429 	/* Create a CMA ID and try to bind it. This catches both
430 	 * IB and iWARP capable NICs.
431 	 */
432 	cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
433 			       NULL, RDMA_PS_TCP, IB_QPT_RC);
434 	if (IS_ERR(cm_id))
435 		return PTR_ERR(cm_id);
436 
437 	if (isv4) {
438 		memset(&sin, 0, sizeof(sin));
439 		sin.sin_family = AF_INET;
440 		sin.sin_addr.s_addr = addr->s6_addr32[3];
441 		sa = (struct sockaddr *)&sin;
442 	} else {
443 #if IS_ENABLED(CONFIG_IPV6)
444 		memset(&sin6, 0, sizeof(sin6));
445 		sin6.sin6_family = AF_INET6;
446 		sin6.sin6_addr = *addr;
447 		sin6.sin6_scope_id = scope_id;
448 		sa = (struct sockaddr *)&sin6;
449 
450 		/* XXX Do a special IPv6 link local address check here.  The
451 		 * reason is that rdma_bind_addr() always succeeds with IPv6
452 		 * link local address regardless it is indeed configured in a
453 		 * system.
454 		 */
455 		if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) {
456 			struct net_device *dev;
457 
458 			if (scope_id == 0) {
459 				ret = -EADDRNOTAVAIL;
460 				goto out;
461 			}
462 
463 			/* Use init_net for now as RDS is not network
464 			 * name space aware.
465 			 */
466 			dev = dev_get_by_index(&init_net, scope_id);
467 			if (!dev) {
468 				ret = -EADDRNOTAVAIL;
469 				goto out;
470 			}
471 			if (!ipv6_chk_addr(&init_net, addr, dev, 1)) {
472 				dev_put(dev);
473 				ret = -EADDRNOTAVAIL;
474 				goto out;
475 			}
476 			dev_put(dev);
477 		}
478 #else
479 		ret = -EADDRNOTAVAIL;
480 		goto out;
481 #endif
482 	}
483 
484 	/* rdma_bind_addr will only succeed for IB & iWARP devices */
485 	ret = rdma_bind_addr(cm_id, sa);
486 	/* due to this, we will claim to support iWARP devices unless we
487 	   check node_type. */
488 	if (ret || !cm_id->device ||
489 	    cm_id->device->node_type != RDMA_NODE_IB_CA)
490 		ret = -EADDRNOTAVAIL;
491 
492 	rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
493 		 addr, scope_id, ret,
494 		 cm_id->device ? cm_id->device->node_type : -1);
495 
496 out:
497 	rdma_destroy_id(cm_id);
498 
499 	return ret;
500 }
501 
502 static void rds_ib_unregister_client(void)
503 {
504 	ib_unregister_client(&rds_ib_client);
505 	/* wait for rds_ib_dev_free() to complete */
506 	flush_workqueue(rds_wq);
507 }
508 
509 static void rds_ib_set_unloading(void)
510 {
511 	atomic_set(&rds_ib_unloading, 1);
512 }
513 
514 static bool rds_ib_is_unloading(struct rds_connection *conn)
515 {
516 	struct rds_conn_path *cp = &conn->c_path[0];
517 
518 	return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
519 		atomic_read(&rds_ib_unloading) != 0);
520 }
521 
522 void rds_ib_exit(void)
523 {
524 	rds_ib_set_unloading();
525 	synchronize_rcu();
526 	rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
527 #if IS_ENABLED(CONFIG_IPV6)
528 	rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
529 #endif
530 	rds_ib_unregister_client();
531 	rds_ib_destroy_nodev_conns();
532 	rds_ib_sysctl_exit();
533 	rds_ib_recv_exit();
534 	rds_trans_unregister(&rds_ib_transport);
535 	rds_ib_mr_exit();
536 }
537 
538 static u8 rds_ib_get_tos_map(u8 tos)
539 {
540 	/* 1:1 user to transport map for RDMA transport.
541 	 * In future, if custom map is desired, hook can export
542 	 * user configurable map.
543 	 */
544 	return tos;
545 }
546 
547 struct rds_transport rds_ib_transport = {
548 	.laddr_check		= rds_ib_laddr_check,
549 	.xmit_path_complete	= rds_ib_xmit_path_complete,
550 	.xmit			= rds_ib_xmit,
551 	.xmit_rdma		= rds_ib_xmit_rdma,
552 	.xmit_atomic		= rds_ib_xmit_atomic,
553 	.recv_path		= rds_ib_recv_path,
554 	.conn_alloc		= rds_ib_conn_alloc,
555 	.conn_free		= rds_ib_conn_free,
556 	.conn_path_connect	= rds_ib_conn_path_connect,
557 	.conn_path_shutdown	= rds_ib_conn_path_shutdown,
558 	.inc_copy_to_user	= rds_ib_inc_copy_to_user,
559 	.inc_free		= rds_ib_inc_free,
560 	.cm_initiate_connect	= rds_ib_cm_initiate_connect,
561 	.cm_handle_connect	= rds_ib_cm_handle_connect,
562 	.cm_connect_complete	= rds_ib_cm_connect_complete,
563 	.stats_info_copy	= rds_ib_stats_info_copy,
564 	.exit			= rds_ib_exit,
565 	.get_mr			= rds_ib_get_mr,
566 	.sync_mr		= rds_ib_sync_mr,
567 	.free_mr		= rds_ib_free_mr,
568 	.flush_mrs		= rds_ib_flush_mrs,
569 	.get_tos_map		= rds_ib_get_tos_map,
570 	.t_owner		= THIS_MODULE,
571 	.t_name			= "infiniband",
572 	.t_unloading		= rds_ib_is_unloading,
573 	.t_type			= RDS_TRANS_IB
574 };
575 
576 int rds_ib_init(void)
577 {
578 	int ret;
579 
580 	INIT_LIST_HEAD(&rds_ib_devices);
581 
582 	ret = rds_ib_mr_init();
583 	if (ret)
584 		goto out;
585 
586 	ret = ib_register_client(&rds_ib_client);
587 	if (ret)
588 		goto out_mr_exit;
589 
590 	ret = rds_ib_sysctl_init();
591 	if (ret)
592 		goto out_ibreg;
593 
594 	ret = rds_ib_recv_init();
595 	if (ret)
596 		goto out_sysctl;
597 
598 	rds_trans_register(&rds_ib_transport);
599 
600 	rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
601 #if IS_ENABLED(CONFIG_IPV6)
602 	rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
603 #endif
604 
605 	goto out;
606 
607 out_sysctl:
608 	rds_ib_sysctl_exit();
609 out_ibreg:
610 	rds_ib_unregister_client();
611 out_mr_exit:
612 	rds_ib_mr_exit();
613 out:
614 	return ret;
615 }
616 
617 MODULE_LICENSE("GPL");
618