xref: /openbmc/linux/net/rds/ib.c (revision 74ce1896)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/if.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 
43 #include "rds_single_path.h"
44 #include "rds.h"
45 #include "ib.h"
46 #include "ib_mr.h"
47 
48 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
49 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
50 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
51 
52 module_param(rds_ib_mr_1m_pool_size, int, 0444);
53 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
54 module_param(rds_ib_mr_8k_pool_size, int, 0444);
55 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
56 module_param(rds_ib_retry_count, int, 0444);
57 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
58 
59 /*
60  * we have a clumsy combination of RCU and a rwsem protecting this list
61  * because it is used both in the get_mr fast path and while blocking in
62  * the FMR flushing path.
63  */
64 DECLARE_RWSEM(rds_ib_devices_lock);
65 struct list_head rds_ib_devices;
66 
67 /* NOTE: if also grabbing ibdev lock, grab this first */
68 DEFINE_SPINLOCK(ib_nodev_conns_lock);
69 LIST_HEAD(ib_nodev_conns);
70 
71 static void rds_ib_nodev_connect(void)
72 {
73 	struct rds_ib_connection *ic;
74 
75 	spin_lock(&ib_nodev_conns_lock);
76 	list_for_each_entry(ic, &ib_nodev_conns, ib_node)
77 		rds_conn_connect_if_down(ic->conn);
78 	spin_unlock(&ib_nodev_conns_lock);
79 }
80 
81 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
82 {
83 	struct rds_ib_connection *ic;
84 	unsigned long flags;
85 
86 	spin_lock_irqsave(&rds_ibdev->spinlock, flags);
87 	list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
88 		rds_conn_drop(ic->conn);
89 	spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
90 }
91 
92 /*
93  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
94  * from interrupt context so we push freing off into a work struct in krdsd.
95  */
96 static void rds_ib_dev_free(struct work_struct *work)
97 {
98 	struct rds_ib_ipaddr *i_ipaddr, *i_next;
99 	struct rds_ib_device *rds_ibdev = container_of(work,
100 					struct rds_ib_device, free_work);
101 
102 	if (rds_ibdev->mr_8k_pool)
103 		rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
104 	if (rds_ibdev->mr_1m_pool)
105 		rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
106 	if (rds_ibdev->pd)
107 		ib_dealloc_pd(rds_ibdev->pd);
108 
109 	list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
110 		list_del(&i_ipaddr->list);
111 		kfree(i_ipaddr);
112 	}
113 
114 	kfree(rds_ibdev->vector_load);
115 
116 	kfree(rds_ibdev);
117 }
118 
119 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
120 {
121 	BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
122 	if (refcount_dec_and_test(&rds_ibdev->refcount))
123 		queue_work(rds_wq, &rds_ibdev->free_work);
124 }
125 
126 static void rds_ib_add_one(struct ib_device *device)
127 {
128 	struct rds_ib_device *rds_ibdev;
129 
130 	/* Only handle IB (no iWARP) devices */
131 	if (device->node_type != RDMA_NODE_IB_CA)
132 		return;
133 
134 	rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
135 				 ibdev_to_node(device));
136 	if (!rds_ibdev)
137 		return;
138 
139 	spin_lock_init(&rds_ibdev->spinlock);
140 	refcount_set(&rds_ibdev->refcount, 1);
141 	INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
142 
143 	rds_ibdev->max_wrs = device->attrs.max_qp_wr;
144 	rds_ibdev->max_sge = min(device->attrs.max_sge, RDS_IB_MAX_SGE);
145 
146 	rds_ibdev->has_fr = (device->attrs.device_cap_flags &
147 				  IB_DEVICE_MEM_MGT_EXTENSIONS);
148 	rds_ibdev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
149 			    device->map_phys_fmr && device->unmap_fmr);
150 	rds_ibdev->use_fastreg = (rds_ibdev->has_fr && !rds_ibdev->has_fmr);
151 
152 	rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32;
153 	rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
154 		min_t(unsigned int, (device->attrs.max_mr / 2),
155 		      rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
156 
157 	rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
158 		min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
159 		      rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
160 
161 	rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
162 	rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
163 
164 	rds_ibdev->vector_load = kzalloc(sizeof(int) * device->num_comp_vectors,
165 					 GFP_KERNEL);
166 	if (!rds_ibdev->vector_load) {
167 		pr_err("RDS/IB: %s failed to allocate vector memory\n",
168 			__func__);
169 		goto put_dev;
170 	}
171 
172 	rds_ibdev->dev = device;
173 	rds_ibdev->pd = ib_alloc_pd(device, 0);
174 	if (IS_ERR(rds_ibdev->pd)) {
175 		rds_ibdev->pd = NULL;
176 		goto put_dev;
177 	}
178 
179 	rds_ibdev->mr_1m_pool =
180 		rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
181 	if (IS_ERR(rds_ibdev->mr_1m_pool)) {
182 		rds_ibdev->mr_1m_pool = NULL;
183 		goto put_dev;
184 	}
185 
186 	rds_ibdev->mr_8k_pool =
187 		rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
188 	if (IS_ERR(rds_ibdev->mr_8k_pool)) {
189 		rds_ibdev->mr_8k_pool = NULL;
190 		goto put_dev;
191 	}
192 
193 	rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
194 		 device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
195 		 rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs,
196 		 rds_ibdev->max_8k_mrs);
197 
198 	pr_info("RDS/IB: %s: %s supported and preferred\n",
199 		device->name,
200 		rds_ibdev->use_fastreg ? "FRMR" : "FMR");
201 
202 	INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
203 	INIT_LIST_HEAD(&rds_ibdev->conn_list);
204 
205 	down_write(&rds_ib_devices_lock);
206 	list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
207 	up_write(&rds_ib_devices_lock);
208 	refcount_inc(&rds_ibdev->refcount);
209 
210 	ib_set_client_data(device, &rds_ib_client, rds_ibdev);
211 	refcount_inc(&rds_ibdev->refcount);
212 
213 	rds_ib_nodev_connect();
214 
215 put_dev:
216 	rds_ib_dev_put(rds_ibdev);
217 }
218 
219 /*
220  * New connections use this to find the device to associate with the
221  * connection.  It's not in the fast path so we're not concerned about the
222  * performance of the IB call.  (As of this writing, it uses an interrupt
223  * blocking spinlock to serialize walking a per-device list of all registered
224  * clients.)
225  *
226  * RCU is used to handle incoming connections racing with device teardown.
227  * Rather than use a lock to serialize removal from the client_data and
228  * getting a new reference, we use an RCU grace period.  The destruction
229  * path removes the device from client_data and then waits for all RCU
230  * readers to finish.
231  *
232  * A new connection can get NULL from this if its arriving on a
233  * device that is in the process of being removed.
234  */
235 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
236 {
237 	struct rds_ib_device *rds_ibdev;
238 
239 	rcu_read_lock();
240 	rds_ibdev = ib_get_client_data(device, &rds_ib_client);
241 	if (rds_ibdev)
242 		refcount_inc(&rds_ibdev->refcount);
243 	rcu_read_unlock();
244 	return rds_ibdev;
245 }
246 
247 /*
248  * The IB stack is letting us know that a device is going away.  This can
249  * happen if the underlying HCA driver is removed or if PCI hotplug is removing
250  * the pci function, for example.
251  *
252  * This can be called at any time and can be racing with any other RDS path.
253  */
254 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
255 {
256 	struct rds_ib_device *rds_ibdev = client_data;
257 
258 	if (!rds_ibdev)
259 		return;
260 
261 	rds_ib_dev_shutdown(rds_ibdev);
262 
263 	/* stop connection attempts from getting a reference to this device. */
264 	ib_set_client_data(device, &rds_ib_client, NULL);
265 
266 	down_write(&rds_ib_devices_lock);
267 	list_del_rcu(&rds_ibdev->list);
268 	up_write(&rds_ib_devices_lock);
269 
270 	/*
271 	 * This synchronize rcu is waiting for readers of both the ib
272 	 * client data and the devices list to finish before we drop
273 	 * both of those references.
274 	 */
275 	synchronize_rcu();
276 	rds_ib_dev_put(rds_ibdev);
277 	rds_ib_dev_put(rds_ibdev);
278 }
279 
280 struct ib_client rds_ib_client = {
281 	.name   = "rds_ib",
282 	.add    = rds_ib_add_one,
283 	.remove = rds_ib_remove_one
284 };
285 
286 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
287 				    void *buffer)
288 {
289 	struct rds_info_rdma_connection *iinfo = buffer;
290 	struct rds_ib_connection *ic;
291 
292 	/* We will only ever look at IB transports */
293 	if (conn->c_trans != &rds_ib_transport)
294 		return 0;
295 
296 	iinfo->src_addr = conn->c_laddr;
297 	iinfo->dst_addr = conn->c_faddr;
298 
299 	memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
300 	memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
301 	if (rds_conn_state(conn) == RDS_CONN_UP) {
302 		struct rds_ib_device *rds_ibdev;
303 		struct rdma_dev_addr *dev_addr;
304 
305 		ic = conn->c_transport_data;
306 		dev_addr = &ic->i_cm_id->route.addr.dev_addr;
307 
308 		rdma_addr_get_sgid(dev_addr, (union ib_gid *) &iinfo->src_gid);
309 		rdma_addr_get_dgid(dev_addr, (union ib_gid *) &iinfo->dst_gid);
310 
311 		rds_ibdev = ic->rds_ibdev;
312 		iinfo->max_send_wr = ic->i_send_ring.w_nr;
313 		iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
314 		iinfo->max_send_sge = rds_ibdev->max_sge;
315 		rds_ib_get_mr_info(rds_ibdev, iinfo);
316 	}
317 	return 1;
318 }
319 
320 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
321 			   struct rds_info_iterator *iter,
322 			   struct rds_info_lengths *lens)
323 {
324 	rds_for_each_conn_info(sock, len, iter, lens,
325 				rds_ib_conn_info_visitor,
326 				sizeof(struct rds_info_rdma_connection));
327 }
328 
329 
330 /*
331  * Early RDS/IB was built to only bind to an address if there is an IPoIB
332  * device with that address set.
333  *
334  * If it were me, I'd advocate for something more flexible.  Sending and
335  * receiving should be device-agnostic.  Transports would try and maintain
336  * connections between peers who have messages queued.  Userspace would be
337  * allowed to influence which paths have priority.  We could call userspace
338  * asserting this policy "routing".
339  */
340 static int rds_ib_laddr_check(struct net *net, __be32 addr)
341 {
342 	int ret;
343 	struct rdma_cm_id *cm_id;
344 	struct sockaddr_in sin;
345 
346 	/* Create a CMA ID and try to bind it. This catches both
347 	 * IB and iWARP capable NICs.
348 	 */
349 	cm_id = rdma_create_id(&init_net, NULL, NULL, RDMA_PS_TCP, IB_QPT_RC);
350 	if (IS_ERR(cm_id))
351 		return PTR_ERR(cm_id);
352 
353 	memset(&sin, 0, sizeof(sin));
354 	sin.sin_family = AF_INET;
355 	sin.sin_addr.s_addr = addr;
356 
357 	/* rdma_bind_addr will only succeed for IB & iWARP devices */
358 	ret = rdma_bind_addr(cm_id, (struct sockaddr *)&sin);
359 	/* due to this, we will claim to support iWARP devices unless we
360 	   check node_type. */
361 	if (ret || !cm_id->device ||
362 	    cm_id->device->node_type != RDMA_NODE_IB_CA)
363 		ret = -EADDRNOTAVAIL;
364 
365 	rdsdebug("addr %pI4 ret %d node type %d\n",
366 		&addr, ret,
367 		cm_id->device ? cm_id->device->node_type : -1);
368 
369 	rdma_destroy_id(cm_id);
370 
371 	return ret;
372 }
373 
374 static void rds_ib_unregister_client(void)
375 {
376 	ib_unregister_client(&rds_ib_client);
377 	/* wait for rds_ib_dev_free() to complete */
378 	flush_workqueue(rds_wq);
379 }
380 
381 void rds_ib_exit(void)
382 {
383 	rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
384 	rds_ib_unregister_client();
385 	rds_ib_destroy_nodev_conns();
386 	rds_ib_sysctl_exit();
387 	rds_ib_recv_exit();
388 	rds_trans_unregister(&rds_ib_transport);
389 	rds_ib_mr_exit();
390 }
391 
392 struct rds_transport rds_ib_transport = {
393 	.laddr_check		= rds_ib_laddr_check,
394 	.xmit_path_complete	= rds_ib_xmit_path_complete,
395 	.xmit			= rds_ib_xmit,
396 	.xmit_rdma		= rds_ib_xmit_rdma,
397 	.xmit_atomic		= rds_ib_xmit_atomic,
398 	.recv_path		= rds_ib_recv_path,
399 	.conn_alloc		= rds_ib_conn_alloc,
400 	.conn_free		= rds_ib_conn_free,
401 	.conn_path_connect	= rds_ib_conn_path_connect,
402 	.conn_path_shutdown	= rds_ib_conn_path_shutdown,
403 	.inc_copy_to_user	= rds_ib_inc_copy_to_user,
404 	.inc_free		= rds_ib_inc_free,
405 	.cm_initiate_connect	= rds_ib_cm_initiate_connect,
406 	.cm_handle_connect	= rds_ib_cm_handle_connect,
407 	.cm_connect_complete	= rds_ib_cm_connect_complete,
408 	.stats_info_copy	= rds_ib_stats_info_copy,
409 	.exit			= rds_ib_exit,
410 	.get_mr			= rds_ib_get_mr,
411 	.sync_mr		= rds_ib_sync_mr,
412 	.free_mr		= rds_ib_free_mr,
413 	.flush_mrs		= rds_ib_flush_mrs,
414 	.t_owner		= THIS_MODULE,
415 	.t_name			= "infiniband",
416 	.t_type			= RDS_TRANS_IB
417 };
418 
419 int rds_ib_init(void)
420 {
421 	int ret;
422 
423 	INIT_LIST_HEAD(&rds_ib_devices);
424 
425 	ret = rds_ib_mr_init();
426 	if (ret)
427 		goto out;
428 
429 	ret = ib_register_client(&rds_ib_client);
430 	if (ret)
431 		goto out_mr_exit;
432 
433 	ret = rds_ib_sysctl_init();
434 	if (ret)
435 		goto out_ibreg;
436 
437 	ret = rds_ib_recv_init();
438 	if (ret)
439 		goto out_sysctl;
440 
441 	rds_trans_register(&rds_ib_transport);
442 
443 	rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
444 
445 	goto out;
446 
447 out_sysctl:
448 	rds_ib_sysctl_exit();
449 out_ibreg:
450 	rds_ib_unregister_client();
451 out_mr_exit:
452 	rds_ib_mr_exit();
453 out:
454 	return ret;
455 }
456 
457 MODULE_LICENSE("GPL");
458 
459