1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/in.h> 35 #include <linux/if.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/if_arp.h> 39 #include <linux/delay.h> 40 #include <linux/slab.h> 41 42 #include "rds.h" 43 #include "ib.h" 44 45 static unsigned int fmr_pool_size = RDS_FMR_POOL_SIZE; 46 unsigned int fmr_message_size = RDS_FMR_SIZE + 1; /* +1 allows for unaligned MRs */ 47 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT; 48 49 module_param(fmr_pool_size, int, 0444); 50 MODULE_PARM_DESC(fmr_pool_size, " Max number of fmr per HCA"); 51 module_param(fmr_message_size, int, 0444); 52 MODULE_PARM_DESC(fmr_message_size, " Max size of a RDMA transfer"); 53 module_param(rds_ib_retry_count, int, 0444); 54 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error"); 55 56 /* 57 * we have a clumsy combination of RCU and a rwsem protecting this list 58 * because it is used both in the get_mr fast path and while blocking in 59 * the FMR flushing path. 60 */ 61 DECLARE_RWSEM(rds_ib_devices_lock); 62 struct list_head rds_ib_devices; 63 64 /* NOTE: if also grabbing ibdev lock, grab this first */ 65 DEFINE_SPINLOCK(ib_nodev_conns_lock); 66 LIST_HEAD(ib_nodev_conns); 67 68 static void rds_ib_nodev_connect(void) 69 { 70 struct rds_ib_connection *ic; 71 72 spin_lock(&ib_nodev_conns_lock); 73 list_for_each_entry(ic, &ib_nodev_conns, ib_node) 74 rds_conn_connect_if_down(ic->conn); 75 spin_unlock(&ib_nodev_conns_lock); 76 } 77 78 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev) 79 { 80 struct rds_ib_connection *ic; 81 unsigned long flags; 82 83 spin_lock_irqsave(&rds_ibdev->spinlock, flags); 84 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node) 85 rds_conn_drop(ic->conn); 86 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags); 87 } 88 89 /* 90 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references 91 * from interrupt context so we push freing off into a work struct in krdsd. 92 */ 93 static void rds_ib_dev_free(struct work_struct *work) 94 { 95 struct rds_ib_ipaddr *i_ipaddr, *i_next; 96 struct rds_ib_device *rds_ibdev = container_of(work, 97 struct rds_ib_device, free_work); 98 99 if (rds_ibdev->mr_pool) 100 rds_ib_destroy_mr_pool(rds_ibdev->mr_pool); 101 if (rds_ibdev->mr) 102 ib_dereg_mr(rds_ibdev->mr); 103 if (rds_ibdev->pd) 104 ib_dealloc_pd(rds_ibdev->pd); 105 106 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) { 107 list_del(&i_ipaddr->list); 108 kfree(i_ipaddr); 109 } 110 111 kfree(rds_ibdev); 112 } 113 114 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev) 115 { 116 BUG_ON(atomic_read(&rds_ibdev->refcount) <= 0); 117 if (atomic_dec_and_test(&rds_ibdev->refcount)) 118 queue_work(rds_wq, &rds_ibdev->free_work); 119 } 120 121 static void rds_ib_add_one(struct ib_device *device) 122 { 123 struct rds_ib_device *rds_ibdev; 124 struct ib_device_attr *dev_attr; 125 126 /* Only handle IB (no iWARP) devices */ 127 if (device->node_type != RDMA_NODE_IB_CA) 128 return; 129 130 dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL); 131 if (!dev_attr) 132 return; 133 134 if (ib_query_device(device, dev_attr)) { 135 rdsdebug("Query device failed for %s\n", device->name); 136 goto free_attr; 137 } 138 139 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL, 140 ibdev_to_node(device)); 141 if (!rds_ibdev) 142 goto free_attr; 143 144 spin_lock_init(&rds_ibdev->spinlock); 145 atomic_set(&rds_ibdev->refcount, 1); 146 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free); 147 148 rds_ibdev->max_wrs = dev_attr->max_qp_wr; 149 rds_ibdev->max_sge = min(dev_attr->max_sge, RDS_IB_MAX_SGE); 150 151 rds_ibdev->fmr_max_remaps = dev_attr->max_map_per_fmr?: 32; 152 rds_ibdev->max_fmrs = dev_attr->max_fmr ? 153 min_t(unsigned int, dev_attr->max_fmr, fmr_pool_size) : 154 fmr_pool_size; 155 156 rds_ibdev->max_initiator_depth = dev_attr->max_qp_init_rd_atom; 157 rds_ibdev->max_responder_resources = dev_attr->max_qp_rd_atom; 158 159 rds_ibdev->dev = device; 160 rds_ibdev->pd = ib_alloc_pd(device); 161 if (IS_ERR(rds_ibdev->pd)) { 162 rds_ibdev->pd = NULL; 163 goto put_dev; 164 } 165 166 rds_ibdev->mr = ib_get_dma_mr(rds_ibdev->pd, IB_ACCESS_LOCAL_WRITE); 167 if (IS_ERR(rds_ibdev->mr)) { 168 rds_ibdev->mr = NULL; 169 goto put_dev; 170 } 171 172 rds_ibdev->mr_pool = rds_ib_create_mr_pool(rds_ibdev); 173 if (IS_ERR(rds_ibdev->mr_pool)) { 174 rds_ibdev->mr_pool = NULL; 175 goto put_dev; 176 } 177 178 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list); 179 INIT_LIST_HEAD(&rds_ibdev->conn_list); 180 181 down_write(&rds_ib_devices_lock); 182 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices); 183 up_write(&rds_ib_devices_lock); 184 atomic_inc(&rds_ibdev->refcount); 185 186 ib_set_client_data(device, &rds_ib_client, rds_ibdev); 187 atomic_inc(&rds_ibdev->refcount); 188 189 rds_ib_nodev_connect(); 190 191 put_dev: 192 rds_ib_dev_put(rds_ibdev); 193 free_attr: 194 kfree(dev_attr); 195 } 196 197 /* 198 * New connections use this to find the device to associate with the 199 * connection. It's not in the fast path so we're not concerned about the 200 * performance of the IB call. (As of this writing, it uses an interrupt 201 * blocking spinlock to serialize walking a per-device list of all registered 202 * clients.) 203 * 204 * RCU is used to handle incoming connections racing with device teardown. 205 * Rather than use a lock to serialize removal from the client_data and 206 * getting a new reference, we use an RCU grace period. The destruction 207 * path removes the device from client_data and then waits for all RCU 208 * readers to finish. 209 * 210 * A new connection can get NULL from this if its arriving on a 211 * device that is in the process of being removed. 212 */ 213 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device) 214 { 215 struct rds_ib_device *rds_ibdev; 216 217 rcu_read_lock(); 218 rds_ibdev = ib_get_client_data(device, &rds_ib_client); 219 if (rds_ibdev) 220 atomic_inc(&rds_ibdev->refcount); 221 rcu_read_unlock(); 222 return rds_ibdev; 223 } 224 225 /* 226 * The IB stack is letting us know that a device is going away. This can 227 * happen if the underlying HCA driver is removed or if PCI hotplug is removing 228 * the pci function, for example. 229 * 230 * This can be called at any time and can be racing with any other RDS path. 231 */ 232 static void rds_ib_remove_one(struct ib_device *device) 233 { 234 struct rds_ib_device *rds_ibdev; 235 236 rds_ibdev = ib_get_client_data(device, &rds_ib_client); 237 if (!rds_ibdev) 238 return; 239 240 rds_ib_dev_shutdown(rds_ibdev); 241 242 /* stop connection attempts from getting a reference to this device. */ 243 ib_set_client_data(device, &rds_ib_client, NULL); 244 245 down_write(&rds_ib_devices_lock); 246 list_del_rcu(&rds_ibdev->list); 247 up_write(&rds_ib_devices_lock); 248 249 /* 250 * This synchronize rcu is waiting for readers of both the ib 251 * client data and the devices list to finish before we drop 252 * both of those references. 253 */ 254 synchronize_rcu(); 255 rds_ib_dev_put(rds_ibdev); 256 rds_ib_dev_put(rds_ibdev); 257 } 258 259 struct ib_client rds_ib_client = { 260 .name = "rds_ib", 261 .add = rds_ib_add_one, 262 .remove = rds_ib_remove_one 263 }; 264 265 static int rds_ib_conn_info_visitor(struct rds_connection *conn, 266 void *buffer) 267 { 268 struct rds_info_rdma_connection *iinfo = buffer; 269 struct rds_ib_connection *ic; 270 271 /* We will only ever look at IB transports */ 272 if (conn->c_trans != &rds_ib_transport) 273 return 0; 274 275 iinfo->src_addr = conn->c_laddr; 276 iinfo->dst_addr = conn->c_faddr; 277 278 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid)); 279 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid)); 280 if (rds_conn_state(conn) == RDS_CONN_UP) { 281 struct rds_ib_device *rds_ibdev; 282 struct rdma_dev_addr *dev_addr; 283 284 ic = conn->c_transport_data; 285 dev_addr = &ic->i_cm_id->route.addr.dev_addr; 286 287 rdma_addr_get_sgid(dev_addr, (union ib_gid *) &iinfo->src_gid); 288 rdma_addr_get_dgid(dev_addr, (union ib_gid *) &iinfo->dst_gid); 289 290 rds_ibdev = ic->rds_ibdev; 291 iinfo->max_send_wr = ic->i_send_ring.w_nr; 292 iinfo->max_recv_wr = ic->i_recv_ring.w_nr; 293 iinfo->max_send_sge = rds_ibdev->max_sge; 294 rds_ib_get_mr_info(rds_ibdev, iinfo); 295 } 296 return 1; 297 } 298 299 static void rds_ib_ic_info(struct socket *sock, unsigned int len, 300 struct rds_info_iterator *iter, 301 struct rds_info_lengths *lens) 302 { 303 rds_for_each_conn_info(sock, len, iter, lens, 304 rds_ib_conn_info_visitor, 305 sizeof(struct rds_info_rdma_connection)); 306 } 307 308 309 /* 310 * Early RDS/IB was built to only bind to an address if there is an IPoIB 311 * device with that address set. 312 * 313 * If it were me, I'd advocate for something more flexible. Sending and 314 * receiving should be device-agnostic. Transports would try and maintain 315 * connections between peers who have messages queued. Userspace would be 316 * allowed to influence which paths have priority. We could call userspace 317 * asserting this policy "routing". 318 */ 319 static int rds_ib_laddr_check(__be32 addr) 320 { 321 int ret; 322 struct rdma_cm_id *cm_id; 323 struct sockaddr_in sin; 324 325 /* Create a CMA ID and try to bind it. This catches both 326 * IB and iWARP capable NICs. 327 */ 328 cm_id = rdma_create_id(NULL, NULL, RDMA_PS_TCP); 329 if (IS_ERR(cm_id)) 330 return PTR_ERR(cm_id); 331 332 memset(&sin, 0, sizeof(sin)); 333 sin.sin_family = AF_INET; 334 sin.sin_addr.s_addr = addr; 335 336 /* rdma_bind_addr will only succeed for IB & iWARP devices */ 337 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&sin); 338 /* due to this, we will claim to support iWARP devices unless we 339 check node_type. */ 340 if (ret || cm_id->device->node_type != RDMA_NODE_IB_CA) 341 ret = -EADDRNOTAVAIL; 342 343 rdsdebug("addr %pI4 ret %d node type %d\n", 344 &addr, ret, 345 cm_id->device ? cm_id->device->node_type : -1); 346 347 rdma_destroy_id(cm_id); 348 349 return ret; 350 } 351 352 static void rds_ib_unregister_client(void) 353 { 354 ib_unregister_client(&rds_ib_client); 355 /* wait for rds_ib_dev_free() to complete */ 356 flush_workqueue(rds_wq); 357 } 358 359 void rds_ib_exit(void) 360 { 361 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 362 rds_ib_unregister_client(); 363 rds_ib_destroy_nodev_conns(); 364 rds_ib_sysctl_exit(); 365 rds_ib_recv_exit(); 366 rds_trans_unregister(&rds_ib_transport); 367 rds_ib_fmr_exit(); 368 } 369 370 struct rds_transport rds_ib_transport = { 371 .laddr_check = rds_ib_laddr_check, 372 .xmit_complete = rds_ib_xmit_complete, 373 .xmit = rds_ib_xmit, 374 .xmit_rdma = rds_ib_xmit_rdma, 375 .xmit_atomic = rds_ib_xmit_atomic, 376 .recv = rds_ib_recv, 377 .conn_alloc = rds_ib_conn_alloc, 378 .conn_free = rds_ib_conn_free, 379 .conn_connect = rds_ib_conn_connect, 380 .conn_shutdown = rds_ib_conn_shutdown, 381 .inc_copy_to_user = rds_ib_inc_copy_to_user, 382 .inc_free = rds_ib_inc_free, 383 .cm_initiate_connect = rds_ib_cm_initiate_connect, 384 .cm_handle_connect = rds_ib_cm_handle_connect, 385 .cm_connect_complete = rds_ib_cm_connect_complete, 386 .stats_info_copy = rds_ib_stats_info_copy, 387 .exit = rds_ib_exit, 388 .get_mr = rds_ib_get_mr, 389 .sync_mr = rds_ib_sync_mr, 390 .free_mr = rds_ib_free_mr, 391 .flush_mrs = rds_ib_flush_mrs, 392 .t_owner = THIS_MODULE, 393 .t_name = "infiniband", 394 .t_type = RDS_TRANS_IB 395 }; 396 397 int rds_ib_init(void) 398 { 399 int ret; 400 401 INIT_LIST_HEAD(&rds_ib_devices); 402 403 ret = rds_ib_fmr_init(); 404 if (ret) 405 goto out; 406 407 ret = ib_register_client(&rds_ib_client); 408 if (ret) 409 goto out_fmr_exit; 410 411 ret = rds_ib_sysctl_init(); 412 if (ret) 413 goto out_ibreg; 414 415 ret = rds_ib_recv_init(); 416 if (ret) 417 goto out_sysctl; 418 419 ret = rds_trans_register(&rds_ib_transport); 420 if (ret) 421 goto out_recv; 422 423 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 424 425 goto out; 426 427 out_recv: 428 rds_ib_recv_exit(); 429 out_sysctl: 430 rds_ib_sysctl_exit(); 431 out_ibreg: 432 rds_ib_unregister_client(); 433 out_fmr_exit: 434 rds_ib_fmr_exit(); 435 out: 436 return ret; 437 } 438 439 MODULE_LICENSE("GPL"); 440 441