1 /* 2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/dmapool.h> 34 #include <linux/kernel.h> 35 #include <linux/in.h> 36 #include <linux/if.h> 37 #include <linux/netdevice.h> 38 #include <linux/inetdevice.h> 39 #include <linux/if_arp.h> 40 #include <linux/delay.h> 41 #include <linux/slab.h> 42 #include <linux/module.h> 43 #include <net/addrconf.h> 44 45 #include "rds_single_path.h" 46 #include "rds.h" 47 #include "ib.h" 48 #include "ib_mr.h" 49 50 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE; 51 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE; 52 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT; 53 static atomic_t rds_ib_unloading; 54 55 module_param(rds_ib_mr_1m_pool_size, int, 0444); 56 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA"); 57 module_param(rds_ib_mr_8k_pool_size, int, 0444); 58 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA"); 59 module_param(rds_ib_retry_count, int, 0444); 60 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error"); 61 62 /* 63 * we have a clumsy combination of RCU and a rwsem protecting this list 64 * because it is used both in the get_mr fast path and while blocking in 65 * the FMR flushing path. 66 */ 67 DECLARE_RWSEM(rds_ib_devices_lock); 68 struct list_head rds_ib_devices; 69 70 /* NOTE: if also grabbing ibdev lock, grab this first */ 71 DEFINE_SPINLOCK(ib_nodev_conns_lock); 72 LIST_HEAD(ib_nodev_conns); 73 74 static void rds_ib_nodev_connect(void) 75 { 76 struct rds_ib_connection *ic; 77 78 spin_lock(&ib_nodev_conns_lock); 79 list_for_each_entry(ic, &ib_nodev_conns, ib_node) 80 rds_conn_connect_if_down(ic->conn); 81 spin_unlock(&ib_nodev_conns_lock); 82 } 83 84 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev) 85 { 86 struct rds_ib_connection *ic; 87 unsigned long flags; 88 89 spin_lock_irqsave(&rds_ibdev->spinlock, flags); 90 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node) 91 rds_conn_path_drop(&ic->conn->c_path[0], true); 92 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags); 93 } 94 95 /* 96 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references 97 * from interrupt context so we push freing off into a work struct in krdsd. 98 */ 99 static void rds_ib_dev_free(struct work_struct *work) 100 { 101 struct rds_ib_ipaddr *i_ipaddr, *i_next; 102 struct rds_ib_device *rds_ibdev = container_of(work, 103 struct rds_ib_device, free_work); 104 105 if (rds_ibdev->mr_8k_pool) 106 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool); 107 if (rds_ibdev->mr_1m_pool) 108 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool); 109 if (rds_ibdev->pd) 110 ib_dealloc_pd(rds_ibdev->pd); 111 dma_pool_destroy(rds_ibdev->rid_hdrs_pool); 112 113 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) { 114 list_del(&i_ipaddr->list); 115 kfree(i_ipaddr); 116 } 117 118 kfree(rds_ibdev->vector_load); 119 120 kfree(rds_ibdev); 121 } 122 123 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev) 124 { 125 BUG_ON(refcount_read(&rds_ibdev->refcount) == 0); 126 if (refcount_dec_and_test(&rds_ibdev->refcount)) 127 queue_work(rds_wq, &rds_ibdev->free_work); 128 } 129 130 static void rds_ib_add_one(struct ib_device *device) 131 { 132 struct rds_ib_device *rds_ibdev; 133 bool has_fr, has_fmr; 134 135 /* Only handle IB (no iWARP) devices */ 136 if (device->node_type != RDMA_NODE_IB_CA) 137 return; 138 139 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL, 140 ibdev_to_node(device)); 141 if (!rds_ibdev) 142 return; 143 144 spin_lock_init(&rds_ibdev->spinlock); 145 refcount_set(&rds_ibdev->refcount, 1); 146 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free); 147 148 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list); 149 INIT_LIST_HEAD(&rds_ibdev->conn_list); 150 151 rds_ibdev->max_wrs = device->attrs.max_qp_wr; 152 rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE); 153 154 has_fr = (device->attrs.device_cap_flags & 155 IB_DEVICE_MEM_MGT_EXTENSIONS); 156 has_fmr = (device->ops.alloc_fmr && device->ops.dealloc_fmr && 157 device->ops.map_phys_fmr && device->ops.unmap_fmr); 158 rds_ibdev->use_fastreg = (has_fr && !has_fmr); 159 rds_ibdev->odp_capable = 160 !!(device->attrs.device_cap_flags & 161 IB_DEVICE_ON_DEMAND_PAGING) && 162 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & 163 IB_ODP_SUPPORT_WRITE) && 164 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & 165 IB_ODP_SUPPORT_READ); 166 167 rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32; 168 rds_ibdev->max_1m_mrs = device->attrs.max_mr ? 169 min_t(unsigned int, (device->attrs.max_mr / 2), 170 rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size; 171 172 rds_ibdev->max_8k_mrs = device->attrs.max_mr ? 173 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE), 174 rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size; 175 176 rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom; 177 rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom; 178 179 rds_ibdev->vector_load = kcalloc(device->num_comp_vectors, 180 sizeof(int), 181 GFP_KERNEL); 182 if (!rds_ibdev->vector_load) { 183 pr_err("RDS/IB: %s failed to allocate vector memory\n", 184 __func__); 185 goto put_dev; 186 } 187 188 rds_ibdev->dev = device; 189 rds_ibdev->pd = ib_alloc_pd(device, 0); 190 if (IS_ERR(rds_ibdev->pd)) { 191 rds_ibdev->pd = NULL; 192 goto put_dev; 193 } 194 rds_ibdev->rid_hdrs_pool = dma_pool_create(device->name, 195 device->dma_device, 196 sizeof(struct rds_header), 197 L1_CACHE_BYTES, 0); 198 if (!rds_ibdev->rid_hdrs_pool) 199 goto put_dev; 200 201 rds_ibdev->mr_1m_pool = 202 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL); 203 if (IS_ERR(rds_ibdev->mr_1m_pool)) { 204 rds_ibdev->mr_1m_pool = NULL; 205 goto put_dev; 206 } 207 208 rds_ibdev->mr_8k_pool = 209 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL); 210 if (IS_ERR(rds_ibdev->mr_8k_pool)) { 211 rds_ibdev->mr_8k_pool = NULL; 212 goto put_dev; 213 } 214 215 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n", 216 device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge, 217 rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs, 218 rds_ibdev->max_8k_mrs); 219 220 pr_info("RDS/IB: %s: %s supported and preferred\n", 221 device->name, 222 rds_ibdev->use_fastreg ? "FRMR" : "FMR"); 223 224 down_write(&rds_ib_devices_lock); 225 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices); 226 up_write(&rds_ib_devices_lock); 227 refcount_inc(&rds_ibdev->refcount); 228 229 ib_set_client_data(device, &rds_ib_client, rds_ibdev); 230 refcount_inc(&rds_ibdev->refcount); 231 232 rds_ib_nodev_connect(); 233 234 put_dev: 235 rds_ib_dev_put(rds_ibdev); 236 } 237 238 /* 239 * New connections use this to find the device to associate with the 240 * connection. It's not in the fast path so we're not concerned about the 241 * performance of the IB call. (As of this writing, it uses an interrupt 242 * blocking spinlock to serialize walking a per-device list of all registered 243 * clients.) 244 * 245 * RCU is used to handle incoming connections racing with device teardown. 246 * Rather than use a lock to serialize removal from the client_data and 247 * getting a new reference, we use an RCU grace period. The destruction 248 * path removes the device from client_data and then waits for all RCU 249 * readers to finish. 250 * 251 * A new connection can get NULL from this if its arriving on a 252 * device that is in the process of being removed. 253 */ 254 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device) 255 { 256 struct rds_ib_device *rds_ibdev; 257 258 rcu_read_lock(); 259 rds_ibdev = ib_get_client_data(device, &rds_ib_client); 260 if (rds_ibdev) 261 refcount_inc(&rds_ibdev->refcount); 262 rcu_read_unlock(); 263 return rds_ibdev; 264 } 265 266 /* 267 * The IB stack is letting us know that a device is going away. This can 268 * happen if the underlying HCA driver is removed or if PCI hotplug is removing 269 * the pci function, for example. 270 * 271 * This can be called at any time and can be racing with any other RDS path. 272 */ 273 static void rds_ib_remove_one(struct ib_device *device, void *client_data) 274 { 275 struct rds_ib_device *rds_ibdev = client_data; 276 277 if (!rds_ibdev) 278 return; 279 280 rds_ib_dev_shutdown(rds_ibdev); 281 282 /* stop connection attempts from getting a reference to this device. */ 283 ib_set_client_data(device, &rds_ib_client, NULL); 284 285 down_write(&rds_ib_devices_lock); 286 list_del_rcu(&rds_ibdev->list); 287 up_write(&rds_ib_devices_lock); 288 289 /* 290 * This synchronize rcu is waiting for readers of both the ib 291 * client data and the devices list to finish before we drop 292 * both of those references. 293 */ 294 synchronize_rcu(); 295 rds_ib_dev_put(rds_ibdev); 296 rds_ib_dev_put(rds_ibdev); 297 } 298 299 struct ib_client rds_ib_client = { 300 .name = "rds_ib", 301 .add = rds_ib_add_one, 302 .remove = rds_ib_remove_one 303 }; 304 305 static int rds_ib_conn_info_visitor(struct rds_connection *conn, 306 void *buffer) 307 { 308 struct rds_info_rdma_connection *iinfo = buffer; 309 struct rds_ib_connection *ic = conn->c_transport_data; 310 311 /* We will only ever look at IB transports */ 312 if (conn->c_trans != &rds_ib_transport) 313 return 0; 314 if (conn->c_isv6) 315 return 0; 316 317 iinfo->src_addr = conn->c_laddr.s6_addr32[3]; 318 iinfo->dst_addr = conn->c_faddr.s6_addr32[3]; 319 if (ic) { 320 iinfo->tos = conn->c_tos; 321 iinfo->sl = ic->i_sl; 322 } 323 324 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid)); 325 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid)); 326 if (rds_conn_state(conn) == RDS_CONN_UP) { 327 struct rds_ib_device *rds_ibdev; 328 329 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid, 330 (union ib_gid *)&iinfo->dst_gid); 331 332 rds_ibdev = ic->rds_ibdev; 333 iinfo->max_send_wr = ic->i_send_ring.w_nr; 334 iinfo->max_recv_wr = ic->i_recv_ring.w_nr; 335 iinfo->max_send_sge = rds_ibdev->max_sge; 336 rds_ib_get_mr_info(rds_ibdev, iinfo); 337 iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs); 338 } 339 return 1; 340 } 341 342 #if IS_ENABLED(CONFIG_IPV6) 343 /* IPv6 version of rds_ib_conn_info_visitor(). */ 344 static int rds6_ib_conn_info_visitor(struct rds_connection *conn, 345 void *buffer) 346 { 347 struct rds6_info_rdma_connection *iinfo6 = buffer; 348 struct rds_ib_connection *ic = conn->c_transport_data; 349 350 /* We will only ever look at IB transports */ 351 if (conn->c_trans != &rds_ib_transport) 352 return 0; 353 354 iinfo6->src_addr = conn->c_laddr; 355 iinfo6->dst_addr = conn->c_faddr; 356 if (ic) { 357 iinfo6->tos = conn->c_tos; 358 iinfo6->sl = ic->i_sl; 359 } 360 361 memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid)); 362 memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid)); 363 364 if (rds_conn_state(conn) == RDS_CONN_UP) { 365 struct rds_ib_device *rds_ibdev; 366 367 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid, 368 (union ib_gid *)&iinfo6->dst_gid); 369 rds_ibdev = ic->rds_ibdev; 370 iinfo6->max_send_wr = ic->i_send_ring.w_nr; 371 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr; 372 iinfo6->max_send_sge = rds_ibdev->max_sge; 373 rds6_ib_get_mr_info(rds_ibdev, iinfo6); 374 iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs); 375 } 376 return 1; 377 } 378 #endif 379 380 static void rds_ib_ic_info(struct socket *sock, unsigned int len, 381 struct rds_info_iterator *iter, 382 struct rds_info_lengths *lens) 383 { 384 u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8]; 385 386 rds_for_each_conn_info(sock, len, iter, lens, 387 rds_ib_conn_info_visitor, 388 buffer, 389 sizeof(struct rds_info_rdma_connection)); 390 } 391 392 #if IS_ENABLED(CONFIG_IPV6) 393 /* IPv6 version of rds_ib_ic_info(). */ 394 static void rds6_ib_ic_info(struct socket *sock, unsigned int len, 395 struct rds_info_iterator *iter, 396 struct rds_info_lengths *lens) 397 { 398 u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8]; 399 400 rds_for_each_conn_info(sock, len, iter, lens, 401 rds6_ib_conn_info_visitor, 402 buffer, 403 sizeof(struct rds6_info_rdma_connection)); 404 } 405 #endif 406 407 /* 408 * Early RDS/IB was built to only bind to an address if there is an IPoIB 409 * device with that address set. 410 * 411 * If it were me, I'd advocate for something more flexible. Sending and 412 * receiving should be device-agnostic. Transports would try and maintain 413 * connections between peers who have messages queued. Userspace would be 414 * allowed to influence which paths have priority. We could call userspace 415 * asserting this policy "routing". 416 */ 417 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr, 418 __u32 scope_id) 419 { 420 int ret; 421 struct rdma_cm_id *cm_id; 422 #if IS_ENABLED(CONFIG_IPV6) 423 struct sockaddr_in6 sin6; 424 #endif 425 struct sockaddr_in sin; 426 struct sockaddr *sa; 427 bool isv4; 428 429 isv4 = ipv6_addr_v4mapped(addr); 430 /* Create a CMA ID and try to bind it. This catches both 431 * IB and iWARP capable NICs. 432 */ 433 cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler, 434 NULL, RDMA_PS_TCP, IB_QPT_RC); 435 if (IS_ERR(cm_id)) 436 return PTR_ERR(cm_id); 437 438 if (isv4) { 439 memset(&sin, 0, sizeof(sin)); 440 sin.sin_family = AF_INET; 441 sin.sin_addr.s_addr = addr->s6_addr32[3]; 442 sa = (struct sockaddr *)&sin; 443 } else { 444 #if IS_ENABLED(CONFIG_IPV6) 445 memset(&sin6, 0, sizeof(sin6)); 446 sin6.sin6_family = AF_INET6; 447 sin6.sin6_addr = *addr; 448 sin6.sin6_scope_id = scope_id; 449 sa = (struct sockaddr *)&sin6; 450 451 /* XXX Do a special IPv6 link local address check here. The 452 * reason is that rdma_bind_addr() always succeeds with IPv6 453 * link local address regardless it is indeed configured in a 454 * system. 455 */ 456 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) { 457 struct net_device *dev; 458 459 if (scope_id == 0) { 460 ret = -EADDRNOTAVAIL; 461 goto out; 462 } 463 464 /* Use init_net for now as RDS is not network 465 * name space aware. 466 */ 467 dev = dev_get_by_index(&init_net, scope_id); 468 if (!dev) { 469 ret = -EADDRNOTAVAIL; 470 goto out; 471 } 472 if (!ipv6_chk_addr(&init_net, addr, dev, 1)) { 473 dev_put(dev); 474 ret = -EADDRNOTAVAIL; 475 goto out; 476 } 477 dev_put(dev); 478 } 479 #else 480 ret = -EADDRNOTAVAIL; 481 goto out; 482 #endif 483 } 484 485 /* rdma_bind_addr will only succeed for IB & iWARP devices */ 486 ret = rdma_bind_addr(cm_id, sa); 487 /* due to this, we will claim to support iWARP devices unless we 488 check node_type. */ 489 if (ret || !cm_id->device || 490 cm_id->device->node_type != RDMA_NODE_IB_CA) 491 ret = -EADDRNOTAVAIL; 492 493 rdsdebug("addr %pI6c%%%u ret %d node type %d\n", 494 addr, scope_id, ret, 495 cm_id->device ? cm_id->device->node_type : -1); 496 497 out: 498 rdma_destroy_id(cm_id); 499 500 return ret; 501 } 502 503 static void rds_ib_unregister_client(void) 504 { 505 ib_unregister_client(&rds_ib_client); 506 /* wait for rds_ib_dev_free() to complete */ 507 flush_workqueue(rds_wq); 508 } 509 510 static void rds_ib_set_unloading(void) 511 { 512 atomic_set(&rds_ib_unloading, 1); 513 } 514 515 static bool rds_ib_is_unloading(struct rds_connection *conn) 516 { 517 struct rds_conn_path *cp = &conn->c_path[0]; 518 519 return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) || 520 atomic_read(&rds_ib_unloading) != 0); 521 } 522 523 void rds_ib_exit(void) 524 { 525 rds_ib_set_unloading(); 526 synchronize_rcu(); 527 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 528 #if IS_ENABLED(CONFIG_IPV6) 529 rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); 530 #endif 531 rds_ib_unregister_client(); 532 rds_ib_destroy_nodev_conns(); 533 rds_ib_sysctl_exit(); 534 rds_ib_recv_exit(); 535 rds_trans_unregister(&rds_ib_transport); 536 rds_ib_mr_exit(); 537 } 538 539 static u8 rds_ib_get_tos_map(u8 tos) 540 { 541 /* 1:1 user to transport map for RDMA transport. 542 * In future, if custom map is desired, hook can export 543 * user configurable map. 544 */ 545 return tos; 546 } 547 548 struct rds_transport rds_ib_transport = { 549 .laddr_check = rds_ib_laddr_check, 550 .xmit_path_complete = rds_ib_xmit_path_complete, 551 .xmit = rds_ib_xmit, 552 .xmit_rdma = rds_ib_xmit_rdma, 553 .xmit_atomic = rds_ib_xmit_atomic, 554 .recv_path = rds_ib_recv_path, 555 .conn_alloc = rds_ib_conn_alloc, 556 .conn_free = rds_ib_conn_free, 557 .conn_path_connect = rds_ib_conn_path_connect, 558 .conn_path_shutdown = rds_ib_conn_path_shutdown, 559 .inc_copy_to_user = rds_ib_inc_copy_to_user, 560 .inc_free = rds_ib_inc_free, 561 .cm_initiate_connect = rds_ib_cm_initiate_connect, 562 .cm_handle_connect = rds_ib_cm_handle_connect, 563 .cm_connect_complete = rds_ib_cm_connect_complete, 564 .stats_info_copy = rds_ib_stats_info_copy, 565 .exit = rds_ib_exit, 566 .get_mr = rds_ib_get_mr, 567 .sync_mr = rds_ib_sync_mr, 568 .free_mr = rds_ib_free_mr, 569 .flush_mrs = rds_ib_flush_mrs, 570 .get_tos_map = rds_ib_get_tos_map, 571 .t_owner = THIS_MODULE, 572 .t_name = "infiniband", 573 .t_unloading = rds_ib_is_unloading, 574 .t_type = RDS_TRANS_IB 575 }; 576 577 int rds_ib_init(void) 578 { 579 int ret; 580 581 INIT_LIST_HEAD(&rds_ib_devices); 582 583 ret = rds_ib_mr_init(); 584 if (ret) 585 goto out; 586 587 ret = ib_register_client(&rds_ib_client); 588 if (ret) 589 goto out_mr_exit; 590 591 ret = rds_ib_sysctl_init(); 592 if (ret) 593 goto out_ibreg; 594 595 ret = rds_ib_recv_init(); 596 if (ret) 597 goto out_sysctl; 598 599 rds_trans_register(&rds_ib_transport); 600 601 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 602 #if IS_ENABLED(CONFIG_IPV6) 603 rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); 604 #endif 605 606 goto out; 607 608 out_sysctl: 609 rds_ib_sysctl_exit(); 610 out_ibreg: 611 rds_ib_unregister_client(); 612 out_mr_exit: 613 rds_ib_mr_exit(); 614 out: 615 return ret; 616 } 617 618 MODULE_LICENSE("GPL"); 619