xref: /openbmc/linux/net/rds/af_rds.c (revision d23015c1)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/in.h>
38 #include <linux/ipv6.h>
39 #include <linux/poll.h>
40 #include <net/sock.h>
41 
42 #include "rds.h"
43 
44 /* this is just used for stats gathering :/ */
45 static DEFINE_SPINLOCK(rds_sock_lock);
46 static unsigned long rds_sock_count;
47 static LIST_HEAD(rds_sock_list);
48 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
49 
50 /*
51  * This is called as the final descriptor referencing this socket is closed.
52  * We have to unbind the socket so that another socket can be bound to the
53  * address it was using.
54  *
55  * We have to be careful about racing with the incoming path.  sock_orphan()
56  * sets SOCK_DEAD and we use that as an indicator to the rx path that new
57  * messages shouldn't be queued.
58  */
59 static int rds_release(struct socket *sock)
60 {
61 	struct sock *sk = sock->sk;
62 	struct rds_sock *rs;
63 
64 	if (!sk)
65 		goto out;
66 
67 	rs = rds_sk_to_rs(sk);
68 
69 	sock_orphan(sk);
70 	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
71 	 * that ensures the recv path has completed messing
72 	 * with the socket. */
73 	rds_clear_recv_queue(rs);
74 	rds_cong_remove_socket(rs);
75 
76 	rds_remove_bound(rs);
77 
78 	rds_send_drop_to(rs, NULL);
79 	rds_rdma_drop_keys(rs);
80 	rds_notify_queue_get(rs, NULL);
81 	rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
82 
83 	spin_lock_bh(&rds_sock_lock);
84 	list_del_init(&rs->rs_item);
85 	rds_sock_count--;
86 	spin_unlock_bh(&rds_sock_lock);
87 
88 	rds_trans_put(rs->rs_transport);
89 
90 	sock->sk = NULL;
91 	sock_put(sk);
92 out:
93 	return 0;
94 }
95 
96 /*
97  * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
98  * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
99  * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100  * this seems more conservative.
101  * NB - normally, one would use sk_callback_lock for this, but we can
102  * get here from interrupts, whereas the network code grabs sk_callback_lock
103  * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104  */
105 void rds_wake_sk_sleep(struct rds_sock *rs)
106 {
107 	unsigned long flags;
108 
109 	read_lock_irqsave(&rs->rs_recv_lock, flags);
110 	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
111 	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112 }
113 
114 static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115 		       int peer)
116 {
117 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118 	struct sockaddr_in6 *sin6;
119 	struct sockaddr_in *sin;
120 	int uaddr_len;
121 
122 	/* racey, don't care */
123 	if (peer) {
124 		if (ipv6_addr_any(&rs->rs_conn_addr))
125 			return -ENOTCONN;
126 
127 		if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128 			sin = (struct sockaddr_in *)uaddr;
129 			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130 			sin->sin_family = AF_INET;
131 			sin->sin_port = rs->rs_conn_port;
132 			sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133 			uaddr_len = sizeof(*sin);
134 		} else {
135 			sin6 = (struct sockaddr_in6 *)uaddr;
136 			sin6->sin6_family = AF_INET6;
137 			sin6->sin6_port = rs->rs_conn_port;
138 			sin6->sin6_addr = rs->rs_conn_addr;
139 			sin6->sin6_flowinfo = 0;
140 			/* scope_id is the same as in the bound address. */
141 			sin6->sin6_scope_id = rs->rs_bound_scope_id;
142 			uaddr_len = sizeof(*sin6);
143 		}
144 	} else {
145 		/* If socket is not yet bound and the socket is connected,
146 		 * set the return address family to be the same as the
147 		 * connected address, but with 0 address value.  If it is not
148 		 * connected, set the family to be AF_UNSPEC (value 0) and
149 		 * the address size to be that of an IPv4 address.
150 		 */
151 		if (ipv6_addr_any(&rs->rs_bound_addr)) {
152 			if (ipv6_addr_any(&rs->rs_conn_addr)) {
153 				sin = (struct sockaddr_in *)uaddr;
154 				memset(sin, 0, sizeof(*sin));
155 				sin->sin_family = AF_UNSPEC;
156 				return sizeof(*sin);
157 			}
158 
159 #if IS_ENABLED(CONFIG_IPV6)
160 			if (!(ipv6_addr_type(&rs->rs_conn_addr) &
161 			      IPV6_ADDR_MAPPED)) {
162 				sin6 = (struct sockaddr_in6 *)uaddr;
163 				memset(sin6, 0, sizeof(*sin6));
164 				sin6->sin6_family = AF_INET6;
165 				return sizeof(*sin6);
166 			}
167 #endif
168 
169 			sin = (struct sockaddr_in *)uaddr;
170 			memset(sin, 0, sizeof(*sin));
171 			sin->sin_family = AF_INET;
172 			return sizeof(*sin);
173 		}
174 		if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
175 			sin = (struct sockaddr_in *)uaddr;
176 			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
177 			sin->sin_family = AF_INET;
178 			sin->sin_port = rs->rs_bound_port;
179 			sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
180 			uaddr_len = sizeof(*sin);
181 		} else {
182 			sin6 = (struct sockaddr_in6 *)uaddr;
183 			sin6->sin6_family = AF_INET6;
184 			sin6->sin6_port = rs->rs_bound_port;
185 			sin6->sin6_addr = rs->rs_bound_addr;
186 			sin6->sin6_flowinfo = 0;
187 			sin6->sin6_scope_id = rs->rs_bound_scope_id;
188 			uaddr_len = sizeof(*sin6);
189 		}
190 	}
191 
192 	return uaddr_len;
193 }
194 
195 /*
196  * RDS' poll is without a doubt the least intuitive part of the interface,
197  * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198  * a network protocol.
199  *
200  * EPOLLIN is asserted if
201  *  -	there is data on the receive queue.
202  *  -	to signal that a previously congested destination may have become
203  *	uncongested
204  *  -	A notification has been queued to the socket (this can be a congestion
205  *	update, or a RDMA completion, or a MSG_ZEROCOPY completion).
206  *
207  * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208  * however, that the next sendmsg() call will succeed. If the application tries
209  * to send to a congested destination, the system call may still fail (and
210  * return ENOBUFS).
211  */
212 static __poll_t rds_poll(struct file *file, struct socket *sock,
213 			     poll_table *wait)
214 {
215 	struct sock *sk = sock->sk;
216 	struct rds_sock *rs = rds_sk_to_rs(sk);
217 	__poll_t mask = 0;
218 	unsigned long flags;
219 
220 	poll_wait(file, sk_sleep(sk), wait);
221 
222 	if (rs->rs_seen_congestion)
223 		poll_wait(file, &rds_poll_waitq, wait);
224 
225 	read_lock_irqsave(&rs->rs_recv_lock, flags);
226 	if (!rs->rs_cong_monitor) {
227 		/* When a congestion map was updated, we signal EPOLLIN for
228 		 * "historical" reasons. Applications can also poll for
229 		 * WRBAND instead. */
230 		if (rds_cong_updated_since(&rs->rs_cong_track))
231 			mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
232 	} else {
233 		spin_lock(&rs->rs_lock);
234 		if (rs->rs_cong_notify)
235 			mask |= (EPOLLIN | EPOLLRDNORM);
236 		spin_unlock(&rs->rs_lock);
237 	}
238 	if (!list_empty(&rs->rs_recv_queue) ||
239 	    !list_empty(&rs->rs_notify_queue) ||
240 	    !list_empty(&rs->rs_zcookie_queue.zcookie_head))
241 		mask |= (EPOLLIN | EPOLLRDNORM);
242 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
243 		mask |= (EPOLLOUT | EPOLLWRNORM);
244 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
245 		mask |= POLLERR;
246 	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
247 
248 	/* clear state any time we wake a seen-congested socket */
249 	if (mask)
250 		rs->rs_seen_congestion = 0;
251 
252 	return mask;
253 }
254 
255 static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
256 {
257 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
258 	rds_tos_t utos, tos = 0;
259 
260 	switch (cmd) {
261 	case SIOCRDSSETTOS:
262 		if (get_user(utos, (rds_tos_t __user *)arg))
263 			return -EFAULT;
264 
265 		if (rs->rs_transport &&
266 		    rs->rs_transport->get_tos_map)
267 			tos = rs->rs_transport->get_tos_map(utos);
268 		else
269 			return -ENOIOCTLCMD;
270 
271 		spin_lock_bh(&rds_sock_lock);
272 		if (rs->rs_tos || rs->rs_conn) {
273 			spin_unlock_bh(&rds_sock_lock);
274 			return -EINVAL;
275 		}
276 		rs->rs_tos = tos;
277 		spin_unlock_bh(&rds_sock_lock);
278 		break;
279 	case SIOCRDSGETTOS:
280 		spin_lock_bh(&rds_sock_lock);
281 		tos = rs->rs_tos;
282 		spin_unlock_bh(&rds_sock_lock);
283 		if (put_user(tos, (rds_tos_t __user *)arg))
284 			return -EFAULT;
285 		break;
286 	default:
287 		return -ENOIOCTLCMD;
288 	}
289 
290 	return 0;
291 }
292 
293 static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
294 			      int len)
295 {
296 	struct sockaddr_in6 sin6;
297 	struct sockaddr_in sin;
298 	int ret = 0;
299 
300 	/* racing with another thread binding seems ok here */
301 	if (ipv6_addr_any(&rs->rs_bound_addr)) {
302 		ret = -ENOTCONN; /* XXX not a great errno */
303 		goto out;
304 	}
305 
306 	if (len < sizeof(struct sockaddr_in)) {
307 		ret = -EINVAL;
308 		goto out;
309 	} else if (len < sizeof(struct sockaddr_in6)) {
310 		/* Assume IPv4 */
311 		if (copy_from_user(&sin, optval, sizeof(struct sockaddr_in))) {
312 			ret = -EFAULT;
313 			goto out;
314 		}
315 		ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
316 		sin6.sin6_port = sin.sin_port;
317 	} else {
318 		if (copy_from_user(&sin6, optval,
319 				   sizeof(struct sockaddr_in6))) {
320 			ret = -EFAULT;
321 			goto out;
322 		}
323 	}
324 
325 	rds_send_drop_to(rs, &sin6);
326 out:
327 	return ret;
328 }
329 
330 static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
331 			       int optlen)
332 {
333 	int value;
334 
335 	if (optlen < sizeof(int))
336 		return -EINVAL;
337 	if (get_user(value, (int __user *) optval))
338 		return -EFAULT;
339 	*optvar = !!value;
340 	return 0;
341 }
342 
343 static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
344 			    int optlen)
345 {
346 	int ret;
347 
348 	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
349 	if (ret == 0) {
350 		if (rs->rs_cong_monitor) {
351 			rds_cong_add_socket(rs);
352 		} else {
353 			rds_cong_remove_socket(rs);
354 			rs->rs_cong_mask = 0;
355 			rs->rs_cong_notify = 0;
356 		}
357 	}
358 	return ret;
359 }
360 
361 static int rds_set_transport(struct rds_sock *rs, char __user *optval,
362 			     int optlen)
363 {
364 	int t_type;
365 
366 	if (rs->rs_transport)
367 		return -EOPNOTSUPP; /* previously attached to transport */
368 
369 	if (optlen != sizeof(int))
370 		return -EINVAL;
371 
372 	if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
373 		return -EFAULT;
374 
375 	if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
376 		return -EINVAL;
377 
378 	rs->rs_transport = rds_trans_get(t_type);
379 
380 	return rs->rs_transport ? 0 : -ENOPROTOOPT;
381 }
382 
383 static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
384 				 int optlen, int optname)
385 {
386 	int val, valbool;
387 
388 	if (optlen != sizeof(int))
389 		return -EFAULT;
390 
391 	if (get_user(val, (int __user *)optval))
392 		return -EFAULT;
393 
394 	valbool = val ? 1 : 0;
395 
396 	if (optname == SO_TIMESTAMP_NEW)
397 		sock_set_flag(sk, SOCK_TSTAMP_NEW);
398 
399 	if (valbool)
400 		sock_set_flag(sk, SOCK_RCVTSTAMP);
401 	else
402 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
403 
404 	return 0;
405 }
406 
407 static int rds_recv_track_latency(struct rds_sock *rs, char __user *optval,
408 				  int optlen)
409 {
410 	struct rds_rx_trace_so trace;
411 	int i;
412 
413 	if (optlen != sizeof(struct rds_rx_trace_so))
414 		return -EFAULT;
415 
416 	if (copy_from_user(&trace, optval, sizeof(trace)))
417 		return -EFAULT;
418 
419 	if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
420 		return -EFAULT;
421 
422 	rs->rs_rx_traces = trace.rx_traces;
423 	for (i = 0; i < rs->rs_rx_traces; i++) {
424 		if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
425 			rs->rs_rx_traces = 0;
426 			return -EFAULT;
427 		}
428 		rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
429 	}
430 
431 	return 0;
432 }
433 
434 static int rds_setsockopt(struct socket *sock, int level, int optname,
435 			  char __user *optval, unsigned int optlen)
436 {
437 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
438 	int ret;
439 
440 	if (level != SOL_RDS) {
441 		ret = -ENOPROTOOPT;
442 		goto out;
443 	}
444 
445 	switch (optname) {
446 	case RDS_CANCEL_SENT_TO:
447 		ret = rds_cancel_sent_to(rs, optval, optlen);
448 		break;
449 	case RDS_GET_MR:
450 		ret = rds_get_mr(rs, optval, optlen);
451 		break;
452 	case RDS_GET_MR_FOR_DEST:
453 		ret = rds_get_mr_for_dest(rs, optval, optlen);
454 		break;
455 	case RDS_FREE_MR:
456 		ret = rds_free_mr(rs, optval, optlen);
457 		break;
458 	case RDS_RECVERR:
459 		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
460 		break;
461 	case RDS_CONG_MONITOR:
462 		ret = rds_cong_monitor(rs, optval, optlen);
463 		break;
464 	case SO_RDS_TRANSPORT:
465 		lock_sock(sock->sk);
466 		ret = rds_set_transport(rs, optval, optlen);
467 		release_sock(sock->sk);
468 		break;
469 	case SO_TIMESTAMP_OLD:
470 	case SO_TIMESTAMP_NEW:
471 		lock_sock(sock->sk);
472 		ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname);
473 		release_sock(sock->sk);
474 		break;
475 	case SO_RDS_MSG_RXPATH_LATENCY:
476 		ret = rds_recv_track_latency(rs, optval, optlen);
477 		break;
478 	default:
479 		ret = -ENOPROTOOPT;
480 	}
481 out:
482 	return ret;
483 }
484 
485 static int rds_getsockopt(struct socket *sock, int level, int optname,
486 			  char __user *optval, int __user *optlen)
487 {
488 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
489 	int ret = -ENOPROTOOPT, len;
490 	int trans;
491 
492 	if (level != SOL_RDS)
493 		goto out;
494 
495 	if (get_user(len, optlen)) {
496 		ret = -EFAULT;
497 		goto out;
498 	}
499 
500 	switch (optname) {
501 	case RDS_INFO_FIRST ... RDS_INFO_LAST:
502 		ret = rds_info_getsockopt(sock, optname, optval,
503 					  optlen);
504 		break;
505 
506 	case RDS_RECVERR:
507 		if (len < sizeof(int))
508 			ret = -EINVAL;
509 		else
510 		if (put_user(rs->rs_recverr, (int __user *) optval) ||
511 		    put_user(sizeof(int), optlen))
512 			ret = -EFAULT;
513 		else
514 			ret = 0;
515 		break;
516 	case SO_RDS_TRANSPORT:
517 		if (len < sizeof(int)) {
518 			ret = -EINVAL;
519 			break;
520 		}
521 		trans = (rs->rs_transport ? rs->rs_transport->t_type :
522 			 RDS_TRANS_NONE); /* unbound */
523 		if (put_user(trans, (int __user *)optval) ||
524 		    put_user(sizeof(int), optlen))
525 			ret = -EFAULT;
526 		else
527 			ret = 0;
528 		break;
529 	default:
530 		break;
531 	}
532 
533 out:
534 	return ret;
535 
536 }
537 
538 static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
539 		       int addr_len, int flags)
540 {
541 	struct sock *sk = sock->sk;
542 	struct sockaddr_in *sin;
543 	struct rds_sock *rs = rds_sk_to_rs(sk);
544 	int ret = 0;
545 
546 	if (addr_len < offsetofend(struct sockaddr, sa_family))
547 		return -EINVAL;
548 
549 	lock_sock(sk);
550 
551 	switch (uaddr->sa_family) {
552 	case AF_INET:
553 		sin = (struct sockaddr_in *)uaddr;
554 		if (addr_len < sizeof(struct sockaddr_in)) {
555 			ret = -EINVAL;
556 			break;
557 		}
558 		if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
559 			ret = -EDESTADDRREQ;
560 			break;
561 		}
562 		if (ipv4_is_multicast(sin->sin_addr.s_addr) ||
563 		    sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
564 			ret = -EINVAL;
565 			break;
566 		}
567 		ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
568 		rs->rs_conn_port = sin->sin_port;
569 		break;
570 
571 #if IS_ENABLED(CONFIG_IPV6)
572 	case AF_INET6: {
573 		struct sockaddr_in6 *sin6;
574 		int addr_type;
575 
576 		sin6 = (struct sockaddr_in6 *)uaddr;
577 		if (addr_len < sizeof(struct sockaddr_in6)) {
578 			ret = -EINVAL;
579 			break;
580 		}
581 		addr_type = ipv6_addr_type(&sin6->sin6_addr);
582 		if (!(addr_type & IPV6_ADDR_UNICAST)) {
583 			__be32 addr4;
584 
585 			if (!(addr_type & IPV6_ADDR_MAPPED)) {
586 				ret = -EPROTOTYPE;
587 				break;
588 			}
589 
590 			/* It is a mapped address.  Need to do some sanity
591 			 * checks.
592 			 */
593 			addr4 = sin6->sin6_addr.s6_addr32[3];
594 			if (addr4 == htonl(INADDR_ANY) ||
595 			    addr4 == htonl(INADDR_BROADCAST) ||
596 			    ipv4_is_multicast(addr4)) {
597 				ret = -EPROTOTYPE;
598 				break;
599 			}
600 		}
601 
602 		if (addr_type & IPV6_ADDR_LINKLOCAL) {
603 			/* If socket is arleady bound to a link local address,
604 			 * the peer address must be on the same link.
605 			 */
606 			if (sin6->sin6_scope_id == 0 ||
607 			    (!ipv6_addr_any(&rs->rs_bound_addr) &&
608 			     rs->rs_bound_scope_id &&
609 			     sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
610 				ret = -EINVAL;
611 				break;
612 			}
613 			/* Remember the connected address scope ID.  It will
614 			 * be checked against the binding local address when
615 			 * the socket is bound.
616 			 */
617 			rs->rs_bound_scope_id = sin6->sin6_scope_id;
618 		}
619 		rs->rs_conn_addr = sin6->sin6_addr;
620 		rs->rs_conn_port = sin6->sin6_port;
621 		break;
622 	}
623 #endif
624 
625 	default:
626 		ret = -EAFNOSUPPORT;
627 		break;
628 	}
629 
630 	release_sock(sk);
631 	return ret;
632 }
633 
634 static struct proto rds_proto = {
635 	.name	  = "RDS",
636 	.owner	  = THIS_MODULE,
637 	.obj_size = sizeof(struct rds_sock),
638 };
639 
640 static const struct proto_ops rds_proto_ops = {
641 	.family =	AF_RDS,
642 	.owner =	THIS_MODULE,
643 	.release =	rds_release,
644 	.bind =		rds_bind,
645 	.connect =	rds_connect,
646 	.socketpair =	sock_no_socketpair,
647 	.accept =	sock_no_accept,
648 	.getname =	rds_getname,
649 	.poll =		rds_poll,
650 	.ioctl =	rds_ioctl,
651 	.listen =	sock_no_listen,
652 	.shutdown =	sock_no_shutdown,
653 	.setsockopt =	rds_setsockopt,
654 	.getsockopt =	rds_getsockopt,
655 	.sendmsg =	rds_sendmsg,
656 	.recvmsg =	rds_recvmsg,
657 	.mmap =		sock_no_mmap,
658 	.sendpage =	sock_no_sendpage,
659 };
660 
661 static void rds_sock_destruct(struct sock *sk)
662 {
663 	struct rds_sock *rs = rds_sk_to_rs(sk);
664 
665 	WARN_ON((&rs->rs_item != rs->rs_item.next ||
666 		 &rs->rs_item != rs->rs_item.prev));
667 }
668 
669 static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
670 {
671 	struct rds_sock *rs;
672 
673 	sock_init_data(sock, sk);
674 	sock->ops		= &rds_proto_ops;
675 	sk->sk_protocol		= protocol;
676 	sk->sk_destruct		= rds_sock_destruct;
677 
678 	rs = rds_sk_to_rs(sk);
679 	spin_lock_init(&rs->rs_lock);
680 	rwlock_init(&rs->rs_recv_lock);
681 	INIT_LIST_HEAD(&rs->rs_send_queue);
682 	INIT_LIST_HEAD(&rs->rs_recv_queue);
683 	INIT_LIST_HEAD(&rs->rs_notify_queue);
684 	INIT_LIST_HEAD(&rs->rs_cong_list);
685 	rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
686 	spin_lock_init(&rs->rs_rdma_lock);
687 	rs->rs_rdma_keys = RB_ROOT;
688 	rs->rs_rx_traces = 0;
689 	rs->rs_tos = 0;
690 	rs->rs_conn = NULL;
691 
692 	spin_lock_bh(&rds_sock_lock);
693 	list_add_tail(&rs->rs_item, &rds_sock_list);
694 	rds_sock_count++;
695 	spin_unlock_bh(&rds_sock_lock);
696 
697 	return 0;
698 }
699 
700 static int rds_create(struct net *net, struct socket *sock, int protocol,
701 		      int kern)
702 {
703 	struct sock *sk;
704 
705 	if (sock->type != SOCK_SEQPACKET || protocol)
706 		return -ESOCKTNOSUPPORT;
707 
708 	sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern);
709 	if (!sk)
710 		return -ENOMEM;
711 
712 	return __rds_create(sock, sk, protocol);
713 }
714 
715 void rds_sock_addref(struct rds_sock *rs)
716 {
717 	sock_hold(rds_rs_to_sk(rs));
718 }
719 
720 void rds_sock_put(struct rds_sock *rs)
721 {
722 	sock_put(rds_rs_to_sk(rs));
723 }
724 
725 static const struct net_proto_family rds_family_ops = {
726 	.family =	AF_RDS,
727 	.create =	rds_create,
728 	.owner	=	THIS_MODULE,
729 };
730 
731 static void rds_sock_inc_info(struct socket *sock, unsigned int len,
732 			      struct rds_info_iterator *iter,
733 			      struct rds_info_lengths *lens)
734 {
735 	struct rds_sock *rs;
736 	struct rds_incoming *inc;
737 	unsigned int total = 0;
738 
739 	len /= sizeof(struct rds_info_message);
740 
741 	spin_lock_bh(&rds_sock_lock);
742 
743 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
744 		/* This option only supports IPv4 sockets. */
745 		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
746 			continue;
747 
748 		read_lock(&rs->rs_recv_lock);
749 
750 		/* XXX too lazy to maintain counts.. */
751 		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
752 			total++;
753 			if (total <= len)
754 				rds_inc_info_copy(inc, iter,
755 						  inc->i_saddr.s6_addr32[3],
756 						  rs->rs_bound_addr_v4,
757 						  1);
758 		}
759 
760 		read_unlock(&rs->rs_recv_lock);
761 	}
762 
763 	spin_unlock_bh(&rds_sock_lock);
764 
765 	lens->nr = total;
766 	lens->each = sizeof(struct rds_info_message);
767 }
768 
769 #if IS_ENABLED(CONFIG_IPV6)
770 static void rds6_sock_inc_info(struct socket *sock, unsigned int len,
771 			       struct rds_info_iterator *iter,
772 			       struct rds_info_lengths *lens)
773 {
774 	struct rds_incoming *inc;
775 	unsigned int total = 0;
776 	struct rds_sock *rs;
777 
778 	len /= sizeof(struct rds6_info_message);
779 
780 	spin_lock_bh(&rds_sock_lock);
781 
782 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
783 		read_lock(&rs->rs_recv_lock);
784 
785 		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
786 			total++;
787 			if (total <= len)
788 				rds6_inc_info_copy(inc, iter, &inc->i_saddr,
789 						   &rs->rs_bound_addr, 1);
790 		}
791 
792 		read_unlock(&rs->rs_recv_lock);
793 	}
794 
795 	spin_unlock_bh(&rds_sock_lock);
796 
797 	lens->nr = total;
798 	lens->each = sizeof(struct rds6_info_message);
799 }
800 #endif
801 
802 static void rds_sock_info(struct socket *sock, unsigned int len,
803 			  struct rds_info_iterator *iter,
804 			  struct rds_info_lengths *lens)
805 {
806 	struct rds_info_socket sinfo;
807 	unsigned int cnt = 0;
808 	struct rds_sock *rs;
809 
810 	len /= sizeof(struct rds_info_socket);
811 
812 	spin_lock_bh(&rds_sock_lock);
813 
814 	if (len < rds_sock_count) {
815 		cnt = rds_sock_count;
816 		goto out;
817 	}
818 
819 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
820 		/* This option only supports IPv4 sockets. */
821 		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
822 			continue;
823 		sinfo.sndbuf = rds_sk_sndbuf(rs);
824 		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
825 		sinfo.bound_addr = rs->rs_bound_addr_v4;
826 		sinfo.connected_addr = rs->rs_conn_addr_v4;
827 		sinfo.bound_port = rs->rs_bound_port;
828 		sinfo.connected_port = rs->rs_conn_port;
829 		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
830 
831 		rds_info_copy(iter, &sinfo, sizeof(sinfo));
832 		cnt++;
833 	}
834 
835 out:
836 	lens->nr = cnt;
837 	lens->each = sizeof(struct rds_info_socket);
838 
839 	spin_unlock_bh(&rds_sock_lock);
840 }
841 
842 #if IS_ENABLED(CONFIG_IPV6)
843 static void rds6_sock_info(struct socket *sock, unsigned int len,
844 			   struct rds_info_iterator *iter,
845 			   struct rds_info_lengths *lens)
846 {
847 	struct rds6_info_socket sinfo6;
848 	struct rds_sock *rs;
849 
850 	len /= sizeof(struct rds6_info_socket);
851 
852 	spin_lock_bh(&rds_sock_lock);
853 
854 	if (len < rds_sock_count)
855 		goto out;
856 
857 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
858 		sinfo6.sndbuf = rds_sk_sndbuf(rs);
859 		sinfo6.rcvbuf = rds_sk_rcvbuf(rs);
860 		sinfo6.bound_addr = rs->rs_bound_addr;
861 		sinfo6.connected_addr = rs->rs_conn_addr;
862 		sinfo6.bound_port = rs->rs_bound_port;
863 		sinfo6.connected_port = rs->rs_conn_port;
864 		sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs));
865 
866 		rds_info_copy(iter, &sinfo6, sizeof(sinfo6));
867 	}
868 
869  out:
870 	lens->nr = rds_sock_count;
871 	lens->each = sizeof(struct rds6_info_socket);
872 
873 	spin_unlock_bh(&rds_sock_lock);
874 }
875 #endif
876 
877 static void rds_exit(void)
878 {
879 	sock_unregister(rds_family_ops.family);
880 	proto_unregister(&rds_proto);
881 	rds_conn_exit();
882 	rds_cong_exit();
883 	rds_sysctl_exit();
884 	rds_threads_exit();
885 	rds_stats_exit();
886 	rds_page_exit();
887 	rds_bind_lock_destroy();
888 	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
889 	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
890 #if IS_ENABLED(CONFIG_IPV6)
891 	rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info);
892 	rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
893 #endif
894 }
895 module_exit(rds_exit);
896 
897 u32 rds_gen_num;
898 
899 static int rds_init(void)
900 {
901 	int ret;
902 
903 	net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
904 
905 	ret = rds_bind_lock_init();
906 	if (ret)
907 		goto out;
908 
909 	ret = rds_conn_init();
910 	if (ret)
911 		goto out_bind;
912 
913 	ret = rds_threads_init();
914 	if (ret)
915 		goto out_conn;
916 	ret = rds_sysctl_init();
917 	if (ret)
918 		goto out_threads;
919 	ret = rds_stats_init();
920 	if (ret)
921 		goto out_sysctl;
922 	ret = proto_register(&rds_proto, 1);
923 	if (ret)
924 		goto out_stats;
925 	ret = sock_register(&rds_family_ops);
926 	if (ret)
927 		goto out_proto;
928 
929 	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
930 	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
931 #if IS_ENABLED(CONFIG_IPV6)
932 	rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info);
933 	rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
934 #endif
935 
936 	goto out;
937 
938 out_proto:
939 	proto_unregister(&rds_proto);
940 out_stats:
941 	rds_stats_exit();
942 out_sysctl:
943 	rds_sysctl_exit();
944 out_threads:
945 	rds_threads_exit();
946 out_conn:
947 	rds_conn_exit();
948 	rds_cong_exit();
949 	rds_page_exit();
950 out_bind:
951 	rds_bind_lock_destroy();
952 out:
953 	return ret;
954 }
955 module_init(rds_init);
956 
957 #define DRV_VERSION     "4.0"
958 #define DRV_RELDATE     "Feb 12, 2009"
959 
960 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
961 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
962 		   " v" DRV_VERSION " (" DRV_RELDATE ")");
963 MODULE_VERSION(DRV_VERSION);
964 MODULE_LICENSE("Dual BSD/GPL");
965 MODULE_ALIAS_NETPROTO(PF_RDS);
966