xref: /openbmc/linux/net/rds/af_rds.c (revision b868a02e)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/in.h>
38 #include <linux/ipv6.h>
39 #include <linux/poll.h>
40 #include <net/sock.h>
41 
42 #include "rds.h"
43 
44 /* this is just used for stats gathering :/ */
45 static DEFINE_SPINLOCK(rds_sock_lock);
46 static unsigned long rds_sock_count;
47 static LIST_HEAD(rds_sock_list);
48 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
49 
50 /*
51  * This is called as the final descriptor referencing this socket is closed.
52  * We have to unbind the socket so that another socket can be bound to the
53  * address it was using.
54  *
55  * We have to be careful about racing with the incoming path.  sock_orphan()
56  * sets SOCK_DEAD and we use that as an indicator to the rx path that new
57  * messages shouldn't be queued.
58  */
59 static int rds_release(struct socket *sock)
60 {
61 	struct sock *sk = sock->sk;
62 	struct rds_sock *rs;
63 
64 	if (!sk)
65 		goto out;
66 
67 	rs = rds_sk_to_rs(sk);
68 
69 	sock_orphan(sk);
70 	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
71 	 * that ensures the recv path has completed messing
72 	 * with the socket. */
73 	rds_clear_recv_queue(rs);
74 	rds_cong_remove_socket(rs);
75 
76 	rds_remove_bound(rs);
77 
78 	rds_send_drop_to(rs, NULL);
79 	rds_rdma_drop_keys(rs);
80 	rds_notify_queue_get(rs, NULL);
81 	rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
82 
83 	spin_lock_bh(&rds_sock_lock);
84 	list_del_init(&rs->rs_item);
85 	rds_sock_count--;
86 	spin_unlock_bh(&rds_sock_lock);
87 
88 	rds_trans_put(rs->rs_transport);
89 
90 	sock->sk = NULL;
91 	sock_put(sk);
92 out:
93 	return 0;
94 }
95 
96 /*
97  * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
98  * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
99  * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100  * this seems more conservative.
101  * NB - normally, one would use sk_callback_lock for this, but we can
102  * get here from interrupts, whereas the network code grabs sk_callback_lock
103  * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104  */
105 void rds_wake_sk_sleep(struct rds_sock *rs)
106 {
107 	unsigned long flags;
108 
109 	read_lock_irqsave(&rs->rs_recv_lock, flags);
110 	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
111 	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112 }
113 
114 static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115 		       int peer)
116 {
117 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118 	struct sockaddr_in6 *sin6;
119 	struct sockaddr_in *sin;
120 	int uaddr_len;
121 
122 	/* racey, don't care */
123 	if (peer) {
124 		if (ipv6_addr_any(&rs->rs_conn_addr))
125 			return -ENOTCONN;
126 
127 		if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128 			sin = (struct sockaddr_in *)uaddr;
129 			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130 			sin->sin_family = AF_INET;
131 			sin->sin_port = rs->rs_conn_port;
132 			sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133 			uaddr_len = sizeof(*sin);
134 		} else {
135 			sin6 = (struct sockaddr_in6 *)uaddr;
136 			sin6->sin6_family = AF_INET6;
137 			sin6->sin6_port = rs->rs_conn_port;
138 			sin6->sin6_addr = rs->rs_conn_addr;
139 			sin6->sin6_flowinfo = 0;
140 			/* scope_id is the same as in the bound address. */
141 			sin6->sin6_scope_id = rs->rs_bound_scope_id;
142 			uaddr_len = sizeof(*sin6);
143 		}
144 	} else {
145 		/* If socket is not yet bound and the socket is connected,
146 		 * set the return address family to be the same as the
147 		 * connected address, but with 0 address value.  If it is not
148 		 * connected, set the family to be AF_UNSPEC (value 0) and
149 		 * the address size to be that of an IPv4 address.
150 		 */
151 		if (ipv6_addr_any(&rs->rs_bound_addr)) {
152 			if (ipv6_addr_any(&rs->rs_conn_addr)) {
153 				sin = (struct sockaddr_in *)uaddr;
154 				memset(sin, 0, sizeof(*sin));
155 				sin->sin_family = AF_UNSPEC;
156 				return sizeof(*sin);
157 			}
158 
159 #if IS_ENABLED(CONFIG_IPV6)
160 			if (!(ipv6_addr_type(&rs->rs_conn_addr) &
161 			      IPV6_ADDR_MAPPED)) {
162 				sin6 = (struct sockaddr_in6 *)uaddr;
163 				memset(sin6, 0, sizeof(*sin6));
164 				sin6->sin6_family = AF_INET6;
165 				return sizeof(*sin6);
166 			}
167 #endif
168 
169 			sin = (struct sockaddr_in *)uaddr;
170 			memset(sin, 0, sizeof(*sin));
171 			sin->sin_family = AF_INET;
172 			return sizeof(*sin);
173 		}
174 		if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
175 			sin = (struct sockaddr_in *)uaddr;
176 			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
177 			sin->sin_family = AF_INET;
178 			sin->sin_port = rs->rs_bound_port;
179 			sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
180 			uaddr_len = sizeof(*sin);
181 		} else {
182 			sin6 = (struct sockaddr_in6 *)uaddr;
183 			sin6->sin6_family = AF_INET6;
184 			sin6->sin6_port = rs->rs_bound_port;
185 			sin6->sin6_addr = rs->rs_bound_addr;
186 			sin6->sin6_flowinfo = 0;
187 			sin6->sin6_scope_id = rs->rs_bound_scope_id;
188 			uaddr_len = sizeof(*sin6);
189 		}
190 	}
191 
192 	return uaddr_len;
193 }
194 
195 /*
196  * RDS' poll is without a doubt the least intuitive part of the interface,
197  * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198  * a network protocol.
199  *
200  * EPOLLIN is asserted if
201  *  -	there is data on the receive queue.
202  *  -	to signal that a previously congested destination may have become
203  *	uncongested
204  *  -	A notification has been queued to the socket (this can be a congestion
205  *	update, or a RDMA completion, or a MSG_ZEROCOPY completion).
206  *
207  * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208  * however, that the next sendmsg() call will succeed. If the application tries
209  * to send to a congested destination, the system call may still fail (and
210  * return ENOBUFS).
211  */
212 static __poll_t rds_poll(struct file *file, struct socket *sock,
213 			     poll_table *wait)
214 {
215 	struct sock *sk = sock->sk;
216 	struct rds_sock *rs = rds_sk_to_rs(sk);
217 	__poll_t mask = 0;
218 	unsigned long flags;
219 
220 	poll_wait(file, sk_sleep(sk), wait);
221 
222 	if (rs->rs_seen_congestion)
223 		poll_wait(file, &rds_poll_waitq, wait);
224 
225 	read_lock_irqsave(&rs->rs_recv_lock, flags);
226 	if (!rs->rs_cong_monitor) {
227 		/* When a congestion map was updated, we signal EPOLLIN for
228 		 * "historical" reasons. Applications can also poll for
229 		 * WRBAND instead. */
230 		if (rds_cong_updated_since(&rs->rs_cong_track))
231 			mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
232 	} else {
233 		spin_lock(&rs->rs_lock);
234 		if (rs->rs_cong_notify)
235 			mask |= (EPOLLIN | EPOLLRDNORM);
236 		spin_unlock(&rs->rs_lock);
237 	}
238 	if (!list_empty(&rs->rs_recv_queue) ||
239 	    !list_empty(&rs->rs_notify_queue) ||
240 	    !list_empty(&rs->rs_zcookie_queue.zcookie_head))
241 		mask |= (EPOLLIN | EPOLLRDNORM);
242 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
243 		mask |= (EPOLLOUT | EPOLLWRNORM);
244 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
245 		mask |= POLLERR;
246 	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
247 
248 	/* clear state any time we wake a seen-congested socket */
249 	if (mask)
250 		rs->rs_seen_congestion = 0;
251 
252 	return mask;
253 }
254 
255 static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
256 {
257 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
258 	rds_tos_t utos, tos = 0;
259 
260 	switch (cmd) {
261 	case SIOCRDSSETTOS:
262 		if (get_user(utos, (rds_tos_t __user *)arg))
263 			return -EFAULT;
264 
265 		if (rs->rs_transport &&
266 		    rs->rs_transport->get_tos_map)
267 			tos = rs->rs_transport->get_tos_map(utos);
268 		else
269 			return -ENOIOCTLCMD;
270 
271 		spin_lock_bh(&rds_sock_lock);
272 		if (rs->rs_tos || rs->rs_conn) {
273 			spin_unlock_bh(&rds_sock_lock);
274 			return -EINVAL;
275 		}
276 		rs->rs_tos = tos;
277 		spin_unlock_bh(&rds_sock_lock);
278 		break;
279 	case SIOCRDSGETTOS:
280 		spin_lock_bh(&rds_sock_lock);
281 		tos = rs->rs_tos;
282 		spin_unlock_bh(&rds_sock_lock);
283 		if (put_user(tos, (rds_tos_t __user *)arg))
284 			return -EFAULT;
285 		break;
286 	default:
287 		return -ENOIOCTLCMD;
288 	}
289 
290 	return 0;
291 }
292 
293 static int rds_cancel_sent_to(struct rds_sock *rs, sockptr_t optval, int len)
294 {
295 	struct sockaddr_in6 sin6;
296 	struct sockaddr_in sin;
297 	int ret = 0;
298 
299 	/* racing with another thread binding seems ok here */
300 	if (ipv6_addr_any(&rs->rs_bound_addr)) {
301 		ret = -ENOTCONN; /* XXX not a great errno */
302 		goto out;
303 	}
304 
305 	if (len < sizeof(struct sockaddr_in)) {
306 		ret = -EINVAL;
307 		goto out;
308 	} else if (len < sizeof(struct sockaddr_in6)) {
309 		/* Assume IPv4 */
310 		if (copy_from_sockptr(&sin, optval,
311 				sizeof(struct sockaddr_in))) {
312 			ret = -EFAULT;
313 			goto out;
314 		}
315 		ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
316 		sin6.sin6_port = sin.sin_port;
317 	} else {
318 		if (copy_from_sockptr(&sin6, optval,
319 				   sizeof(struct sockaddr_in6))) {
320 			ret = -EFAULT;
321 			goto out;
322 		}
323 	}
324 
325 	rds_send_drop_to(rs, &sin6);
326 out:
327 	return ret;
328 }
329 
330 static int rds_set_bool_option(unsigned char *optvar, sockptr_t optval,
331 			       int optlen)
332 {
333 	int value;
334 
335 	if (optlen < sizeof(int))
336 		return -EINVAL;
337 	if (copy_from_sockptr(&value, optval, sizeof(int)))
338 		return -EFAULT;
339 	*optvar = !!value;
340 	return 0;
341 }
342 
343 static int rds_cong_monitor(struct rds_sock *rs, sockptr_t optval, int optlen)
344 {
345 	int ret;
346 
347 	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
348 	if (ret == 0) {
349 		if (rs->rs_cong_monitor) {
350 			rds_cong_add_socket(rs);
351 		} else {
352 			rds_cong_remove_socket(rs);
353 			rs->rs_cong_mask = 0;
354 			rs->rs_cong_notify = 0;
355 		}
356 	}
357 	return ret;
358 }
359 
360 static int rds_set_transport(struct rds_sock *rs, sockptr_t optval, int optlen)
361 {
362 	int t_type;
363 
364 	if (rs->rs_transport)
365 		return -EOPNOTSUPP; /* previously attached to transport */
366 
367 	if (optlen != sizeof(int))
368 		return -EINVAL;
369 
370 	if (copy_from_sockptr(&t_type, optval, sizeof(t_type)))
371 		return -EFAULT;
372 
373 	if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
374 		return -EINVAL;
375 
376 	rs->rs_transport = rds_trans_get(t_type);
377 
378 	return rs->rs_transport ? 0 : -ENOPROTOOPT;
379 }
380 
381 static int rds_enable_recvtstamp(struct sock *sk, sockptr_t optval,
382 				 int optlen, int optname)
383 {
384 	int val, valbool;
385 
386 	if (optlen != sizeof(int))
387 		return -EFAULT;
388 
389 	if (copy_from_sockptr(&val, optval, sizeof(int)))
390 		return -EFAULT;
391 
392 	valbool = val ? 1 : 0;
393 
394 	if (optname == SO_TIMESTAMP_NEW)
395 		sock_set_flag(sk, SOCK_TSTAMP_NEW);
396 
397 	if (valbool)
398 		sock_set_flag(sk, SOCK_RCVTSTAMP);
399 	else
400 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
401 
402 	return 0;
403 }
404 
405 static int rds_recv_track_latency(struct rds_sock *rs, sockptr_t optval,
406 				  int optlen)
407 {
408 	struct rds_rx_trace_so trace;
409 	int i;
410 
411 	if (optlen != sizeof(struct rds_rx_trace_so))
412 		return -EFAULT;
413 
414 	if (copy_from_sockptr(&trace, optval, sizeof(trace)))
415 		return -EFAULT;
416 
417 	if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
418 		return -EFAULT;
419 
420 	rs->rs_rx_traces = trace.rx_traces;
421 	for (i = 0; i < rs->rs_rx_traces; i++) {
422 		if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
423 			rs->rs_rx_traces = 0;
424 			return -EFAULT;
425 		}
426 		rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
427 	}
428 
429 	return 0;
430 }
431 
432 static int rds_setsockopt(struct socket *sock, int level, int optname,
433 			  sockptr_t optval, unsigned int optlen)
434 {
435 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
436 	int ret;
437 
438 	if (level != SOL_RDS) {
439 		ret = -ENOPROTOOPT;
440 		goto out;
441 	}
442 
443 	switch (optname) {
444 	case RDS_CANCEL_SENT_TO:
445 		ret = rds_cancel_sent_to(rs, optval, optlen);
446 		break;
447 	case RDS_GET_MR:
448 		ret = rds_get_mr(rs, optval, optlen);
449 		break;
450 	case RDS_GET_MR_FOR_DEST:
451 		ret = rds_get_mr_for_dest(rs, optval, optlen);
452 		break;
453 	case RDS_FREE_MR:
454 		ret = rds_free_mr(rs, optval, optlen);
455 		break;
456 	case RDS_RECVERR:
457 		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
458 		break;
459 	case RDS_CONG_MONITOR:
460 		ret = rds_cong_monitor(rs, optval, optlen);
461 		break;
462 	case SO_RDS_TRANSPORT:
463 		lock_sock(sock->sk);
464 		ret = rds_set_transport(rs, optval, optlen);
465 		release_sock(sock->sk);
466 		break;
467 	case SO_TIMESTAMP_OLD:
468 	case SO_TIMESTAMP_NEW:
469 		lock_sock(sock->sk);
470 		ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname);
471 		release_sock(sock->sk);
472 		break;
473 	case SO_RDS_MSG_RXPATH_LATENCY:
474 		ret = rds_recv_track_latency(rs, optval, optlen);
475 		break;
476 	default:
477 		ret = -ENOPROTOOPT;
478 	}
479 out:
480 	return ret;
481 }
482 
483 static int rds_getsockopt(struct socket *sock, int level, int optname,
484 			  char __user *optval, int __user *optlen)
485 {
486 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
487 	int ret = -ENOPROTOOPT, len;
488 	int trans;
489 
490 	if (level != SOL_RDS)
491 		goto out;
492 
493 	if (get_user(len, optlen)) {
494 		ret = -EFAULT;
495 		goto out;
496 	}
497 
498 	switch (optname) {
499 	case RDS_INFO_FIRST ... RDS_INFO_LAST:
500 		ret = rds_info_getsockopt(sock, optname, optval,
501 					  optlen);
502 		break;
503 
504 	case RDS_RECVERR:
505 		if (len < sizeof(int))
506 			ret = -EINVAL;
507 		else
508 		if (put_user(rs->rs_recverr, (int __user *) optval) ||
509 		    put_user(sizeof(int), optlen))
510 			ret = -EFAULT;
511 		else
512 			ret = 0;
513 		break;
514 	case SO_RDS_TRANSPORT:
515 		if (len < sizeof(int)) {
516 			ret = -EINVAL;
517 			break;
518 		}
519 		trans = (rs->rs_transport ? rs->rs_transport->t_type :
520 			 RDS_TRANS_NONE); /* unbound */
521 		if (put_user(trans, (int __user *)optval) ||
522 		    put_user(sizeof(int), optlen))
523 			ret = -EFAULT;
524 		else
525 			ret = 0;
526 		break;
527 	default:
528 		break;
529 	}
530 
531 out:
532 	return ret;
533 
534 }
535 
536 static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
537 		       int addr_len, int flags)
538 {
539 	struct sock *sk = sock->sk;
540 	struct sockaddr_in *sin;
541 	struct rds_sock *rs = rds_sk_to_rs(sk);
542 	int ret = 0;
543 
544 	if (addr_len < offsetofend(struct sockaddr, sa_family))
545 		return -EINVAL;
546 
547 	lock_sock(sk);
548 
549 	switch (uaddr->sa_family) {
550 	case AF_INET:
551 		sin = (struct sockaddr_in *)uaddr;
552 		if (addr_len < sizeof(struct sockaddr_in)) {
553 			ret = -EINVAL;
554 			break;
555 		}
556 		if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
557 			ret = -EDESTADDRREQ;
558 			break;
559 		}
560 		if (ipv4_is_multicast(sin->sin_addr.s_addr) ||
561 		    sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
562 			ret = -EINVAL;
563 			break;
564 		}
565 		ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
566 		rs->rs_conn_port = sin->sin_port;
567 		break;
568 
569 #if IS_ENABLED(CONFIG_IPV6)
570 	case AF_INET6: {
571 		struct sockaddr_in6 *sin6;
572 		int addr_type;
573 
574 		sin6 = (struct sockaddr_in6 *)uaddr;
575 		if (addr_len < sizeof(struct sockaddr_in6)) {
576 			ret = -EINVAL;
577 			break;
578 		}
579 		addr_type = ipv6_addr_type(&sin6->sin6_addr);
580 		if (!(addr_type & IPV6_ADDR_UNICAST)) {
581 			__be32 addr4;
582 
583 			if (!(addr_type & IPV6_ADDR_MAPPED)) {
584 				ret = -EPROTOTYPE;
585 				break;
586 			}
587 
588 			/* It is a mapped address.  Need to do some sanity
589 			 * checks.
590 			 */
591 			addr4 = sin6->sin6_addr.s6_addr32[3];
592 			if (addr4 == htonl(INADDR_ANY) ||
593 			    addr4 == htonl(INADDR_BROADCAST) ||
594 			    ipv4_is_multicast(addr4)) {
595 				ret = -EPROTOTYPE;
596 				break;
597 			}
598 		}
599 
600 		if (addr_type & IPV6_ADDR_LINKLOCAL) {
601 			/* If socket is arleady bound to a link local address,
602 			 * the peer address must be on the same link.
603 			 */
604 			if (sin6->sin6_scope_id == 0 ||
605 			    (!ipv6_addr_any(&rs->rs_bound_addr) &&
606 			     rs->rs_bound_scope_id &&
607 			     sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
608 				ret = -EINVAL;
609 				break;
610 			}
611 			/* Remember the connected address scope ID.  It will
612 			 * be checked against the binding local address when
613 			 * the socket is bound.
614 			 */
615 			rs->rs_bound_scope_id = sin6->sin6_scope_id;
616 		}
617 		rs->rs_conn_addr = sin6->sin6_addr;
618 		rs->rs_conn_port = sin6->sin6_port;
619 		break;
620 	}
621 #endif
622 
623 	default:
624 		ret = -EAFNOSUPPORT;
625 		break;
626 	}
627 
628 	release_sock(sk);
629 	return ret;
630 }
631 
632 static struct proto rds_proto = {
633 	.name	  = "RDS",
634 	.owner	  = THIS_MODULE,
635 	.obj_size = sizeof(struct rds_sock),
636 };
637 
638 static const struct proto_ops rds_proto_ops = {
639 	.family =	AF_RDS,
640 	.owner =	THIS_MODULE,
641 	.release =	rds_release,
642 	.bind =		rds_bind,
643 	.connect =	rds_connect,
644 	.socketpair =	sock_no_socketpair,
645 	.accept =	sock_no_accept,
646 	.getname =	rds_getname,
647 	.poll =		rds_poll,
648 	.ioctl =	rds_ioctl,
649 	.listen =	sock_no_listen,
650 	.shutdown =	sock_no_shutdown,
651 	.setsockopt =	rds_setsockopt,
652 	.getsockopt =	rds_getsockopt,
653 	.sendmsg =	rds_sendmsg,
654 	.recvmsg =	rds_recvmsg,
655 	.mmap =		sock_no_mmap,
656 	.sendpage =	sock_no_sendpage,
657 };
658 
659 static void rds_sock_destruct(struct sock *sk)
660 {
661 	struct rds_sock *rs = rds_sk_to_rs(sk);
662 
663 	WARN_ON((&rs->rs_item != rs->rs_item.next ||
664 		 &rs->rs_item != rs->rs_item.prev));
665 }
666 
667 static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
668 {
669 	struct rds_sock *rs;
670 
671 	sock_init_data(sock, sk);
672 	sock->ops		= &rds_proto_ops;
673 	sk->sk_protocol		= protocol;
674 	sk->sk_destruct		= rds_sock_destruct;
675 
676 	rs = rds_sk_to_rs(sk);
677 	spin_lock_init(&rs->rs_lock);
678 	rwlock_init(&rs->rs_recv_lock);
679 	INIT_LIST_HEAD(&rs->rs_send_queue);
680 	INIT_LIST_HEAD(&rs->rs_recv_queue);
681 	INIT_LIST_HEAD(&rs->rs_notify_queue);
682 	INIT_LIST_HEAD(&rs->rs_cong_list);
683 	rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
684 	spin_lock_init(&rs->rs_rdma_lock);
685 	rs->rs_rdma_keys = RB_ROOT;
686 	rs->rs_rx_traces = 0;
687 	rs->rs_tos = 0;
688 	rs->rs_conn = NULL;
689 
690 	spin_lock_bh(&rds_sock_lock);
691 	list_add_tail(&rs->rs_item, &rds_sock_list);
692 	rds_sock_count++;
693 	spin_unlock_bh(&rds_sock_lock);
694 
695 	return 0;
696 }
697 
698 static int rds_create(struct net *net, struct socket *sock, int protocol,
699 		      int kern)
700 {
701 	struct sock *sk;
702 
703 	if (sock->type != SOCK_SEQPACKET || protocol)
704 		return -ESOCKTNOSUPPORT;
705 
706 	sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern);
707 	if (!sk)
708 		return -ENOMEM;
709 
710 	return __rds_create(sock, sk, protocol);
711 }
712 
713 void rds_sock_addref(struct rds_sock *rs)
714 {
715 	sock_hold(rds_rs_to_sk(rs));
716 }
717 
718 void rds_sock_put(struct rds_sock *rs)
719 {
720 	sock_put(rds_rs_to_sk(rs));
721 }
722 
723 static const struct net_proto_family rds_family_ops = {
724 	.family =	AF_RDS,
725 	.create =	rds_create,
726 	.owner	=	THIS_MODULE,
727 };
728 
729 static void rds_sock_inc_info(struct socket *sock, unsigned int len,
730 			      struct rds_info_iterator *iter,
731 			      struct rds_info_lengths *lens)
732 {
733 	struct rds_sock *rs;
734 	struct rds_incoming *inc;
735 	unsigned int total = 0;
736 
737 	len /= sizeof(struct rds_info_message);
738 
739 	spin_lock_bh(&rds_sock_lock);
740 
741 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
742 		/* This option only supports IPv4 sockets. */
743 		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
744 			continue;
745 
746 		read_lock(&rs->rs_recv_lock);
747 
748 		/* XXX too lazy to maintain counts.. */
749 		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
750 			total++;
751 			if (total <= len)
752 				rds_inc_info_copy(inc, iter,
753 						  inc->i_saddr.s6_addr32[3],
754 						  rs->rs_bound_addr_v4,
755 						  1);
756 		}
757 
758 		read_unlock(&rs->rs_recv_lock);
759 	}
760 
761 	spin_unlock_bh(&rds_sock_lock);
762 
763 	lens->nr = total;
764 	lens->each = sizeof(struct rds_info_message);
765 }
766 
767 #if IS_ENABLED(CONFIG_IPV6)
768 static void rds6_sock_inc_info(struct socket *sock, unsigned int len,
769 			       struct rds_info_iterator *iter,
770 			       struct rds_info_lengths *lens)
771 {
772 	struct rds_incoming *inc;
773 	unsigned int total = 0;
774 	struct rds_sock *rs;
775 
776 	len /= sizeof(struct rds6_info_message);
777 
778 	spin_lock_bh(&rds_sock_lock);
779 
780 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
781 		read_lock(&rs->rs_recv_lock);
782 
783 		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
784 			total++;
785 			if (total <= len)
786 				rds6_inc_info_copy(inc, iter, &inc->i_saddr,
787 						   &rs->rs_bound_addr, 1);
788 		}
789 
790 		read_unlock(&rs->rs_recv_lock);
791 	}
792 
793 	spin_unlock_bh(&rds_sock_lock);
794 
795 	lens->nr = total;
796 	lens->each = sizeof(struct rds6_info_message);
797 }
798 #endif
799 
800 static void rds_sock_info(struct socket *sock, unsigned int len,
801 			  struct rds_info_iterator *iter,
802 			  struct rds_info_lengths *lens)
803 {
804 	struct rds_info_socket sinfo;
805 	unsigned int cnt = 0;
806 	struct rds_sock *rs;
807 
808 	len /= sizeof(struct rds_info_socket);
809 
810 	spin_lock_bh(&rds_sock_lock);
811 
812 	if (len < rds_sock_count) {
813 		cnt = rds_sock_count;
814 		goto out;
815 	}
816 
817 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
818 		/* This option only supports IPv4 sockets. */
819 		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
820 			continue;
821 		sinfo.sndbuf = rds_sk_sndbuf(rs);
822 		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
823 		sinfo.bound_addr = rs->rs_bound_addr_v4;
824 		sinfo.connected_addr = rs->rs_conn_addr_v4;
825 		sinfo.bound_port = rs->rs_bound_port;
826 		sinfo.connected_port = rs->rs_conn_port;
827 		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
828 
829 		rds_info_copy(iter, &sinfo, sizeof(sinfo));
830 		cnt++;
831 	}
832 
833 out:
834 	lens->nr = cnt;
835 	lens->each = sizeof(struct rds_info_socket);
836 
837 	spin_unlock_bh(&rds_sock_lock);
838 }
839 
840 #if IS_ENABLED(CONFIG_IPV6)
841 static void rds6_sock_info(struct socket *sock, unsigned int len,
842 			   struct rds_info_iterator *iter,
843 			   struct rds_info_lengths *lens)
844 {
845 	struct rds6_info_socket sinfo6;
846 	struct rds_sock *rs;
847 
848 	len /= sizeof(struct rds6_info_socket);
849 
850 	spin_lock_bh(&rds_sock_lock);
851 
852 	if (len < rds_sock_count)
853 		goto out;
854 
855 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
856 		sinfo6.sndbuf = rds_sk_sndbuf(rs);
857 		sinfo6.rcvbuf = rds_sk_rcvbuf(rs);
858 		sinfo6.bound_addr = rs->rs_bound_addr;
859 		sinfo6.connected_addr = rs->rs_conn_addr;
860 		sinfo6.bound_port = rs->rs_bound_port;
861 		sinfo6.connected_port = rs->rs_conn_port;
862 		sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs));
863 
864 		rds_info_copy(iter, &sinfo6, sizeof(sinfo6));
865 	}
866 
867  out:
868 	lens->nr = rds_sock_count;
869 	lens->each = sizeof(struct rds6_info_socket);
870 
871 	spin_unlock_bh(&rds_sock_lock);
872 }
873 #endif
874 
875 static void rds_exit(void)
876 {
877 	sock_unregister(rds_family_ops.family);
878 	proto_unregister(&rds_proto);
879 	rds_conn_exit();
880 	rds_cong_exit();
881 	rds_sysctl_exit();
882 	rds_threads_exit();
883 	rds_stats_exit();
884 	rds_page_exit();
885 	rds_bind_lock_destroy();
886 	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
887 	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
888 #if IS_ENABLED(CONFIG_IPV6)
889 	rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info);
890 	rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
891 #endif
892 }
893 module_exit(rds_exit);
894 
895 u32 rds_gen_num;
896 
897 static int __init rds_init(void)
898 {
899 	int ret;
900 
901 	net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
902 
903 	ret = rds_bind_lock_init();
904 	if (ret)
905 		goto out;
906 
907 	ret = rds_conn_init();
908 	if (ret)
909 		goto out_bind;
910 
911 	ret = rds_threads_init();
912 	if (ret)
913 		goto out_conn;
914 	ret = rds_sysctl_init();
915 	if (ret)
916 		goto out_threads;
917 	ret = rds_stats_init();
918 	if (ret)
919 		goto out_sysctl;
920 	ret = proto_register(&rds_proto, 1);
921 	if (ret)
922 		goto out_stats;
923 	ret = sock_register(&rds_family_ops);
924 	if (ret)
925 		goto out_proto;
926 
927 	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
928 	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
929 #if IS_ENABLED(CONFIG_IPV6)
930 	rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info);
931 	rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
932 #endif
933 
934 	goto out;
935 
936 out_proto:
937 	proto_unregister(&rds_proto);
938 out_stats:
939 	rds_stats_exit();
940 out_sysctl:
941 	rds_sysctl_exit();
942 out_threads:
943 	rds_threads_exit();
944 out_conn:
945 	rds_conn_exit();
946 	rds_cong_exit();
947 	rds_page_exit();
948 out_bind:
949 	rds_bind_lock_destroy();
950 out:
951 	return ret;
952 }
953 module_init(rds_init);
954 
955 #define DRV_VERSION     "4.0"
956 #define DRV_RELDATE     "Feb 12, 2009"
957 
958 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
959 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
960 		   " v" DRV_VERSION " (" DRV_RELDATE ")");
961 MODULE_VERSION(DRV_VERSION);
962 MODULE_LICENSE("Dual BSD/GPL");
963 MODULE_ALIAS_NETPROTO(PF_RDS);
964