xref: /openbmc/linux/net/qrtr/af_qrtr.c (revision fa87c546)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Sony Mobile Communications Inc.
4  * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5  */
6 #include <linux/module.h>
7 #include <linux/netlink.h>
8 #include <linux/qrtr.h>
9 #include <linux/termios.h>	/* For TIOCINQ/OUTQ */
10 #include <linux/spinlock.h>
11 #include <linux/wait.h>
12 
13 #include <net/sock.h>
14 
15 #include "qrtr.h"
16 
17 #define QRTR_PROTO_VER_1 1
18 #define QRTR_PROTO_VER_2 3
19 
20 /* auto-bind range */
21 #define QRTR_MIN_EPH_SOCKET 0x4000
22 #define QRTR_MAX_EPH_SOCKET 0x7fff
23 #define QRTR_EPH_PORT_RANGE \
24 		XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET)
25 
26 /**
27  * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
28  * @version: protocol version
29  * @type: packet type; one of QRTR_TYPE_*
30  * @src_node_id: source node
31  * @src_port_id: source port
32  * @confirm_rx: boolean; whether a resume-tx packet should be send in reply
33  * @size: length of packet, excluding this header
34  * @dst_node_id: destination node
35  * @dst_port_id: destination port
36  */
37 struct qrtr_hdr_v1 {
38 	__le32 version;
39 	__le32 type;
40 	__le32 src_node_id;
41 	__le32 src_port_id;
42 	__le32 confirm_rx;
43 	__le32 size;
44 	__le32 dst_node_id;
45 	__le32 dst_port_id;
46 } __packed;
47 
48 /**
49  * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
50  * @version: protocol version
51  * @type: packet type; one of QRTR_TYPE_*
52  * @flags: bitmask of QRTR_FLAGS_*
53  * @optlen: length of optional header data
54  * @size: length of packet, excluding this header and optlen
55  * @src_node_id: source node
56  * @src_port_id: source port
57  * @dst_node_id: destination node
58  * @dst_port_id: destination port
59  */
60 struct qrtr_hdr_v2 {
61 	u8 version;
62 	u8 type;
63 	u8 flags;
64 	u8 optlen;
65 	__le32 size;
66 	__le16 src_node_id;
67 	__le16 src_port_id;
68 	__le16 dst_node_id;
69 	__le16 dst_port_id;
70 };
71 
72 #define QRTR_FLAGS_CONFIRM_RX	BIT(0)
73 
74 struct qrtr_cb {
75 	u32 src_node;
76 	u32 src_port;
77 	u32 dst_node;
78 	u32 dst_port;
79 
80 	u8 type;
81 	u8 confirm_rx;
82 };
83 
84 #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
85 					sizeof(struct qrtr_hdr_v2))
86 
87 struct qrtr_sock {
88 	/* WARNING: sk must be the first member */
89 	struct sock sk;
90 	struct sockaddr_qrtr us;
91 	struct sockaddr_qrtr peer;
92 };
93 
94 static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
95 {
96 	BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
97 	return container_of(sk, struct qrtr_sock, sk);
98 }
99 
100 static unsigned int qrtr_local_nid = 1;
101 
102 /* for node ids */
103 static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
104 static DEFINE_SPINLOCK(qrtr_nodes_lock);
105 /* broadcast list */
106 static LIST_HEAD(qrtr_all_nodes);
107 /* lock for qrtr_all_nodes and node reference */
108 static DEFINE_MUTEX(qrtr_node_lock);
109 
110 /* local port allocation management */
111 static DEFINE_XARRAY_ALLOC(qrtr_ports);
112 
113 /**
114  * struct qrtr_node - endpoint node
115  * @ep_lock: lock for endpoint management and callbacks
116  * @ep: endpoint
117  * @ref: reference count for node
118  * @nid: node id
119  * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
120  * @qrtr_tx_lock: lock for qrtr_tx_flow inserts
121  * @rx_queue: receive queue
122  * @item: list item for broadcast list
123  */
124 struct qrtr_node {
125 	struct mutex ep_lock;
126 	struct qrtr_endpoint *ep;
127 	struct kref ref;
128 	unsigned int nid;
129 
130 	struct radix_tree_root qrtr_tx_flow;
131 	struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
132 
133 	struct sk_buff_head rx_queue;
134 	struct list_head item;
135 };
136 
137 /**
138  * struct qrtr_tx_flow - tx flow control
139  * @resume_tx: waiters for a resume tx from the remote
140  * @pending: number of waiting senders
141  * @tx_failed: indicates that a message with confirm_rx flag was lost
142  */
143 struct qrtr_tx_flow {
144 	struct wait_queue_head resume_tx;
145 	int pending;
146 	int tx_failed;
147 };
148 
149 #define QRTR_TX_FLOW_HIGH	10
150 #define QRTR_TX_FLOW_LOW	5
151 
152 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
153 			      int type, struct sockaddr_qrtr *from,
154 			      struct sockaddr_qrtr *to);
155 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
156 			      int type, struct sockaddr_qrtr *from,
157 			      struct sockaddr_qrtr *to);
158 static struct qrtr_sock *qrtr_port_lookup(int port);
159 static void qrtr_port_put(struct qrtr_sock *ipc);
160 
161 /* Release node resources and free the node.
162  *
163  * Do not call directly, use qrtr_node_release.  To be used with
164  * kref_put_mutex.  As such, the node mutex is expected to be locked on call.
165  */
166 static void __qrtr_node_release(struct kref *kref)
167 {
168 	struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
169 	struct radix_tree_iter iter;
170 	struct qrtr_tx_flow *flow;
171 	unsigned long flags;
172 	void __rcu **slot;
173 
174 	spin_lock_irqsave(&qrtr_nodes_lock, flags);
175 	/* If the node is a bridge for other nodes, there are possibly
176 	 * multiple entries pointing to our released node, delete them all.
177 	 */
178 	radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
179 		if (*slot == node)
180 			radix_tree_iter_delete(&qrtr_nodes, &iter, slot);
181 	}
182 	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
183 
184 	list_del(&node->item);
185 	mutex_unlock(&qrtr_node_lock);
186 
187 	skb_queue_purge(&node->rx_queue);
188 
189 	/* Free tx flow counters */
190 	radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
191 		flow = *slot;
192 		radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
193 		kfree(flow);
194 	}
195 	kfree(node);
196 }
197 
198 /* Increment reference to node. */
199 static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
200 {
201 	if (node)
202 		kref_get(&node->ref);
203 	return node;
204 }
205 
206 /* Decrement reference to node and release as necessary. */
207 static void qrtr_node_release(struct qrtr_node *node)
208 {
209 	if (!node)
210 		return;
211 	kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
212 }
213 
214 /**
215  * qrtr_tx_resume() - reset flow control counter
216  * @node:	qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
217  * @skb:	resume_tx packet
218  */
219 static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
220 {
221 	struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
222 	u64 remote_node = le32_to_cpu(pkt->client.node);
223 	u32 remote_port = le32_to_cpu(pkt->client.port);
224 	struct qrtr_tx_flow *flow;
225 	unsigned long key;
226 
227 	key = remote_node << 32 | remote_port;
228 
229 	rcu_read_lock();
230 	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
231 	rcu_read_unlock();
232 	if (flow) {
233 		spin_lock(&flow->resume_tx.lock);
234 		flow->pending = 0;
235 		spin_unlock(&flow->resume_tx.lock);
236 		wake_up_interruptible_all(&flow->resume_tx);
237 	}
238 
239 	consume_skb(skb);
240 }
241 
242 /**
243  * qrtr_tx_wait() - flow control for outgoing packets
244  * @node:	qrtr_node that the packet is to be send to
245  * @dest_node:	node id of the destination
246  * @dest_port:	port number of the destination
247  * @type:	type of message
248  *
249  * The flow control scheme is based around the low and high "watermarks". When
250  * the low watermark is passed the confirm_rx flag is set on the outgoing
251  * message, which will trigger the remote to send a control message of the type
252  * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
253  * further transmision should be paused.
254  *
255  * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
256  */
257 static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
258 			int type)
259 {
260 	unsigned long key = (u64)dest_node << 32 | dest_port;
261 	struct qrtr_tx_flow *flow;
262 	int confirm_rx = 0;
263 	int ret;
264 
265 	/* Never set confirm_rx on non-data packets */
266 	if (type != QRTR_TYPE_DATA)
267 		return 0;
268 
269 	mutex_lock(&node->qrtr_tx_lock);
270 	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
271 	if (!flow) {
272 		flow = kzalloc(sizeof(*flow), GFP_KERNEL);
273 		if (flow) {
274 			init_waitqueue_head(&flow->resume_tx);
275 			if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) {
276 				kfree(flow);
277 				flow = NULL;
278 			}
279 		}
280 	}
281 	mutex_unlock(&node->qrtr_tx_lock);
282 
283 	/* Set confirm_rx if we where unable to find and allocate a flow */
284 	if (!flow)
285 		return 1;
286 
287 	spin_lock_irq(&flow->resume_tx.lock);
288 	ret = wait_event_interruptible_locked_irq(flow->resume_tx,
289 						  flow->pending < QRTR_TX_FLOW_HIGH ||
290 						  flow->tx_failed ||
291 						  !node->ep);
292 	if (ret < 0) {
293 		confirm_rx = ret;
294 	} else if (!node->ep) {
295 		confirm_rx = -EPIPE;
296 	} else if (flow->tx_failed) {
297 		flow->tx_failed = 0;
298 		confirm_rx = 1;
299 	} else {
300 		flow->pending++;
301 		confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
302 	}
303 	spin_unlock_irq(&flow->resume_tx.lock);
304 
305 	return confirm_rx;
306 }
307 
308 /**
309  * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
310  * @node:	qrtr_node that the packet is to be send to
311  * @dest_node:	node id of the destination
312  * @dest_port:	port number of the destination
313  *
314  * Signal that the transmission of a message with confirm_rx flag failed. The
315  * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
316  * at which point transmission would stall forever waiting for the resume TX
317  * message associated with the dropped confirm_rx message.
318  * Work around this by marking the flow as having a failed transmission and
319  * cause the next transmission attempt to be sent with the confirm_rx.
320  */
321 static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
322 				int dest_port)
323 {
324 	unsigned long key = (u64)dest_node << 32 | dest_port;
325 	struct qrtr_tx_flow *flow;
326 
327 	rcu_read_lock();
328 	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
329 	rcu_read_unlock();
330 	if (flow) {
331 		spin_lock_irq(&flow->resume_tx.lock);
332 		flow->tx_failed = 1;
333 		spin_unlock_irq(&flow->resume_tx.lock);
334 	}
335 }
336 
337 /* Pass an outgoing packet socket buffer to the endpoint driver. */
338 static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
339 			     int type, struct sockaddr_qrtr *from,
340 			     struct sockaddr_qrtr *to)
341 {
342 	struct qrtr_hdr_v1 *hdr;
343 	size_t len = skb->len;
344 	int rc, confirm_rx;
345 
346 	confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
347 	if (confirm_rx < 0) {
348 		kfree_skb(skb);
349 		return confirm_rx;
350 	}
351 
352 	hdr = skb_push(skb, sizeof(*hdr));
353 	hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
354 	hdr->type = cpu_to_le32(type);
355 	hdr->src_node_id = cpu_to_le32(from->sq_node);
356 	hdr->src_port_id = cpu_to_le32(from->sq_port);
357 	if (to->sq_port == QRTR_PORT_CTRL) {
358 		hdr->dst_node_id = cpu_to_le32(node->nid);
359 		hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL);
360 	} else {
361 		hdr->dst_node_id = cpu_to_le32(to->sq_node);
362 		hdr->dst_port_id = cpu_to_le32(to->sq_port);
363 	}
364 
365 	hdr->size = cpu_to_le32(len);
366 	hdr->confirm_rx = !!confirm_rx;
367 
368 	rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
369 
370 	if (!rc) {
371 		mutex_lock(&node->ep_lock);
372 		rc = -ENODEV;
373 		if (node->ep)
374 			rc = node->ep->xmit(node->ep, skb);
375 		else
376 			kfree_skb(skb);
377 		mutex_unlock(&node->ep_lock);
378 	}
379 	/* Need to ensure that a subsequent message carries the otherwise lost
380 	 * confirm_rx flag if we dropped this one */
381 	if (rc && confirm_rx)
382 		qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
383 
384 	return rc;
385 }
386 
387 /* Lookup node by id.
388  *
389  * callers must release with qrtr_node_release()
390  */
391 static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
392 {
393 	struct qrtr_node *node;
394 	unsigned long flags;
395 
396 	mutex_lock(&qrtr_node_lock);
397 	spin_lock_irqsave(&qrtr_nodes_lock, flags);
398 	node = radix_tree_lookup(&qrtr_nodes, nid);
399 	node = qrtr_node_acquire(node);
400 	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
401 	mutex_unlock(&qrtr_node_lock);
402 
403 	return node;
404 }
405 
406 /* Assign node id to node.
407  *
408  * This is mostly useful for automatic node id assignment, based on
409  * the source id in the incoming packet.
410  */
411 static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
412 {
413 	unsigned long flags;
414 
415 	if (nid == QRTR_EP_NID_AUTO)
416 		return;
417 
418 	spin_lock_irqsave(&qrtr_nodes_lock, flags);
419 	radix_tree_insert(&qrtr_nodes, nid, node);
420 	if (node->nid == QRTR_EP_NID_AUTO)
421 		node->nid = nid;
422 	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
423 }
424 
425 /**
426  * qrtr_endpoint_post() - post incoming data
427  * @ep: endpoint handle
428  * @data: data pointer
429  * @len: size of data in bytes
430  *
431  * Return: 0 on success; negative error code on failure
432  */
433 int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
434 {
435 	struct qrtr_node *node = ep->node;
436 	const struct qrtr_hdr_v1 *v1;
437 	const struct qrtr_hdr_v2 *v2;
438 	struct qrtr_sock *ipc;
439 	struct sk_buff *skb;
440 	struct qrtr_cb *cb;
441 	size_t size;
442 	unsigned int ver;
443 	size_t hdrlen;
444 
445 	if (len == 0 || len & 3)
446 		return -EINVAL;
447 
448 	skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN);
449 	if (!skb)
450 		return -ENOMEM;
451 
452 	cb = (struct qrtr_cb *)skb->cb;
453 
454 	/* Version field in v1 is little endian, so this works for both cases */
455 	ver = *(u8*)data;
456 
457 	switch (ver) {
458 	case QRTR_PROTO_VER_1:
459 		if (len < sizeof(*v1))
460 			goto err;
461 		v1 = data;
462 		hdrlen = sizeof(*v1);
463 
464 		cb->type = le32_to_cpu(v1->type);
465 		cb->src_node = le32_to_cpu(v1->src_node_id);
466 		cb->src_port = le32_to_cpu(v1->src_port_id);
467 		cb->confirm_rx = !!v1->confirm_rx;
468 		cb->dst_node = le32_to_cpu(v1->dst_node_id);
469 		cb->dst_port = le32_to_cpu(v1->dst_port_id);
470 
471 		size = le32_to_cpu(v1->size);
472 		break;
473 	case QRTR_PROTO_VER_2:
474 		if (len < sizeof(*v2))
475 			goto err;
476 		v2 = data;
477 		hdrlen = sizeof(*v2) + v2->optlen;
478 
479 		cb->type = v2->type;
480 		cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
481 		cb->src_node = le16_to_cpu(v2->src_node_id);
482 		cb->src_port = le16_to_cpu(v2->src_port_id);
483 		cb->dst_node = le16_to_cpu(v2->dst_node_id);
484 		cb->dst_port = le16_to_cpu(v2->dst_port_id);
485 
486 		if (cb->src_port == (u16)QRTR_PORT_CTRL)
487 			cb->src_port = QRTR_PORT_CTRL;
488 		if (cb->dst_port == (u16)QRTR_PORT_CTRL)
489 			cb->dst_port = QRTR_PORT_CTRL;
490 
491 		size = le32_to_cpu(v2->size);
492 		break;
493 	default:
494 		pr_err("qrtr: Invalid version %d\n", ver);
495 		goto err;
496 	}
497 
498 	if (!size || len != ALIGN(size, 4) + hdrlen)
499 		goto err;
500 
501 	if ((cb->type == QRTR_TYPE_NEW_SERVER ||
502 	     cb->type == QRTR_TYPE_RESUME_TX) &&
503 	    size < sizeof(struct qrtr_ctrl_pkt))
504 		goto err;
505 
506 	if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
507 	    cb->type != QRTR_TYPE_RESUME_TX)
508 		goto err;
509 
510 	skb_put_data(skb, data + hdrlen, size);
511 
512 	qrtr_node_assign(node, cb->src_node);
513 
514 	if (cb->type == QRTR_TYPE_NEW_SERVER) {
515 		/* Remote node endpoint can bridge other distant nodes */
516 		const struct qrtr_ctrl_pkt *pkt;
517 
518 		pkt = data + hdrlen;
519 		qrtr_node_assign(node, le32_to_cpu(pkt->server.node));
520 	}
521 
522 	if (cb->type == QRTR_TYPE_RESUME_TX) {
523 		qrtr_tx_resume(node, skb);
524 	} else {
525 		ipc = qrtr_port_lookup(cb->dst_port);
526 		if (!ipc)
527 			goto err;
528 
529 		if (sock_queue_rcv_skb(&ipc->sk, skb)) {
530 			qrtr_port_put(ipc);
531 			goto err;
532 		}
533 
534 		qrtr_port_put(ipc);
535 	}
536 
537 	return 0;
538 
539 err:
540 	kfree_skb(skb);
541 	return -EINVAL;
542 
543 }
544 EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
545 
546 /**
547  * qrtr_alloc_ctrl_packet() - allocate control packet skb
548  * @pkt: reference to qrtr_ctrl_pkt pointer
549  * @flags: the type of memory to allocate
550  *
551  * Returns newly allocated sk_buff, or NULL on failure
552  *
553  * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
554  * on success returns a reference to the control packet in @pkt.
555  */
556 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt,
557 					      gfp_t flags)
558 {
559 	const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
560 	struct sk_buff *skb;
561 
562 	skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, flags);
563 	if (!skb)
564 		return NULL;
565 
566 	skb_reserve(skb, QRTR_HDR_MAX_SIZE);
567 	*pkt = skb_put_zero(skb, pkt_len);
568 
569 	return skb;
570 }
571 
572 /**
573  * qrtr_endpoint_register() - register a new endpoint
574  * @ep: endpoint to register
575  * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
576  * Return: 0 on success; negative error code on failure
577  *
578  * The specified endpoint must have the xmit function pointer set on call.
579  */
580 int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
581 {
582 	struct qrtr_node *node;
583 
584 	if (!ep || !ep->xmit)
585 		return -EINVAL;
586 
587 	node = kzalloc(sizeof(*node), GFP_KERNEL);
588 	if (!node)
589 		return -ENOMEM;
590 
591 	kref_init(&node->ref);
592 	mutex_init(&node->ep_lock);
593 	skb_queue_head_init(&node->rx_queue);
594 	node->nid = QRTR_EP_NID_AUTO;
595 	node->ep = ep;
596 
597 	INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
598 	mutex_init(&node->qrtr_tx_lock);
599 
600 	qrtr_node_assign(node, nid);
601 
602 	mutex_lock(&qrtr_node_lock);
603 	list_add(&node->item, &qrtr_all_nodes);
604 	mutex_unlock(&qrtr_node_lock);
605 	ep->node = node;
606 
607 	return 0;
608 }
609 EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
610 
611 /**
612  * qrtr_endpoint_unregister - unregister endpoint
613  * @ep: endpoint to unregister
614  */
615 void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
616 {
617 	struct qrtr_node *node = ep->node;
618 	struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
619 	struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
620 	struct radix_tree_iter iter;
621 	struct qrtr_ctrl_pkt *pkt;
622 	struct qrtr_tx_flow *flow;
623 	struct sk_buff *skb;
624 	unsigned long flags;
625 	void __rcu **slot;
626 
627 	mutex_lock(&node->ep_lock);
628 	node->ep = NULL;
629 	mutex_unlock(&node->ep_lock);
630 
631 	/* Notify the local controller about the event */
632 	spin_lock_irqsave(&qrtr_nodes_lock, flags);
633 	radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
634 		if (*slot != node)
635 			continue;
636 		src.sq_node = iter.index;
637 		skb = qrtr_alloc_ctrl_packet(&pkt, GFP_ATOMIC);
638 		if (skb) {
639 			pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
640 			qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
641 		}
642 	}
643 	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
644 
645 	/* Wake up any transmitters waiting for resume-tx from the node */
646 	mutex_lock(&node->qrtr_tx_lock);
647 	radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
648 		flow = *slot;
649 		wake_up_interruptible_all(&flow->resume_tx);
650 	}
651 	mutex_unlock(&node->qrtr_tx_lock);
652 
653 	qrtr_node_release(node);
654 	ep->node = NULL;
655 }
656 EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
657 
658 /* Lookup socket by port.
659  *
660  * Callers must release with qrtr_port_put()
661  */
662 static struct qrtr_sock *qrtr_port_lookup(int port)
663 {
664 	struct qrtr_sock *ipc;
665 
666 	if (port == QRTR_PORT_CTRL)
667 		port = 0;
668 
669 	rcu_read_lock();
670 	ipc = xa_load(&qrtr_ports, port);
671 	if (ipc)
672 		sock_hold(&ipc->sk);
673 	rcu_read_unlock();
674 
675 	return ipc;
676 }
677 
678 /* Release acquired socket. */
679 static void qrtr_port_put(struct qrtr_sock *ipc)
680 {
681 	sock_put(&ipc->sk);
682 }
683 
684 /* Remove port assignment. */
685 static void qrtr_port_remove(struct qrtr_sock *ipc)
686 {
687 	struct qrtr_ctrl_pkt *pkt;
688 	struct sk_buff *skb;
689 	int port = ipc->us.sq_port;
690 	struct sockaddr_qrtr to;
691 
692 	to.sq_family = AF_QIPCRTR;
693 	to.sq_node = QRTR_NODE_BCAST;
694 	to.sq_port = QRTR_PORT_CTRL;
695 
696 	skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
697 	if (skb) {
698 		pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
699 		pkt->client.node = cpu_to_le32(ipc->us.sq_node);
700 		pkt->client.port = cpu_to_le32(ipc->us.sq_port);
701 
702 		skb_set_owner_w(skb, &ipc->sk);
703 		qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
704 				   &to);
705 	}
706 
707 	if (port == QRTR_PORT_CTRL)
708 		port = 0;
709 
710 	__sock_put(&ipc->sk);
711 
712 	xa_erase(&qrtr_ports, port);
713 
714 	/* Ensure that if qrtr_port_lookup() did enter the RCU read section we
715 	 * wait for it to up increment the refcount */
716 	synchronize_rcu();
717 }
718 
719 /* Assign port number to socket.
720  *
721  * Specify port in the integer pointed to by port, and it will be adjusted
722  * on return as necesssary.
723  *
724  * Port may be:
725  *   0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
726  *   <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
727  *   >QRTR_MIN_EPH_SOCKET: Specified; available to all
728  */
729 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
730 {
731 	int rc;
732 
733 	if (!*port) {
734 		rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE,
735 				GFP_KERNEL);
736 	} else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
737 		rc = -EACCES;
738 	} else if (*port == QRTR_PORT_CTRL) {
739 		rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL);
740 	} else {
741 		rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL);
742 	}
743 
744 	if (rc == -EBUSY)
745 		return -EADDRINUSE;
746 	else if (rc < 0)
747 		return rc;
748 
749 	sock_hold(&ipc->sk);
750 
751 	return 0;
752 }
753 
754 /* Reset all non-control ports */
755 static void qrtr_reset_ports(void)
756 {
757 	struct qrtr_sock *ipc;
758 	unsigned long index;
759 
760 	rcu_read_lock();
761 	xa_for_each_start(&qrtr_ports, index, ipc, 1) {
762 		sock_hold(&ipc->sk);
763 		ipc->sk.sk_err = ENETRESET;
764 		sk_error_report(&ipc->sk);
765 		sock_put(&ipc->sk);
766 	}
767 	rcu_read_unlock();
768 }
769 
770 /* Bind socket to address.
771  *
772  * Socket should be locked upon call.
773  */
774 static int __qrtr_bind(struct socket *sock,
775 		       const struct sockaddr_qrtr *addr, int zapped)
776 {
777 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
778 	struct sock *sk = sock->sk;
779 	int port;
780 	int rc;
781 
782 	/* rebinding ok */
783 	if (!zapped && addr->sq_port == ipc->us.sq_port)
784 		return 0;
785 
786 	port = addr->sq_port;
787 	rc = qrtr_port_assign(ipc, &port);
788 	if (rc)
789 		return rc;
790 
791 	/* unbind previous, if any */
792 	if (!zapped)
793 		qrtr_port_remove(ipc);
794 	ipc->us.sq_port = port;
795 
796 	sock_reset_flag(sk, SOCK_ZAPPED);
797 
798 	/* Notify all open ports about the new controller */
799 	if (port == QRTR_PORT_CTRL)
800 		qrtr_reset_ports();
801 
802 	return 0;
803 }
804 
805 /* Auto bind to an ephemeral port. */
806 static int qrtr_autobind(struct socket *sock)
807 {
808 	struct sock *sk = sock->sk;
809 	struct sockaddr_qrtr addr;
810 
811 	if (!sock_flag(sk, SOCK_ZAPPED))
812 		return 0;
813 
814 	addr.sq_family = AF_QIPCRTR;
815 	addr.sq_node = qrtr_local_nid;
816 	addr.sq_port = 0;
817 
818 	return __qrtr_bind(sock, &addr, 1);
819 }
820 
821 /* Bind socket to specified sockaddr. */
822 static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
823 {
824 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
825 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
826 	struct sock *sk = sock->sk;
827 	int rc;
828 
829 	if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
830 		return -EINVAL;
831 
832 	if (addr->sq_node != ipc->us.sq_node)
833 		return -EINVAL;
834 
835 	lock_sock(sk);
836 	rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
837 	release_sock(sk);
838 
839 	return rc;
840 }
841 
842 /* Queue packet to local peer socket. */
843 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
844 			      int type, struct sockaddr_qrtr *from,
845 			      struct sockaddr_qrtr *to)
846 {
847 	struct qrtr_sock *ipc;
848 	struct qrtr_cb *cb;
849 
850 	ipc = qrtr_port_lookup(to->sq_port);
851 	if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
852 		if (ipc)
853 			qrtr_port_put(ipc);
854 		kfree_skb(skb);
855 		return -ENODEV;
856 	}
857 
858 	cb = (struct qrtr_cb *)skb->cb;
859 	cb->src_node = from->sq_node;
860 	cb->src_port = from->sq_port;
861 
862 	if (sock_queue_rcv_skb(&ipc->sk, skb)) {
863 		qrtr_port_put(ipc);
864 		kfree_skb(skb);
865 		return -ENOSPC;
866 	}
867 
868 	qrtr_port_put(ipc);
869 
870 	return 0;
871 }
872 
873 /* Queue packet for broadcast. */
874 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
875 			      int type, struct sockaddr_qrtr *from,
876 			      struct sockaddr_qrtr *to)
877 {
878 	struct sk_buff *skbn;
879 
880 	mutex_lock(&qrtr_node_lock);
881 	list_for_each_entry(node, &qrtr_all_nodes, item) {
882 		skbn = skb_clone(skb, GFP_KERNEL);
883 		if (!skbn)
884 			break;
885 		skb_set_owner_w(skbn, skb->sk);
886 		qrtr_node_enqueue(node, skbn, type, from, to);
887 	}
888 	mutex_unlock(&qrtr_node_lock);
889 
890 	qrtr_local_enqueue(NULL, skb, type, from, to);
891 
892 	return 0;
893 }
894 
895 static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
896 {
897 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
898 	int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
899 			  struct sockaddr_qrtr *, struct sockaddr_qrtr *);
900 	__le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
901 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
902 	struct sock *sk = sock->sk;
903 	struct qrtr_node *node;
904 	struct sk_buff *skb;
905 	size_t plen;
906 	u32 type;
907 	int rc;
908 
909 	if (msg->msg_flags & ~(MSG_DONTWAIT))
910 		return -EINVAL;
911 
912 	if (len > 65535)
913 		return -EMSGSIZE;
914 
915 	lock_sock(sk);
916 
917 	if (addr) {
918 		if (msg->msg_namelen < sizeof(*addr)) {
919 			release_sock(sk);
920 			return -EINVAL;
921 		}
922 
923 		if (addr->sq_family != AF_QIPCRTR) {
924 			release_sock(sk);
925 			return -EINVAL;
926 		}
927 
928 		rc = qrtr_autobind(sock);
929 		if (rc) {
930 			release_sock(sk);
931 			return rc;
932 		}
933 	} else if (sk->sk_state == TCP_ESTABLISHED) {
934 		addr = &ipc->peer;
935 	} else {
936 		release_sock(sk);
937 		return -ENOTCONN;
938 	}
939 
940 	node = NULL;
941 	if (addr->sq_node == QRTR_NODE_BCAST) {
942 		if (addr->sq_port != QRTR_PORT_CTRL &&
943 		    qrtr_local_nid != QRTR_NODE_BCAST) {
944 			release_sock(sk);
945 			return -ENOTCONN;
946 		}
947 		enqueue_fn = qrtr_bcast_enqueue;
948 	} else if (addr->sq_node == ipc->us.sq_node) {
949 		enqueue_fn = qrtr_local_enqueue;
950 	} else {
951 		node = qrtr_node_lookup(addr->sq_node);
952 		if (!node) {
953 			release_sock(sk);
954 			return -ECONNRESET;
955 		}
956 		enqueue_fn = qrtr_node_enqueue;
957 	}
958 
959 	plen = (len + 3) & ~3;
960 	skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
961 				  msg->msg_flags & MSG_DONTWAIT, &rc);
962 	if (!skb) {
963 		rc = -ENOMEM;
964 		goto out_node;
965 	}
966 
967 	skb_reserve(skb, QRTR_HDR_MAX_SIZE);
968 
969 	rc = memcpy_from_msg(skb_put(skb, len), msg, len);
970 	if (rc) {
971 		kfree_skb(skb);
972 		goto out_node;
973 	}
974 
975 	if (ipc->us.sq_port == QRTR_PORT_CTRL) {
976 		if (len < 4) {
977 			rc = -EINVAL;
978 			kfree_skb(skb);
979 			goto out_node;
980 		}
981 
982 		/* control messages already require the type as 'command' */
983 		skb_copy_bits(skb, 0, &qrtr_type, 4);
984 	}
985 
986 	type = le32_to_cpu(qrtr_type);
987 	rc = enqueue_fn(node, skb, type, &ipc->us, addr);
988 	if (rc >= 0)
989 		rc = len;
990 
991 out_node:
992 	qrtr_node_release(node);
993 	release_sock(sk);
994 
995 	return rc;
996 }
997 
998 static int qrtr_send_resume_tx(struct qrtr_cb *cb)
999 {
1000 	struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
1001 	struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
1002 	struct qrtr_ctrl_pkt *pkt;
1003 	struct qrtr_node *node;
1004 	struct sk_buff *skb;
1005 	int ret;
1006 
1007 	node = qrtr_node_lookup(remote.sq_node);
1008 	if (!node)
1009 		return -EINVAL;
1010 
1011 	skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
1012 	if (!skb)
1013 		return -ENOMEM;
1014 
1015 	pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
1016 	pkt->client.node = cpu_to_le32(cb->dst_node);
1017 	pkt->client.port = cpu_to_le32(cb->dst_port);
1018 
1019 	ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
1020 
1021 	qrtr_node_release(node);
1022 
1023 	return ret;
1024 }
1025 
1026 static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
1027 			size_t size, int flags)
1028 {
1029 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
1030 	struct sock *sk = sock->sk;
1031 	struct sk_buff *skb;
1032 	struct qrtr_cb *cb;
1033 	int copied, rc;
1034 
1035 	lock_sock(sk);
1036 
1037 	if (sock_flag(sk, SOCK_ZAPPED)) {
1038 		release_sock(sk);
1039 		return -EADDRNOTAVAIL;
1040 	}
1041 
1042 	skb = skb_recv_datagram(sk, flags, &rc);
1043 	if (!skb) {
1044 		release_sock(sk);
1045 		return rc;
1046 	}
1047 	cb = (struct qrtr_cb *)skb->cb;
1048 
1049 	copied = skb->len;
1050 	if (copied > size) {
1051 		copied = size;
1052 		msg->msg_flags |= MSG_TRUNC;
1053 	}
1054 
1055 	rc = skb_copy_datagram_msg(skb, 0, msg, copied);
1056 	if (rc < 0)
1057 		goto out;
1058 	rc = copied;
1059 
1060 	if (addr) {
1061 		/* There is an anonymous 2-byte hole after sq_family,
1062 		 * make sure to clear it.
1063 		 */
1064 		memset(addr, 0, sizeof(*addr));
1065 
1066 		addr->sq_family = AF_QIPCRTR;
1067 		addr->sq_node = cb->src_node;
1068 		addr->sq_port = cb->src_port;
1069 		msg->msg_namelen = sizeof(*addr);
1070 	}
1071 
1072 out:
1073 	if (cb->confirm_rx)
1074 		qrtr_send_resume_tx(cb);
1075 
1076 	skb_free_datagram(sk, skb);
1077 	release_sock(sk);
1078 
1079 	return rc;
1080 }
1081 
1082 static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
1083 			int len, int flags)
1084 {
1085 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
1086 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1087 	struct sock *sk = sock->sk;
1088 	int rc;
1089 
1090 	if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
1091 		return -EINVAL;
1092 
1093 	lock_sock(sk);
1094 
1095 	sk->sk_state = TCP_CLOSE;
1096 	sock->state = SS_UNCONNECTED;
1097 
1098 	rc = qrtr_autobind(sock);
1099 	if (rc) {
1100 		release_sock(sk);
1101 		return rc;
1102 	}
1103 
1104 	ipc->peer = *addr;
1105 	sock->state = SS_CONNECTED;
1106 	sk->sk_state = TCP_ESTABLISHED;
1107 
1108 	release_sock(sk);
1109 
1110 	return 0;
1111 }
1112 
1113 static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
1114 			int peer)
1115 {
1116 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1117 	struct sockaddr_qrtr qaddr;
1118 	struct sock *sk = sock->sk;
1119 
1120 	lock_sock(sk);
1121 	if (peer) {
1122 		if (sk->sk_state != TCP_ESTABLISHED) {
1123 			release_sock(sk);
1124 			return -ENOTCONN;
1125 		}
1126 
1127 		qaddr = ipc->peer;
1128 	} else {
1129 		qaddr = ipc->us;
1130 	}
1131 	release_sock(sk);
1132 
1133 	qaddr.sq_family = AF_QIPCRTR;
1134 
1135 	memcpy(saddr, &qaddr, sizeof(qaddr));
1136 
1137 	return sizeof(qaddr);
1138 }
1139 
1140 static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1141 {
1142 	void __user *argp = (void __user *)arg;
1143 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1144 	struct sock *sk = sock->sk;
1145 	struct sockaddr_qrtr *sq;
1146 	struct sk_buff *skb;
1147 	struct ifreq ifr;
1148 	long len = 0;
1149 	int rc = 0;
1150 
1151 	lock_sock(sk);
1152 
1153 	switch (cmd) {
1154 	case TIOCOUTQ:
1155 		len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1156 		if (len < 0)
1157 			len = 0;
1158 		rc = put_user(len, (int __user *)argp);
1159 		break;
1160 	case TIOCINQ:
1161 		skb = skb_peek(&sk->sk_receive_queue);
1162 		if (skb)
1163 			len = skb->len;
1164 		rc = put_user(len, (int __user *)argp);
1165 		break;
1166 	case SIOCGIFADDR:
1167 		if (get_user_ifreq(&ifr, NULL, argp)) {
1168 			rc = -EFAULT;
1169 			break;
1170 		}
1171 
1172 		sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
1173 		*sq = ipc->us;
1174 		if (put_user_ifreq(&ifr, argp)) {
1175 			rc = -EFAULT;
1176 			break;
1177 		}
1178 		break;
1179 	case SIOCADDRT:
1180 	case SIOCDELRT:
1181 	case SIOCSIFADDR:
1182 	case SIOCGIFDSTADDR:
1183 	case SIOCSIFDSTADDR:
1184 	case SIOCGIFBRDADDR:
1185 	case SIOCSIFBRDADDR:
1186 	case SIOCGIFNETMASK:
1187 	case SIOCSIFNETMASK:
1188 		rc = -EINVAL;
1189 		break;
1190 	default:
1191 		rc = -ENOIOCTLCMD;
1192 		break;
1193 	}
1194 
1195 	release_sock(sk);
1196 
1197 	return rc;
1198 }
1199 
1200 static int qrtr_release(struct socket *sock)
1201 {
1202 	struct sock *sk = sock->sk;
1203 	struct qrtr_sock *ipc;
1204 
1205 	if (!sk)
1206 		return 0;
1207 
1208 	lock_sock(sk);
1209 
1210 	ipc = qrtr_sk(sk);
1211 	sk->sk_shutdown = SHUTDOWN_MASK;
1212 	if (!sock_flag(sk, SOCK_DEAD))
1213 		sk->sk_state_change(sk);
1214 
1215 	sock_set_flag(sk, SOCK_DEAD);
1216 	sock_orphan(sk);
1217 	sock->sk = NULL;
1218 
1219 	if (!sock_flag(sk, SOCK_ZAPPED))
1220 		qrtr_port_remove(ipc);
1221 
1222 	skb_queue_purge(&sk->sk_receive_queue);
1223 
1224 	release_sock(sk);
1225 	sock_put(sk);
1226 
1227 	return 0;
1228 }
1229 
1230 static const struct proto_ops qrtr_proto_ops = {
1231 	.owner		= THIS_MODULE,
1232 	.family		= AF_QIPCRTR,
1233 	.bind		= qrtr_bind,
1234 	.connect	= qrtr_connect,
1235 	.socketpair	= sock_no_socketpair,
1236 	.accept		= sock_no_accept,
1237 	.listen		= sock_no_listen,
1238 	.sendmsg	= qrtr_sendmsg,
1239 	.recvmsg	= qrtr_recvmsg,
1240 	.getname	= qrtr_getname,
1241 	.ioctl		= qrtr_ioctl,
1242 	.gettstamp	= sock_gettstamp,
1243 	.poll		= datagram_poll,
1244 	.shutdown	= sock_no_shutdown,
1245 	.release	= qrtr_release,
1246 	.mmap		= sock_no_mmap,
1247 };
1248 
1249 static struct proto qrtr_proto = {
1250 	.name		= "QIPCRTR",
1251 	.owner		= THIS_MODULE,
1252 	.obj_size	= sizeof(struct qrtr_sock),
1253 };
1254 
1255 static int qrtr_create(struct net *net, struct socket *sock,
1256 		       int protocol, int kern)
1257 {
1258 	struct qrtr_sock *ipc;
1259 	struct sock *sk;
1260 
1261 	if (sock->type != SOCK_DGRAM)
1262 		return -EPROTOTYPE;
1263 
1264 	sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
1265 	if (!sk)
1266 		return -ENOMEM;
1267 
1268 	sock_set_flag(sk, SOCK_ZAPPED);
1269 
1270 	sock_init_data(sock, sk);
1271 	sock->ops = &qrtr_proto_ops;
1272 
1273 	ipc = qrtr_sk(sk);
1274 	ipc->us.sq_family = AF_QIPCRTR;
1275 	ipc->us.sq_node = qrtr_local_nid;
1276 	ipc->us.sq_port = 0;
1277 
1278 	return 0;
1279 }
1280 
1281 static const struct net_proto_family qrtr_family = {
1282 	.owner	= THIS_MODULE,
1283 	.family	= AF_QIPCRTR,
1284 	.create	= qrtr_create,
1285 };
1286 
1287 static int __init qrtr_proto_init(void)
1288 {
1289 	int rc;
1290 
1291 	rc = proto_register(&qrtr_proto, 1);
1292 	if (rc)
1293 		return rc;
1294 
1295 	rc = sock_register(&qrtr_family);
1296 	if (rc)
1297 		goto err_proto;
1298 
1299 	rc = qrtr_ns_init();
1300 	if (rc)
1301 		goto err_sock;
1302 
1303 	return 0;
1304 
1305 err_sock:
1306 	sock_unregister(qrtr_family.family);
1307 err_proto:
1308 	proto_unregister(&qrtr_proto);
1309 	return rc;
1310 }
1311 postcore_initcall(qrtr_proto_init);
1312 
1313 static void __exit qrtr_proto_fini(void)
1314 {
1315 	qrtr_ns_remove();
1316 	sock_unregister(qrtr_family.family);
1317 	proto_unregister(&qrtr_proto);
1318 }
1319 module_exit(qrtr_proto_fini);
1320 
1321 MODULE_DESCRIPTION("Qualcomm IPC-router driver");
1322 MODULE_LICENSE("GPL v2");
1323 MODULE_ALIAS_NETPROTO(PF_QIPCRTR);
1324